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Alzheimer’s disease (AD) is an incurable neurodegenerative disorder that slowly

impair the mental abilities. Early diagnosis, nevertheless, can greatly reduce

the symptoms that are associated with the condition. Earlier techniques of

diagnosing the AD from theMRI scans have been adopted by traditional machine

learning technologies. However, such traditional methods involve depending

on feature extraction that is usually complex, time-consuming, and requiring

substantial e�ort from the medical personnel. Furthermore, these methods

are usually not very specific as far as diagnosis is concerned. In general,

traditional convolutional neural network (CNN) architectures have a problem

with identifying AD. To this end, the developed framework consists of a new

contrast enhancement approach, named haze-reduced local-global (HRLG).

For multiclass AD classification, we introduce a global CNN-transformer model

InGSA. The proposed InGSA is based on the InceptionV3 model which is pre-

trained, and it encompasses an additional generalized self-attention (GSA) block

at top of the network. This GSA module is capable of capturing the interaction

not only in terms of the spatial relations within the feature space but also over the

channel dimension it is capable of picking up fine detailing of the AD information

while suppressing the noise. Furthermore, several GSA heads are used to exploit

other dependency structures of global features as well. Our evaluation of InGSA

on a two benchmark dataset, using various pre-trained networks, demonstrates

the GSA’s superior performance.

KEYWORDS

Alzheimer’s disease classification, generalized self-attention, CNN, transfer learning,

transformer

1 Introduction

Alzheimer’s disease (AD) is a type of dementia that is not curable, which becomes

worse over years as it affects the human brain, but early diagnosis helps to minimize the

symptoms and the management of the patient (McKhann et al., 1984). Its manifestation

involves impaired memory because patients cannot organize or recall information

properly, and poor judgment that renders the affected persons completely helpless and

in need of care as the disease develops (Choi et al., 2020). The probability raised from

2% at 65 years to 35% at 85 years for AD. Approximately 26.6 million people had it in

2006; the figure rose to over 55 million in 2020 and is expected to reach 152 million by

2050 (Gunawardena et al., 2017). Neuronal loss and synaptic impairment can occur at

least one or two decades before disease onset (Böhle et al., 2019). It is essential to detect

AD in the prodromal stage, which is characterized by moderate cognitive impairment

(MCI), as there is currently no cure. Early MCI (EMCI) is a cognitive impairment stage

that precedes MCI (Kang et al., 2020). The early detection of EMCI has the potential to
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prevent the progression of EMCI to AD. The importance of

diagnosing MCI patients has been emphasized by studies that has

identified the distinctions between early MCI (EMCI) and late

MCI (LMCI) groups (Nozadi et al., 2018; Edmonds et al., 2019;

Zhang T. et al., 2019). MCI has a symptom profile that is similar,

but less severe, to AD (Varatharajah et al., 2019). Nowadays, this

disease is also defined as mild cognitive impairment associated

with the existence of Alzheimer’s disease; according to recent

investigations, ∼80% of patients diagnosed with MCI develop AD

in 7 years. For monitoring of variations in the densities of the

brain tissues, magnetic resonance imaging (MRI) and positron

emission tomography (PET) are frequently used since they do not

include the invasion of the tissues (Ramzan et al., 2020; Gao, 2021).

Neuroimaging, especially using MRI, is crucial for the study of the

nervous system structures more closely (Tuvshinjargal and Hwang,

2022); this test helps in diagnosis of certain diseases such as tumors

and cancer (Tehsin et al., 2024). MRI does work in the case of

Alzheimer’s; it allows capturing structural changes in the brain,

for instance, the reduction of certain regions and the appearance

of new formations, heterogeneous density, and the presence of

abnormal substances typical of the disease (Simic et al., 2009).

In recent years, medical imagery such as MRI has been used

with machine learning (ML) and deep learning (DL). These

methods are used in health checks and early AD diagnosis. They

also excel at categorizing images in health and computer vision

(Nasir et al., 2021, 2020, 2022; Yousafzai et al., 2024; Nasir et al.,

2023). In recent decades, neuroimaging data have grown, allowing

ML and DL algorithms to better characterize AD. The authors

used such methodologies to offer prospective AD diagnosis and

prognostic outcomes (Nagarajan et al., 2021). These works executed

features from several image processing pipeline streams using

random forest classifier, decision tree, or support vector machine

(SVM). Lately, DL techniques have showed potential in medical

imaging with good picture classification accuracy (Ajagbe et al.,

2021). Automatic feature extraction from images using CNNs

and transfer learning (TL) is more efficient than typical ML

methods (Raju et al., 2021). However, working with medical data

is problematic due to imbalanced dataset, including AD. In this

strategy, various sample sizes are used for different classes, the

model is always biased, and it cannot generalize beyond the training

dataset. DL models can process raw data better than simple feed

forward, but they can overfit when solving complicated problems

such as class imbalance. In real-world circumstances, such models

perform poorly in generalization, efficacy, and reliability. The main

contribution of this study is as follows:

