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Background: Graft/ stent thrombosis after lower extremity revascularization 
(LER) is a serious complication in patients with peripheral arterial disease (PAD), 
often leading to amputation. Thus, predicting arterial thrombotic events (ATE) 
within 1 year is crucial. Given the high rates of thrombosis post-revascularization, 
this study aimed to develop a machine learning model (MLM) incorporating 
viscoelastic testing and patient-specific variables to predict ATE following LER.

Methods: We prospectively enrolled PAD patients undergoing LER from 2020 to 
2024, collecting demographic, clinical, and intervention-related data alongside 
perioperative thromboelastography with platelet mapping (TEG-PM) values over 
12 months post-revascularization. Univariate analysis identified predictors from 
52 candidate variables. Multiple MLMs, including logistic regression, XGBoost, 
and decision tree algorithms, were developed and evaluated using a 70–30 train-
test split and five-fold cross-validation. The Synthetic Minority Oversampling 
Technique (SMOTE) was employed to address the class imbalance between 
the primary outcomes (ATE vs. no ATE). Model performance was assessed by 
area under the curve (AUC), accuracy, sensitivity, specificity, negative predictive 
value, and positive predictive value.

Results: Of the 308 patients analyzed, 66% were male, 84% were White, and 
18.3% experienced an ATE during the one-year post-revascularization follow-
up period. The logistic regression MLM demonstrated the best combined 
descriptive and calibration performance, especially when TEG-PM parameters 
were used in combination with patient-specific baseline characteristics, with an 
AUC of 0.76, classification accuracy of 70%, sensitivity of 68%, and specificity of 
71%.

Conclusion: Combining patient-specific characteristics with TEG-PM values 
in MLMs can effectively predict ATE following LER in PAD patients, enhancing 
high-risk patient identification and enabling tailored thromboprophylaxis.
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Introduction

Peripheral arterial disease (PAD) affects over 200 million people 
globally, constituting a significant burden on healthcare and patient 
quality of life (Song et al., 2019; Shu and Santulli, 2018; Sorber et al., 
2021). Severe PAD management involves lower extremity graft or 
stent revascularization procedures (Kinlay, 2016; Hicks et al., 2017). 
Despite advances, bypass graft and/or stent thrombosis within the first 
year remains common, occurring between 5 and 20% of cases 
(Majumdar et al., 2023). Arterial thrombotic events (ATE) remain a 
leading cause of limb loss, morbidity, and mortality following 
revascularization, with up to an estimated 50% mortality rate within 
1 year of amputation (Beeson et al., 2023; Andraska et al., 2022). The 
risk of ATE post-revascularization is influenced by a complex interplay 
of patient-specific factors, including genetics and comorbid conditions 
such as diabetes mellitus, hypertension, renal insufficiency, and 
smoking status, which all influence the intrinsic coagulation status of 
a patient (Brooke et al., 2014; O'Hare et al., 2004). Traditional risk 
assessment tools, while useful, often fall short of accurately and 
reliably predicting these events, necessitating a more individualized 
approach. Specifically, the role of patient hypercoagulability and its 
management remains poorly characterized. Despite significant 
research into the molecular biology of cardiovascular disease in 
general, there is limited evidence supporting the use of multimodal 
antithrombotic therapy specifically for PAD to alleviate post-
revascularization thrombosis or stenosis of the index arterial lesion. 
Notably, studies such as VOYAGER PAD have explored strategies to 
improve thromboprophylaxis in PAD patients. However, VOYAGER 
intervention (aspirin + rivaroxaban) did not significantly decrease 
major amputation rates as an individual outcome and was associated 
with an increased risk of major bleeding, limiting its suitability as a 
universal approach (Berkowitz et al., 2022). Additionally, most of the 
trials were derived from subgroup analysis of patients with coronary 
and cerebrovascular disease (Sorber et al., 2021; Berkowitz et al., 2022; 
Dorweiler et al., 2003; Kohler et al., 1984; Steffel et al., 2020).