Abbreviations: CNN, convolutional neural network; HRLG, haze-reduced

local-global; GSA, generalized self-attention; AD, Alzheimer’s disease; MCI,

moderate cognitive impairment; EMCI, Early MCI; LMCI, late MCI; MRI,

magnetic resonance imaging; PET, positron emission tomography; ML,

machine learning; DL, deep learning; SVM, support vector machine; TL,

transfer learning; ELM, extreme learning machine; DAG, directed acyclic

graph; Mob, MobileNet; Den, DenseNet201; Res, ResNet50; Sq, SqueezeNet;

InV3, inceptionV3; CBAM, convolutional block attention module; CSDAB,

channel split dual attention block; ViT, vision transformer; DEiT, data e�cient

image transformer; PVT, pyramid vision transformer.

• We introduce a contrast enhancement method called haze-

reduced local-global, inspired by the haze reduction principle.

• We suggest a new global CNN-transformer architecture,

InGSA, for the classification of multiclass AD. A pre-trained

CNN is integrated with a specialized transformer module in

InGSA network.

• This network, comprised of several generalized self-attention

module (GSA), is designed to effectively capture extensive

feature dependencies across different brain regions by

establishing global connections along both the channel and

spatial dimensions.

• The InGSA model is tested on a two publicly available

dataset, where we also use various pre-trained CNN models

to demonstrate its effectiveness. Furthermore, we perform a

comparative analysis between InGSA and modern attention

mechanisms, as well as the latest approaches in multiclass AD

classification.

The structure of this research is comprehensively examined

in the following manner: Related works are detailed in Section

2. Section 3 delineates the fundamental concepts and proposed

methodology. The experimental results are the subject of Section

4. The study is concluded in Section 5.

2 Related work

Over the past few years, the usage of DL methods for the

identification of AD has received much attention (Mohammed

et al., 2021; Ahmed et al., 2022; Menagadevi et al., 2023). For

instance, a study employed DL with stacked auto-encoders and

uses the softmax function in the final layer to address problem of

bottlenecks. Their approach needed far less training data compared

to their peers, as well as very small input to classify several groups

with ∼87.70% accuracy. One of the observations from the current

study was that the use of several features improves classification

(Frizzell et al., 2022). Furthermore, a classification framework was

built, based on the use of multiple different input databases since it

is complementary. To combine features from different modalities,

they used a process known as non-linear graph mixture model.

Using this method, the areas under the curve were calculated with

98.1% accuracy when differentiating between AD and CN images,

82.40% between NC andMCI images, with the overall classification

performance being 77.90% (Guo and Zhang, 2020).

A novel rapid, low-cost, and efficient diagnostic model was

implemented using brain MRI scans. They used DenseNet121

model which is a computationally heavy model, and to this model,

they achieved an accuracy of 87% in detecting the disease. To rectify

this, the authors employed an idea of fine-tuning two models of

AlexNet and LeNet models where features were extracted in three

ways through parallel filters. The new model they came up with

was able to predict the disease with an accuracy of 93% (Hazarika

et al., 2023). In the same manner, the researchers in Acharya et al.

(2021) used VGG-16 based CNN transfer learning to diagnose

AD with an overall accuracy of 95.7%. Another study used DL

for distinguishing dementia and Alzheimer’s from the MRI images

(Murugan et al., 2021).
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The approach used in Murugan et al. (2021) learns individual

Alzheimer’s likelihood using multilayer perceptron representations

and also generates disease probability heat maps from brain region

activity. To overcome the problem of class imbalance, the samples

are divided in equal proportion. The five ADNI subtypes consist

of 1,296 images comprising of AD, MCI, EMCI, LMCI, and CN

images processing the DEMNET model by resizing the images to

176 × 176 and obtained an accuracy of 84.83%. In the same way,

Oktavian et al. (2022) presented the fine-tuned ResNet18 model

for distinguishing between MCI, AD, and CN using MRI and PET

datasets. This model incorporated transfer learning and used the

technologies such as weighted loss function for ascending the class

imbalance, and mish activation function to augment its accuracy,

and it obtained 88.3% overall classification. On the other hand,

the authors in Dyrba et al. (2021) adopted a CNN with 663 T1-

weighted MRI scans belonging to dementia and amnestic MCI

patients. To confirm their model, they performed cross-validation

and used an additional three datasets that included an overall of

1,655 cases. To further provide the clinical relevance of the method,

they correlated the relevance scores to the hippocampal volume.