Many factors, such as antiplatelet agent resistance, uremia, and 
glycemic control, may increase thrombosis risk. However, they are not 
adequately accounted for in standard hypercoagulability tests 
(prothrombin time, international normalized ratio, and activated 
partial thromboplastin time). These tests measure individual steps of 
the coagulation cascade in a non-physiologic setting and can poorly 
reflect the propensity for in vivo coagulation. These metrics do not 
measure the effectiveness of commonly used antithrombotic agents in 
PAD. Thromboelastography with platelet mapping (TEG-PM), an 
advanced hemostatic testing method, offers a comprehensive overview 
of a patient’s coagulation status (Majumdar et al., 2023). TEG-PM 
evaluates the kinetics of clot formation, strength, and lysis, providing 
insights far beyond what is possible with conventional coagulation 
tests. The predictive value of TEG-PM in various clinical settings, 
including perioperative management and trauma, has been 
increasingly recognized (Majumdar et al., 2022; Bugaev et al., 2020). 
However, its utility in the specific context of lower extremity 
revascularization (LER) and ATE risk prediction following 
intervention remains underexplored but promising, given the 
potential of escalated antithrombotic management for those at 
elevated risk of ATE (Majumdar et al., 2023). One current drawback 
of utilizing TEG-PM is that even though a significant amount of 
patient coagulation data can be  obtained, there is a limited 

understanding of the significance of its parameters and which cutoff 
values are thought to denote elevated risk ATE incidence following 
arterial LER.

Machine learning models (MLM) are increasingly utilized in the 
medical field for outcome event prediction and clinical decision 
support. A significant strength of many MLMs is their ability to infer 
complex interactions between multiple factors without 
pre-specification. This property of MLMs is especially impactful in the 
setting of multiple predictors of previously uncharacterized 
significance and their potential complex interaction leading to a 
specific outcome. Currently, there are no models that utilize patient-
specific baseline factors and quantitative coagulability data to predict 
ATE following lower extremity revascularization. This study aims to 
develop an MLM using relevant baseline patient-specific variables 
(clinical, demographic, and intervention-related) and TEG-PM values 
that could accurately predict ATE within 1 year of LER. Moreover, this 
study aims to evaluate the efficacy of MLMs incorporating TEG-PM 
data compared to those based solely on traditional risk factors, 
mimicking clinician assessment. We hypothesize that the addition of 
TEG-PM values for this approach utilizing prospectively collected 
patient data enhances the predictive capacity for ATE, potentially 
guiding tailored interventions to mitigate the risk of ATE post-
revascularization in high-risk patients with PAD.

Methods

Study design and population

This prospective longitudinal study enrolled consecutive 
symptomatic PAD patients undergoing LER at a single tertiary 
medical center in the United  States between December 2020 and 
March 2024. This study was approved by the Institutional Review 
Board (Mass General Brigham IRB#2022P001918). Written or 
electronic consent was obtained from all study participants, or their 
legally authorized representative, before enrollment.

Inclusion criteria for enrollment include patients above 18 years 
who underwent LER, history of atherosclerotic disease, and evidence 
of PAD on imaging or ankle-brachial-index (ABI) assessment upon 
presentation with symptoms including claudication, pain, distal 
ulceration, or gangrene. Patients with the inability to undergo serial 
blood draws, provide informed consent, are pregnant, or did not have 
a successful revascularization were excluded.

Successful revascularization was achieved when adequate blood 
flow was restored to an ischemic area by bypassing and treating the 
atherosclerotic blockage using methods such as angioplasty, stenting, 
or bypass surgery. Patients underwent revascularization based on 
assessments by a board-certified vascular surgeon.

Blood sample collection

Blood samples were collected preoperatively within 24 h of 
intervention (baseline), and at 1 month, 3 months, 6 months, and 
12 months postoperatively for TEG-PM analysis. Blood collection was 
performed via a peripheral stick, using a 4.0-mL sodium heparin and 
citrated vacutainer, followed by 10–30 min of incubation and analysis 
within 2–4 h per the manufacturer’s instructions.
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TEG-PM analysis

Whole blood samples were tested with the TEG6 S Hemostasis 
Analyzer (Haemonetics Corp, Boston MA). Citrated multichannel 
cartridges without lysis, measuring time to clot formation (K-time), 
cloth strengthening (K-time and α-angle), and maximum amplitude 
(MA) were utilized. Platelet Mapping cartridges were assayed with 
heparinized blood to quantify platelet function in response to ADP 
agonists. Platelet function quantification with TEG-PM is based on 
the principle that the difference between the MA and the contribution 
of fibrinogen to clot strength may be considered an index of platelet 
contribution to clot strength. The Platelet Mapping cartridge consists 
of dried-in-place reagents to calculate the MA in various scenarios: a 
standard kaolin-activity thromboelastography, which is considered 
“best platelet reactivity”; a pure fibrin clot by adding reptilase, which 
directly converts fibrinogen to fibrin and corresponds to 0% platelet 
contribution; and an ADP-activated clot to detect platelet reactivity in 
the presence of aspirin or P2Y12 inhibition. Thus, platelet reactivity 
(percentage) is calculated as follows: 100 × MAADP/(MAKaolin–
MAFibrin). If an ATE occurs, the nearest TEG-PM sample analysis 
performed prior to the onset of the event was used for that case to 
train the prediction model.

TEG-PM evaluations, along with routine clinical lab evaluations, 
were performed for all participants at several time points. For 
participants who did not sustain an ATE, the baseline preoperative 
and most recent values were associated with participants’ records. For 
patients who experienced an ATE, the baseline preoperative and 
temporally closest TEG-PM evaluation to the time of ATE occurrence 
was associated with the participants’ records.

Candidate predictive variables

Baseline demographic, clinical, and intervention-related patient 
data were collected. Baseline demographic information includes age, 
sex, race, smoking status, and body mass index (BMI). Baseline 
clinical data including systolic blood pressure, Rutherford score, 
ankle-brachial index of the affected extremity, lesion site, intervention 
type, antiplatelet therapy, anticoagulant therapy, statin therapy, 
complete blood count values, platelet time (PT), International 
Normalized Ratio (INR), and partial thromboplastin time (PTT) 
were recorded.

Comorbid conditions such as diabetes, hypertension, 
hyperlipidemia, coronary artery disease, and chronic kidney disease 
were recorded as categorical variables. Patient clinical history of 
myocardial infarction, pulmonary embolism, deep venous thrombosis, 
malignancy, previously occluded bypass graft or stent, and stroke were 
recorded as well. Target lesion revascularization intervention 
characteristics were assessed and tracked. The intervention type was 
categorized as open surgery; endovascular; or hybrid (both open and 
endovascular interventions). The target arterial lesion was categorized 
as either aortoiliac, suprapopliteal, or infrapopliteal.

Primary outcome

The primary outcome of interest, ATE within 1 year following 
revascularization, was categorized as a binary variable to generate a 

binary classification predictive model. ATE was defined as a composite 
outcome of graft/stent thrombosis on radiographic imaging, index 
lesion occlusion requiring re-intervention to maintain or re-establish 
arterial flow or major limb amputation due to extensive unsalvageable 
index arterial lesion thrombosis during post-revascularization 
follow-up.

Final dataset and preprocessing

Fifty-two candidate predictor variables were analyzed for 
inclusion in the final predictive model: 20 clinical, 8 intervention-
specific, and 24 TEG-PM parameters. All candidate tables are listed in 
Tables 1–3, and Supplementary Table S1. Variables were classified as 
categorical or continuous, accordingly. Label encoding was used to 
convert categorical variables into numerical values for model input. 
Variables with more than 50% missing values were excluded, and the 
remaining missing values were imputed with calculated mean values 
separately within the ATE and non-ATE groups to preserve potential 
differences in data distribution and to avoid homogenizing values 
across outcome groups.

Univariate analysis of candidate predictor variables was done with 
respect to thrombotic events to identify significantly associated risk 
factors for selection and inclusion in model training, with practical 
clinical relevance taken into consideration in the selection process as 
well. Correlation and p-values were used for feature selection following 
model inclusion, and the variables with the highest correlation metrics 
were chosen from the initial 52 variables. A Chi-square Test was used 
for categorical variables. For continuous variables, a t-test or ANOVA 
test was used accordingly. A p < 0.1 was considered significant.