A friendly model assessment tool was created through importance

maps of 3D CNN, achieving accuracy of 94.9% of AD vs. CN. A

particular drawback of many papers on the detection of Alzheimer’s

is related to the imbalance of classes, which creates problems of

overfitting and lowering predictive ability in almost all existing deep

learning models. The yield is further magnified by the fact that

realistic training data are also scarce. To overcome this, we utilized

the data augmentation approach to balance datasets and improve

DL results since the technique synthesizes new data samples.

3 Proposed methodology

The configuration of the proposed InGSA is illustrated in

Figure 1, comprising a fine-tuned CNN model, a generalized

self-attention (GSA), and a classifier. The fine-tuned CNN

models aid in extracting abstract feature representations from the

input MR images. The GSA block has various components to

comprehend global interdependence across spatial and channel

dimensions, facilitating the extraction of more nuanced and

category-specific information. The extreme learning machine

(ELM) classifier is employed to categorize AD. This section offers

a comprehensive overview of the InGSA architecture and its

fundamental components.

3.1 Haze reduced local global image
enhancement

Traditional haze elimination procedures are developed for

improving the visual distinctiveness of scenes by increasing the

contrast and color saturation. By applying these techniques, the

total clarity of the scene which is captured in the given image

is likely to be enhanced. In this research, we formally propose a

new type of contrast enhancement method that adopts both haze

removal and local-global transformation techniques.

Let D denotes a complex image database that is composed of N

images. While the original image is represented by the dimensions

of N × M × 3 as I(x, y), the Y(x, y) denotes the improved image.

First, a haze reduction method utilizing the dark channel prior is

employed on the first image. This process of haze reduction can be

mathematically expressed as follows:

C(x) = γ (x)j(x)+ l(1− t(x)) (1)

where C denotes the measured intensity values, γ represents the

scene radiance, j(x) designates the transmission map, and l denotes

the atmospheric light intensity. The dehazing algorithm utilized

aims to restore the scene radiance γ based on the estimations of

both the transmission map and the atmospheric light, as expressed

in the following manner:

γ (x) =
C(x)− α

max(t(x), t0)
+ α (2)

The resulting γ (x) is subsequently employed to calculate the

global contrast of an image using the following equation:

G0 = (1+ gk)× (Gi − kmean)+ σ (3)

In this regard, G0 stands for the global contrast image of the

original image while gk represents gain factor of global contrast, Gi

for the value of pixel γ (x), kmean for the overall average pixel value

of γ (x), and σ for the standard deviation of γ (x). In the subsequent

step, we assessed the local contrast of the haze-reduced image using

the following mathematical expression:

H(x, y) =
LC

σ (i, j)+ ϕ
× µ(x, y) (4)

where LC for local contrast, ϕ for a small constant, and µ(x, y)

means the mean value of the dehazed image. Finally, these two

resultant images of local and global contrast were incorporated

toward a single image in this way that we adopt the following

mathematical formula to produce the final enhancement output.

Y(x, y) = [G(x, y)+ H(x, y)]− I(x, y)] (5)

3.2 Deep transfer learning

InceptionV3 is a directed acyclic graph (DAG) network that has

316 layers and 350 links that include 94 as convolutional layers

(Szegedy et al., 2016). Such a structure facilitates the provision

of adequate employment of complicated dependency relations in

the network, having many inputs and outputs at different layers.

Differently from the standard CNNmodel in which the filter size is

fixed throughout the layers of that model, InceptionV3 has different

filter sizes within the same layer, which increases its capability

of feature extraction on the data. Originally trained on ImageNet

(Deng et al., 2009) on which includes over one million images

split into one thousand categories, the InceptionV3 has the ability

to read most features. The model takes images of input size 299

× 299 × 3. In this study, the model has been adapted to classify

various stages of AD for which transfer learning from the ImageNet
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FIGURE 1

General flow of the proposed framework.