Three dataset modules were created for MLM training and testing, 
particularly selecting features that were significantly associated with 
ATE incidence. The first dataset included 16 selected baseline patient-
specific variables (features) that are traditionally considered 
cardiovascular risk factors for thrombosis, mimicking clinical 
assessment. The second dataset included 13 selected TEG- PM 
variables clinical lab evaluations (features) that correlated significantly 
with the incidence of ATE. The third dataset module included 22 
combined baseline and TEG-PM variables (features). For each MLM, 
each dataset was used separately for model training and testing, and 
the predictive performance of each MLM using the datasets 
was compared.

Model fine-tuning and development

Multiple MLMs were developed with both feature importance and 
predictive performance compared. These models included Extreme 
Gradient Boosting (XGBoost), Logistic Regression (LR), and Decision 
Tree Algorithm. Given the predicted outcome of ATE happens in only 
a small minority of patients, resulting in an unbalanced dataset, there 
was potential for model bias toward predicting the non-event outcome 
(no ATE). Secondary analysis was performed utilizing the Synthetic 
Minority Oversampling Technique (SMOTE), which computationally 
generates additional events (ATE outcomes) for MLM training 
purposes to attempt to offset the imbalanced nature of the initial 
dataset. This enhanced the representation of ATE during model 
training to improve model generalizability and predictive performance.
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A random 70–30 train-test dataset split logic was used to develop 
and evaluate the performance of the predictive MLMs. Since the 
datasets are relatively small, the smaller testing split may potentially 
lead to an unreliable performance estimate. To address this limitation 
and reduce overfitting, we employed five-fold cross-validation with a 
performance metric of receiver operating characteristic (ROC). This 
technique involves splitting the complete dataset into 5 folds and then 

iteratively training and testing the model on each fold, after which 
we  averaged the performance metrics across these iterations This 
process provides a more reliable estimate of the model’s performance 
on unseen data by reducing the influence of specific data patterns that 
might not generalize well. Hyper-parameter tuning was conducted 
using a systematic grid search approach to work through multiple 
combinations of parameter tunes, cross-validating as it went to 

TABLE 1 Baseline demographic, clinical, and historical characteristics of enrolled participants.

Variable No ATE group 
(n = 252)

ATE group (n = 56) Total (n = 308) p-value

Age (years) 69.7 (10.4) 68.0 (11.1) 69.4 (10.6) 0.31

Sex (female) 87 (34.5) 18 (32.1) 105 (34.1) 0.85

Race (White) 46 (82.1) 223 (88.5) 269 (87.3) 0.0.29

BMI (kg/m2) 27.1 (5.6) 27.4 (6.5) 27.2 (5.7) 0.77

Diabetes 132 (52.4) 36 (64.3) 168 (54.5) 0.14

Hypertension 227 (90.1) 50 (89.3) 277 (89.9) 1.0

Chronic kidney disease 0.25

  Stage 0 82 (32.5) 26 (46.4) 108 (35.1) –

  Stage 1 24 (9.5) 2 (3.6) 26 (8.4) –

  Stage 2 69 (27.4) 12 (21.4) 81 (26.3) –

  Stage 3 57 (22.6) 13 (23.2) 70 (22.7) –

  Stage 4 7 (2.8) 0 (0) 7 (2.3) –

  Stage 5 13 (5.2) 3 (5.4) 16 (5.2) –

Coronary artery disease 136 (54.0) 30 (53.6) 166 (53.9) 1.0

History of MI 66 (26.2) 17 (30.4) 83 (26.9) 0.64

Functional impairment 115 (45.6) 33 (58.9) 148 (48.1) 0.10

Clotting disorder 9 (3.6) 1 (1.8) 10 (3.2) 0.66

Active malignancy 23 (9.1) 3 (5.4) 26 (8.4) 0.44

History of malignancy 60 (23.8) 12 (21.4) 72 (23.4) 0.84

History of DVT 31 (12.3) 10 (17.9) 41 (13.3) 0.37

History of stroke 40 (15.9) 12 (21.4) 52 (16.9) 0.42

History of pulmonary embolism 11 (4.4) 2 (3.6) 13 (4.2) 1.0

Previous revascularization of index limb 105 (41.7) 36 (64.3) 141 (45.8) 0.003

History of stent occlusion 35 (13.9) 14 (25.0) 49 (15.9) 0.03

Rutherford score 3.8 (1.4) 4.3 (1.2) 3.9 (1.4) 0.004

ABI of affected lower extremity 1.2 (1.3) 0.8 (0.3) 1.1 (0.6) 0.38

Artery affected – Infrapopliteal 129 (51.2) 42 (75.0) 171 (55.5) 0.002

Artery affected – Suprapopliteal 196 (77.8) 42 (75.0) 238 (77.3) 0.79

Artery affected – Aortoiliac 50 (19.8) 1 (1.8) 51 (16.6) 0.002

Endovascular revascularization 138 (54.8) 32 (57.1) 170 (55.2) 0.86

Open revascularization 69 (27.4) 14 (25.0) 83 (26.9) 0.84

Combined revascularization 44 (17.5) 10 (17.9) 54 (17.5) 1.0

Active smoker 12 (4.8) 0 (0) 12 (3.9) 0.242

Aspirin therapy 181 (80.8) 44 (74.6) 225 (79.5) 0.38

Clopidogrel therapy 117 (52.2) 35 (59.3) 152 (53.7) 0.41

Atorvastatin therapy 215 (76.0) 161 (71.9) 54 (91.5) 0.003

Baseline systolic blood pressure 107.4 (54.4) 130.9 (24.9) 112.3 (50.6) <0.001

Data are presented as n (%) or mean ± standard deviation (SD). BMI, body mass index; MI, myocardial infarction; DVT, deep vein thrombosis; ABI, ankle-brachial index.
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determine which parameters performed best. Modified hyper-
parameter included learning rate, number of trees, depth of trees, and 
regularization terms.

Model comparisons

After MLM generation, the performance of the different models was 
compared across accuracy, precision (PPV), recall (sensitivity), specificity, 
F1 score, and ROC AUC. Precision-recall curves were generated for each 
model to assess their performance in handling class (negative and 
positive) imbalances. For each model generated, optimized predictive 
cut-off values were determined using the PR-AUC curves accordingly.

Feature importance and cut point analysis

Individual variable predictive importance was determined using 
permutation feature importance calculations in the training dataset. 
Permutation feature importance is determined after the final model is 
fitted to the training dataset and the training set predictive performance 
has been determined (ROC in these models). Each predictor in the 
training dataset is then randomly altered, and a new predictive 
performance (ROC) is assessed in this permuted training data. The 
feature importance is determined by the difference in ROC between the 
original model and the permutated model. Permutation feature 

importance is intuitive to interpret and independent of model type, 
allowing covariate importance comparisons between different models. 
Determining predictor importance by permutation methods has several 
drawbacks: (1) the determined importance scores are a relative measure 
of predictive power for each feature, and score comparison between 
predictive models from separate datasets is not meaningful; (2) high 
permutation feature importance does not necessarily indicate statistical 
inference or delineate the nature of the relationship between the 
predictor and the outcome (linear, quadratic, etc.); and (3) permutation 
feature importance can perform poorly in the setting of covariate 
collinearity, as only one predictor is altered for each permutation and 
the model may still perform well if a collinear variable remains unaltered.

Results

A total of 308 patients were enrolled in the study. Their mean age 
was 69.4 (±10.6) years, 66% were male, and 84% were white. Among 
the participants prospectively enrolled, 252 (81.8%) did not experience 
an ATE (negative controls), and 56 (18.2%) experienced an ATE 
(positive cases) during the one-year follow-up period post-
revascularization as shown in Table  1. There were no statistically 
significant differences in TEG parameters (Table 2) or laboratory values 
(Supplementary Table S1) between the ATE and non-ATE groups.

The MLM training set contained data from 216 random patients 
(70%), and the MLM testing set contained 92 random patients (30%). 

TABLE 2 TEG-PM parameter values for all participants.