FIGURE 2

Architecture of InceptionV3 model.

training phase has been applied to achieve efficient medical image

classification. The architecture of InceptionV3 model is shown in

Figure 2.

Transfer learning (Pan and Yang, 2009) is a popular method

in recognition and detection tasks, allowing for improved model

performance by leveraging pre-trained models. In this context,

the domain D consists of a feature vector Y = y1, y2, · · · , yn
with a corresponding probabilistic distribution P(Y), forming

B = Y , P(Y). The task, denoted as T, consists of the ground

truth Z = z1, z2, · · · , zn. The function can be expressed in

probabilistic form as P(z|y). In the context of transfer learning,

this can be represented concerning the source domain as

BT = (x(T1), x(T2)), (x(T2), x(T2)), · · · , (x(Tn), x(Tn)) along with

the learning rate ST . The target output is denoted as BS =

(x(S1), x(S2)), (x(S2), x(S2)) · · · , (x(Sn), x(Sn)), and the associated

function for the targeted neural network is represented as SS. The

primary objective of transfer learning is to improve the learning

rate for predicting the target object by utilizing the recognition

function FS(.), which is informed by training on both BT and BS,

where BT 6= BS and ST 6= SS. Inductive transfer learning proves

to be effective in pattern recognition tasks. An annotated dataset is

essential for efficient training and evaluation when implementing

inductive transfer learning. This process can involve distinct class

labels ZT 6= ZS and differing distributions P(ZT |YT) 6= (ZS|YS).
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FIGURE 3

Overview of the GSA block.

3.3 Generalized self-attention module

The proposed GSA module is aimed at achieving detailed

description of AD characteristics while avoiding irrelevant features.

Its architecture was influenced by the self-attention mechanisms

employed in GCNet (Cao et al., 2019; Zhang et al., 2019), as

illustrated in Figure 3. However, unlike these methods, it positions

global dependency across both spatial and channel dimensions at

the same time. Spatial attention worked for the relationships of

the global features in the spatial location, while channel attention

worked on the importance of a point channel out of all the channels.

As initial input for the GSA module, we utilize the high level

activation maps Z ∈ R
H×W×C, whereas the GSA module returns

the refined feature maps Zgs ∈ R
H×W×C. The feature map is

divided into the keys, queries, and values, similar to a transformer

architecture, which is supported by three attributes Q, K, and V .

The query function q(Z) is defined by a convolution of 1 ×

1 consisting of C′ = C/8 channels and global average pooling

to attain the vector Q(Z) ∈ R
1×C′

. On the other hand, the key

and value functions are carried out by 1 × 1 convolution followed

by reshape operations but without global average pooling and

the outputs are maps K(Z) ∈ R
HW×C′

and V(Z) ∈ R
HW×C′

).

Next, The spatial attention weights are generated by calculating the

matrix product betweenQ and K and applying a softmax activation

function given as

Z′ = φ(q(Z)⊗ k(Z)T) (6)

With regard to the abbreviations used here, we have ⊗

indicating the cross-product of the matrix, φ which stands for

the softmax activation function of the formula and the double

dagger T showing the operation of matrix transposition. Following

this, the spatial attention feature map Zsp ∈ R
H×W×C derived

by performing element-wise multiplication among Z′ and Z is as

follows:

Zsp = reshape(Z′)⊙ Z (7)

Similarly, a matrix cross-product of Z′ with v(Z) leads to the

channel attention weights which are passed through a 1 × 1

convolution layer and a sigmoid non-linearity. It also increases the

channels from C′ to C. This process is also called linear embedding.

The mathematical formulation for this global transformation is

given by

Z′′ = σ (conv(Z′ ⊗ v(Z))) (8)

Next, the channel-wise attention maps Zch ∈ R
H×W×C are

calculated as

Zch = Z′′ ⊙ Z (9)

Finally, we integrate the spatial attention feature maps Zsp and

the channel attention maps Zch by taking their weighted sum,

producing the refined attention feature map Zgs ∈ R
H×W×C,

defined as

Zgs = W1Zsp +W2Zch (10)

where W1 and W2 are two trainable scalar weights. In

summary, GSA obtains the channel-wise and spatial dependencies

concurrently from MR images and then improves the features

representation. We merge the feature attention maps produced

by the GSA heads through concatenation, preceding 1 × 1

convolution to generate the final output of the proposed GSA,

denoted as Ztm ∈ R
H×W×C. Mathematically, Ztm can be

represented as follows:

Ztm = concat(Z1
gs,Z

2
gs, . . . ,Z

h
gs) (11)

In this study, h, representing the number of GSA heads, is set

empirically to a value of 4. This specific choice of h = 4 was

determined empirically.
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3.4 Classification

The ELM [42] was used as a classifier to differentiate AD stages.