TEG-PM parameter No ATE group 
(n = 252)

ATE group (n = 56) Total (n = 308) p-value

Reaction time (R) in min 7.7 (3.5) 8.7 (3.9) 7.9 (3.6) 0.09

Lysis at 30 min (LY30) in % 0.8 (1.7) 0.5 (0.7) 0.7 (1.6) 0.13

CRT Max amplitude (MA) in mm 64.5 (7.0) 65.2 (6.3) 64.6 (6.9) 0.41

CFF Max Amplitude (MA) in mm 28.0 (10.6) 28.9 (11.2) 28.2 (10.7) 0.57

HKH MA (mm) 60.6 (9.7) 59.7 (10.2) 60.4 (9.8) 0.53

ActF MA (mm) 15.3 (7.9) 15.4 (8.1) 15.4 (7.9) 0.98

ADP MA (mm) 44.0 (18.0) 42.3 (17.6) 43.6 (17.9) 0.52

AA MA (mm) 32.8 (20.9) 32.5 (18.2) 32.7 (20.3) 0.92

CK R (min) 7.6 (3.2) 8.4 (4.0) 7.8 (3.4) 0.15

CK K (min) 1.8 (1.3) 1.9 (1.3) 1.8 (1.3) 0.67

CK angle (deg) 69.6 (10.2) 68.4 (10.4) 69.3 (10.2) 0.45

CK MA (mm) 62.2 (7.8) 61.2 (8.6) 62.0 (8.0) 0.43

CRT MA (mm) 63.7 (8.7) 64.8 (6.3) 63.9 (8.3) 0.26

CKH R (min) 7.2 (3.4) 7.1 (1.9) 7.2 (3.1) 0.64

CFF MA (mm) 28.0 (11.1) 28.5 (11.5) 28.1 (11.1) 0.76

CFF FLEV (mg/dL) 484.6 (164.0) 496.3 (182.6) 487.0 (167.8) 0.66

Data are presented as mean ± standard deviation (SD). AA Aggregation, Percentage of platelet aggregation induced by arachidonic acid; AA Inhibition, Percentage of platelet inhibition in 
response to arachidonic acid, often used to monitor COX inhibitors like aspirin; AA MA, Arachidonic Acid Maximum Amplitude, assesses platelet function influenced by arachidonic acid, 
related to cyclooxygenase (COX) activity; ActF MA, Activated Functional Maximum Amplitude, represents the overall clot strength in functional assays; ADP Aggregation, Percentage of 
platelet aggregation induced by ADP stimulation; ADP Inhibition, Percentage of platelet inhibition in response to ADP, often used to monitor antiplatelet therapy; ADP MA, Adenosine 
Diphosphate Maximum Amplitude, measures platelet contribution to clot strength mediated by ADP receptors; CFF FLEV, Coagulation Factor Fibrinogen Functional Level, a quantitative 
measure of functional fibrinogen in the blood; CFF MA, Coagulation Factor Fibrinogen Maximum Amplitude, measures the clot strength specifically attributed to fibrinogen; CK Angle, 
Citrated Kaolin Angle, the rate of clot formation, measured as the angle of the TEG curve; CK K, Citrated Kaolin Clot Formation Time, the time for the clot to reach a certain strength; CK 
MA, Citrated Kaolin Maximum Amplitude, the maximum clot strength; CK R, Citrated Kaolin Reaction Time, time to initial clot formation; CKH R, Citrated Kaolin Heparin Reaction Time; 
CRT MA, Citrated Rapid TEG Maximum Amplitude, maximum clot strength assessed with the rapid TEG protocol; HKH MA, Heparin Kaolin High Maximum Amplitude, assesses clot 
strength in the presence of heparin and kaolin as activators.
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Among all three developed MLMs (XGBOOST, Decision Trees, and 
LR), the LR model showed the highest predictive performance by both 
discrimination metrics (AUC ROC) and calibration analysis. All three 
models performed poorly when trained using only patient-specific 
baseline variables but performed better when trained using TEG-PM 
variables. The LR model showed the best prediction performance 
compared to the XGBoost and Decision Trees models, especially when 
traditional baseline variables are combined with TEG-PM parameters 
collected periodically over the course of follow-up (Figures  1, 2). 
However, when the LR MLM was trained only using baseline 
characteristics it performed relatively poorly with an AUC of 0.51. On 
the other hand, when the LR MLM was trained using only the most 
relevant TEG-PM parameters, it showed better performance with an 
AUC of 0.68. MLM predictive performance for all generated models 
is listed in Table 3.

Discussion

Currently, there are no reliable scoring systems utilized to 
anticipate the risk of lower extremity ATEs for patients with PAD 
post-revascularization. Treating surgeons primarily rely on their 

clinical experience and literature knowledge describing risk factors 
associated with cardiac and intracranial arterial thrombosis to 
anticipate high-risk individuals. This has been shown to be ineffective; 
even though patients with PAD share similar cardiovascular risk 
factors for thrombosis, this patient population is markedly 
heterogeneous and presents with highly variable profiles that may 
impact thrombotic outcomes. Other coagulative conditions, such as 
deep venous thrombosis (DVT) have scoring systems for predicting 
its risk (Caprini and Wells scores) (Modi et al., 2016; Grant et al., 
2016). Therefore, the ability to anticipate such catastrophic 
complications objectively and reliably is paramount, as arterial 
thrombosis is a preventable phenomenon with adequate and 
appropriate thromboprophylaxis (Phillips et al., 2005). Such a need for 
targeted optimization of post-revascularization thromboprophylaxis 
is crucial to avoid similarly catastrophic bleeding events when the 
benefit of escalated antiplatelet therapy is not warranted in low-risk 
patients (Brown et al., 2018). Specifically in this study, we demonstrated 
that MLMs derived from patient baseline (clinical, demographic, and 
intervention- related) and TEG-PM parameters can predict the risk of 
ATEs following LER of patients with symptomatic PAD.

The TEG-PM parameters provide detailed insights into the 
coagulation cascade and platelet function that conventional 

TABLE 3 The comparative performance metrics of each generated predictive model using the three prespecified datasets (baseline only, TEG-PM only, 
and baseline and TEG-PM combined).

Model Accuracy Sensitivity Specificity PPV NPV F1 Score AUC

XGBOOST (baseline dataset) 67 34 74 24 82 0.25 0.52

XGBOOST (TEG-PM dataset) 57 64 55 29 86 0.39 0.66

XGBOOST (TEG-PM and baseline dataset) 65 68 55 30 85 0.41 0.68

Decision trees (baseline dataset) 66 38 72 22 84 0.26 0.50

Decision trees (TEG-PM dataset) 56 63 54 26 86 0.37 0.64

Decision trees (TEG-PM and baseline dataset) 54 75 49 28 88 0.40 0.63

Logistic regression (baseline dataset) 57 45 60 20 83 0.27 0.51

Logistic regression (TEG-PM dataset) 61 64 61 31 87 0.41 0.68

Logistic regression (TEG-PM and baseline dataset) 70 68 71 38 89 0.48 0.76

Data are presented as % and mean. PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic (ROC) curve; TEG-PM, 
Thromboelastography with Platelet Mapping.

FIGURE 1

Receiver operating characteristic curves comparing the three predictive models across the three dataset. The receiver operating characteristic curves 
of the XGBOOST (blue), logistic regression (green), and decision trees (orange) models when trained using the baseline only (a), TEG-PM only (b), and 
combined baseline and TEG-PM datasets (c).
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coagulation tests cannot capture. Reaction Time (R), which averaged 
7.7 min in non-ATE patients versus 8.7 min in ATE patients 
(p = 0.09), represents the time to initial fibrin formation and reflects 
the activity of clotting factors. The longer R time in ATE patients 
suggests that traditional coagulation cascade activation may not 
be the primary driver of thrombotic events in PAD patients post-
revascularization. The CRT MA (63.7 mm vs. 64.8 mm in non-ATE 
vs. ATE groups) and ADP MA (44.0 mm vs. 42.3 mm) values suggest 
that overall clot strength and ADP-mediated platelet activation may 
play important roles in post-revascularization thrombosis. These 
findings have direct clinical implications: patients with elevated MA 
values might benefit from more aggressive antiplatelet therapy, while 
those with lower values might be adequately managed with standard 
prophylaxis. Lysis at 30 min (LY30) was notably lower in the ATE 
group (0.5% vs. 0.8%), suggesting that impaired fibrinolysis might 
contribute to thrombotic risk. This finding could identify patients 
who might benefit from targeted fibrinolytic therapy or more 
intensive monitoring.