Given z sample (Z, o), the ELM’s output with no errors can be

mathematically expressed as follows:

o =

√

∑

αt(wi + b) (12)

In this instance, the activation function is denoted by t(·),

and the input and output samples are Z and o, respectively. The

variables w and b are weights and bias, respectively, and α is

the weight coefficient. The output O is provided as O = Hα

whereby O = (o1, o2, · · · , on) symbolizes the output vector and

α = (α1,α2, . . . ,αm) denotes the weight vector. The hidden layers

can be expressed as

H =









t(w1i1 + b1) · · · t(wni1 + bn)
...

. . .
...

t(w1im + b1) · · · t(wnim + bn)









(13)

The number of nodes in the hidden layer needs to be below

the total amount of samples. Description of the structured model

of a single hidden-layer ELM neural network utilized for AD

classification is provided in Equation 13. The hidden layer, denoted

by H, is composed of nodes and activation functions t(·). Weights

wi and biases b are connected to each hidden layer node, with i

ranging from 1 tom and representing input variables. The formula

used in the production of the output of the hidden layer O is the

summation of the product between each of the node’s activation

function and weights then passed through t(·). The mechanism can

be mathematically represented as O = Hα. Equation 13 defines

the structure of the hidden layer, which further elucidates that

the H is a concatenation of n nodes. The weighted sum of input

features i = (i1, i2, · · · , im) is computed for each node’s activation

by utilizing weights wi and biases b for each node. The function t(·)

adds non-linearity and provides the network with ability to learn

more complex input data patterns. Determining the quantity of

nodes in the hidden layers is essential; they should be fewer than the

amount of samples to avert overfitting. During training, we obtain

the weights and biases to minimize the mapping function between

the input features and the associated output for AD classification.

4 Experimental results

The analysis and experimental results of the proposed

models are detailed in this section. The presentation includes

information regarding the dataset, implementation characteristics,

and comparison analysis.

4.1 Experimental setup and dataset

The model was trained on a high-performance machine

equippedwith an Intel Core i9-14900HX processor and anNVIDIA

RTX 4090 GPU, providing substantial computational power for

TABLE 1 ADNI dataset image count before and after augmentation.

Classes No. of images Augmented No. of utilized
images

AD 8,346 n/a 500

CN 8,650 n/a 500

EMCI 480 n/a 480

LMCI 144 432 432

MCI 1,155 n/a 500

TABLE 2 Total number of images and number of images utilized from

OASIS dataset.

Classes No. of images No. of utilized images

Mild dementia 5,002 500

Moderate dementia 488 488

Non-demented 67,200 500

Very mild dementia 13,700 500

deep learning tasks. The system included 64GB of DDR5 RAM

operating at 5,600MT/s, ensuring efficient handling of large-scale

data. CUDA 12.6 was utilized to enable GPU-accelerated training.

Themodel was trained with a learning rate of 0.0001, a value chosen

to balance the stability and convergence speed of the training

process.

In this experiment, ADNI dataset was used which consisted

of five classes: AD, CN, EMCI, LMCI, and MCI. The original

number of images varied significantly across classes, with AD,

CN, and MCI having thousands of images, while EMCI and

LMCI had considerably fewer as shown in Table 1. To address

this class imbalance, data augmentation was applied exclusively to

the LMCI class, which originally had only 144 images. Through

augmentation, the LMCI class was expanded to 432 images,

increasing the total number of samples used in the training process.

For the other classes, 500 images were randomly selected from AD

and CN, while all available images were used for EMCI and MCI.

The augmentation methods used to enhance the LMCI class

included rotation, scaling, and flipping. Rotation involved rotating

images by various angles to introduce diversity without altering

key signal features. Scaling was applied to adjust the size of images

while maintaining their aspect ratio, simulating variability in data

capture. Flipping, both horizontally and vertically, was also used

to further diversify the dataset, making the model more robust to

orientation changes. These augmentation techniques were critical

in improving class balance and ensuring better generalization

during model training.