Several studies have proven that MLMs help identify individuals 
at high risk, specifically for DVT, Wang et al. (2023) achieved an AUC 
of 0.92 for knee/ hip arthroplasty, Jin et al. (2022) 0.77 for hospitalized 
cancer patients, Ryan et al. (2021) 0.83–0.85 for hospitalized hospitals, 
and Liu et  al. (2019) 0.77 for catheter related thrombosis, 
demonstrating the potential of artificial intelligence technology to 
improve thromboprophylaxis by having more personalized approach 
and reduce healthcare burdens (Blaisdell et al., 1978). Interestingly 
and to the best of our knowledge, no group has attempted to 
incorporate TEG-PM evaluations with patient data at baseline to train 
a prediction model for thrombosis, whether arterial or venous. This 
study illustrated that the LR model showed the best prediction 
performance compared to the XGBoost and Decision Trees models, 
especially when traditional baseline variables are combined with 
TEG-PM parameters collected periodically over the course of 
follow-up, with an optimized AUC of 0.76, sensitivity of 68%, and 
specificity of 71%. The LR MLM performed relatively poorly when 
trained using only baseline characteristics with an AUC of 0.51. On 
the other hand, when the LR MLM was trained using only the most 
relevant TEG-PM parameters, it showed better performance with an 

AUC of 0.68. Utilizing MLMs builds on this inferential approach to 
TEG-PM values at a higher level, unveiling the hidden predictive 
value of multiple TEG-PM parameters simultaneously beyond the 
interpretation of individual parameters and in the context of 
patient characteristics.

Limitations

The diagnosis of ATE was only considered when thrombosis 
complicates the initially revascularized arterial lesion site and 
subsequent management using fluoroscopic evaluation confirms 
occlusion of the index arterial lesion site. ATEs occurring in other 
regions along the arterial tree of the lower extremity were considered 
separate index events and not ATE complications during follow up. 
Additionally, our sample size is relatively lower than those used for 
similar studies developing predictive models. However, this study 
prospectively recruited consecutively presenting PAD patients and 
employed the two measures to minimize sample size bias, including 
random sampling using repeated k-fold cross-validation and SMOTE 
analysis. Lastly, the limited racial diversity of the study population 
affects the generalizability of the findings. Future research should 
focus on refining these predictive models with a larger sample size and 
a more diverse population to improve clinical outcomes and reduce 
the burden of ATE.

The statistical power and demographic composition of our 
study cohort warrant careful consideration. While our sample size 
of 308 patients with 56 ATE events (18.3%) was sufficient to develop 
and validate our predictive models, particularly with the use of 
SMOTE and cross-validation techniques, larger cohorts would 
be  valuable for more robust validation and incorporation of 
multivariate analysis in the variable selection process. Moreover, 
our study population was predominantly White (84%), which limits 
the generalizability of our findings to other racial groups. This is 
particularly relevant given that PAD prevalence, presentation, and 
outcomes can vary significantly across different racial and ethnic 
populations. Future multi-center studies should prioritize the 
recruitment of diverse patient populations to validate and 

FIGURE 2

Precision-recall curves for the logistic regression model across the three datasets. The precision-recall curves for the logistic regression model, which 
was the best-performing prediction model, are shown for different datasets. The baseline dataset alone had an average precision-recall value of 0.61 
(a), the TEG-PM dataset alone had an average value of 0.67 (b), and the combination of both baseline and TEG-PM datasets yielded the highest 
average value of 0.83 (c).
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potentially recalibrate these predictive models across different 
demographic groups. Additionally, future research could explore 
alternative models to evaluate their comparative effectiveness in 
predicting arterial thrombotic events.

Conclusion

The LR model showed the best prediction performance compared 
to the XGBoost and Decision Trees models, specifically when 
including the TEG-PM values. Incorporating TEG-PM values into 
MLMs could offer a promising approach to identifying high-risk 
patients, enabling tailored thromboprophylaxis interventions.
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