Another dataset used in this experiment is the Open Access

Series of Imaging Studies (OASIS), a widely utilized resource for

neuroimaging research, particularly in the study of brain health

and dementia. Table 2 presents the distribution of images from

the OASIS dataset across four classes: Mild Dementia, Moderate

Dementia, Non-Demented, and Very Mild Dementia.
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4.2 ADNI results

Table 3 indicates the performances of the proposed model in

terms of classification for Alzheimer’s detection under the different

cognitive conditions. The network can accurately predict an image

with an average of 96.67% and high values of precision, recall, and

TABLE 3 Classification performance of InGSA on ADNI dataset.

Class Precision
(%)

Recall (%) F1-
score
(%)

AUC (%)

AD 94.23 98.00 96.08 98.21

CN 97.92 95.92 96.91 97.70

EMCI 95.88 96.88 96.37 97.92

LMCI 98.80 95.35 97.04 97.55

MCI 97.00 97.00 97.00 98.11

Accuracy 96.67

Macro average 97.76 96.63 96.68 97.90

Weighted average 96.71 96.67 96.67 97.91

F1-scores for all classes. For the LMCI class, the study realized a

precision of 98.80%, while at the same time, AD has the highest

recall of 98.00% to show effective detection. All classes have an

F1-score of more than 96%, and it can be seen that the approach

balanced precision and recall. The AUC values are also high, and

AD reached 98.21%. Confusion matrix for proposed model is given

in Figure 4.

Table 4 gives a quantitative analysis of the number of correct

detections of the various models augmented with different

TABLE 4 Performance comparison of di�erent attention mechanisms.

Attention
mechanism

Accuracy (%)

Mob Den Res Sq InV3

None 82.76 76.65 71.27 86.32 90.17

Self attention 85.43 79.89 76.39 87.36 93.44

CBAM 83.70 78.72 71.89 89.78 91.23

CSDAB 83.00 78.21 73.47 88.24 90.87

Proposed (GSA) 84.54 82.87 79.98 91.43 96.67

FIGURE 4

Confusion matrix of proposed InGSA on ADNI Dataset.
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FIGURE 5

Visual comparison of various attention mechanisms on ADNI dataset.

attention mechanisms: MobileNet (Mob), DenseNet201 (Den),

ResNet50 (Res), SqueezeNet (Sq), and InceptionV3 (InV3). With

the proposed GSA, the largest performance improvements were

achieved with InceptionV3, from 90.17% to 96.67% (with attention)

and with SqueezeNet from 86.32% to 91.43%. Here, DenseNet201

shows improvement of 6.22% from 76.65 to 82.87, while ResNet50

goes from 71.27% to 79.98%. Self-Attention (Zhang et al., 2019) also

presented substantial enhancements for InceptionV3 from 93.15%

to 93.44%, as well as for SqueezeNet from 86.59% to 87.36%. Both

convolutional block attention module (CBAM) (Woo et al., 2018)

and channel split dual attention block (CSDAB) (Dutta and Nayak,

2022) result inmoderate accuracy increases, with CBAM improving

SqueezeNet to 89.78% and CSDAB raising it to 88.24%. In general,

GSA consistently improves accuracy in all models being tested.

Visual analysis of attention mechanisms with pre-trained model on

ADNI dataset is shown in Figure 5.

Table 5 shows accuracy and F1-score when comparing the

current existing models, namely, vision transformer (ViT),

data efficient image transformer (DEiT), and pyramid vision

transformer (PVT) with the InGSA model proposed in this study.

Out of all the models, the DEiT comes with the highest accuracy

and F1-score with accuracies of 89.44%, and F1-score of 88.12%,

with PVT coming second with accuracies of 88.48% and F1-scores

of 85.98%. ViT has the worst performance with an accuracy of

86.24% and the F1-score at 84.67%. Comparing the proposed

model InGSA with others, it is clear that the proposed model

InGSA outperforms the other models with accuracy of 96.67%

and F1-score of 96.68% that indicate effectiveness of the proposed

model InGSA.

TABLE 5 Comparison of proposed InGSA with transformer-based models

on ADNI dataset.

Model Accuracy (%) F1-score (%)

ViT 86.24 84.67

DEiT 89.44 88.12

PVT 88.48 85.98

InGSA 96.67 96.68

TABLE 6 Classification performance of InGSA on OASIS dataset.

Class Precision
(%)

Recall (%) F1-
score
(%)

AUC (%)

Mild demented 98.02 99.00 98.51 99.16

Moderate demented 98.97 97.96 98.46 98.81

Non-demented 97.94 95.00 96.45 97.16

Very mild demented 97.09 100.00 98.52 99.50

Accuracy 97.99

Macro average 98.00 97.99 97.98 98.66

Weighted average 98.00 97.99 97.98 98.66

4.3 OASIS results

Table 6 presents the classification performance for different

categories of dementia using OASIS dataset. High precision of
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FIGURE 6

Confusion matrix of proposed InGSA on OASIS dataset.

TABLE 7 Performance comparison of di�erent attention mechanisms.

Attention
mechanism

Accuracy (%)

Mob Den Res Sq InV3

None 87.35 80.78 72.34 87.54 92.87

Self attention 88.45 84.67 73.67 89.79 94.76

CBAM 88.89 84.32 77.93 88.38 93.62

CSDAB 88.95 82.19 74.05 88.75 93.90

Proposed (GSA) 90.74 87.64 79.85 91.02 97.99

all classes set by the model, specifically Moderate Demented

presenting 98.97% and Mild Demented 98.02%. The Recall is

exceptional for Very Mild Demented at 100% which means that

all the cases belonging to this class are identified rightly. The F1-

score, therefore, averaged over all classes is unbiased, being 96.45%

for Non-Demented and 98.52% for both Mild and Very Mild

Demented classes. AUC’s are high, notably Very Mild Demented

with a highest of 99.50%. In general, the proposed model renders

high performance in the presented study with the overall accuracy

of 97.99%. Figure 6 depicts confusionmatrix of proposedmodel for

OASIS dataset.

Table 7 shows the percentage of classification accuracy of

multiple models when using the OASIS dataset, with different

attentionmechanisms. All the attention approaches improve on the

baseline accuracy of all the models including the proposed GSA

model. For instance, they achieve 90.74% accuracy with MobileNet

and an outstanding 97.99% with InceptionV3 confirming how

efficient the proposed approach is in enhancing model accuracy.

Self-attention mechanism also plays a useful role, especially in

MobileNet and InceptionV3 models and in this experiment

reached a throughput of 88.45 and 94.76%, correspondingly. While

structure imported with CBAM and CSDAB mechanisms may be

less fortunate than the GSA model, it has revealed improvements.

Figure 7 illustrates the visual analysis of attention mechanisms

using a pre-trained model on the OASIS dataset.

The findings in Table 8 reveal that all algorithms provide

high accuracy, where proposed InGSA model performs the best

with accuracy of 97.99% and F1-score of 97.88%. This implies

that InGSA is proud not only to classify instances accurately

but also to have a low percentage of false positive and false
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FIGURE 7

Visual comparison of various attention mechanisms on OASIS dataset.

TABLE 8 Comparison of proposed InGSA with transformer-based models

on OASIS dataset.

Model Accuracy (%) F1-score (%)

ViT 91.65 86.78

DEiT 89.43 89.12

PVT 93.79 92.61

InGSA 97.99 97.88

negative. Next is the PVTmodel which gives classification accuracy

of 93.79% and F1-score of 92.61% demonstrating the good

classification prowess of the model. The performance of both ViT

and DEiT models is reasonable, with accuracies of 91.65% and

89.43%, respectively.

5 Conclusion

Alzheimer’s disease, diagnosed and classified with multiclass

datasets in the early stage, needed a proficient automatic system

identification. This study puts forward a CNN-Transformer model

to diagnose Alzheimer’s cases from multiclass datasets using

transfer learning. First, a method of contrast enhancement is

utilized to help better visualize important features. Furthermore,

we introduce a new global CNN-transformer network known

as InGSA for multiclass AD classification to facilitate end-

to-end training. The InGSA architecture is based on the

CNN and transformer, and GSA blocks are placed on top

of pre-trained InceptionV3 model. GSA blocks are important

for expression subscalar detection of global dependencies of

features. The GSA component improves the extraction of

detailed information by learning channel-wise and spatial-wise

attention weights at the same time. In-depth experiments on

two benchmark datasets demonstrate that our proposed InGSA

achieves superior performance compared to the state-of-the-art

techniques. Furthermore, GSA yields better results than other

traditional attention methods. For the future works, we aim

to test GSA on more extensive set and diverse dataset, and

we also want to apply our proposed method in the other

vision-related tasks.
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