
Frontiers in Artificial Intelligence 01 frontiersin.org

Dairy DigiD: a keypoint-based 
deep learning system for 
classifying dairy cattle by 
physiological and reproductive 
status
Shubhangi Mahato 1, Hanqing Bi 2 and Suresh Neethirajan 1,3*
1 Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada, 2 Faculty of Mathematics, 
Dalhousie University, Waterloo, ON, Canada, 3 Faculty of Agriculture, Agricultural Campus, Dalhousie 
University, Truro, NS, Canada

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems 
capable of monitoring cattle with minimal disruption to behavior or welfare. 
Conventional identification methods, such as ear tags and wearable sensors, often 
compromise animal comfort and produce inconsistent data under real-world farm 
conditions. This study introduces Dairy DigiD, a deep learning-based biometric 
classification framework that categorizes dairy cattle into four physiologically 
defineda groups—young, mature milking, pregnant, and dry cows—using high-
resolution facial images. The system combines two complementary approaches: 
a DenseNet121 model for full-image classification, offering global visual context, 
and Detectron2 for fine-grained facial analysis. Dairy DigiD leverages Detectron2’s 
multi-task architecture, using instance segmentation and keypoint detection across 
30 anatomical landmarks (eyes, ears, muzzle) to refine facial localization and improve 
classification robustness. While DenseNet121 delivered strong baseline performance, 
its sensitivity to background noise limited generalizability. In contrast, Detectron2 
demonstrated superior adaptability in uncontrolled farm environments, achieving 
classification accuracies between 93 and 98%. Its keypoint-driven strategy enabled 
robust feature localization and resilience to occlusions, lighting variations, and 
heterogeneous backgrounds. Cross-validation and perturbation-based explainability 
confirmed that biologically salient features guided classification, enhancing model 
transparency. By integrating animal-centric design with scalable AI, Dairy DigiD 
represents a significant advancement in automated livestock monitoring-offering 
an ethical, accurate, and practical alternative to traditional identification methods. 
The approach sets a precedent for responsible, data-driven decision-making in 
precision dairy management.
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1 Introduction

Digital livestock farming has emerged as a transformative strategy in addressing the global 
demand for sustainable, efficient, and ethically grounded agricultural practices (Neethirajan, 
2021). This transformation has been strongly fueled by the integration of deep learning 
techniques across various aspects of precision cattle farming, highlighting applications ranging 
from health monitoring to behavioral analysis (Mahmud et  al., 2021). A trend further 
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reinforced a significant increase in PLF publications worldwide, 
highlighting the field’s rapid evolution toward data-driven and 
automated livestock management solutions (Jiang et al., 2023). At the 
heart of this transformation lies the ability to monitor and categorize 
individual animals with precision, enabling targeted health 
interventions, optimized resource use, and improved animal welfare 
outcomes (Schillings et al., 2021). Recent work has also demonstrated 
the application of high-precision spatial tracking systems for 
monitoring Holstein cattle movements, illustrating the expanding role 
of AI in holistic herd (Luo et al., 2024). Accurate classification of 
livestock into relevant physiological categories is fundamental to the 
development of scalable precision management systems that support 
individualized care, behavioral monitoring, and informed decision-
making (Neethirajan, 2024a, 2024b).

Historically, cattle identification and categorization have relied 
heavily on physical markers such as ear tags and branding, 
standardized through regulatory agencies like the Canadian Food 
Inspection Agency (CFIA). While these methods are entrenched in 
industry practice, they present several drawbacks: they are invasive, 
potentially induce stress, and may disrupt natural behaviors 
(Schnaider et al., 2022). Even more modern tools like RFID collars and 
accelerometers can interfere with routine activities, posing concerns 
about data integrity and animal welfare (Neethirajan, 2024a, 2024b).

To overcome these limitations, recent efforts have explored 
biometrically driven, non-invasive alternatives such as muzzle prints 
and coat pattern analysis (Hossain et al., 2022; Li et al., 2022; Chen 
et al., 2021; Manoj et al., 2021; Gerdan Koc et al., 2024), with critical 
reviews supporting their potential in cattle identification (Kaur et al., 
2022) and recent advances demonstrating the efficacy of AI-based 
muzzle recognition systems for reliable cattle identification (Islam 
et al., 2024). Similarly, Kusakunniran et al. (2023) proposed a real-time 
cattle biometric identification system (Cattle AutoID) that leverages 
facial patterns for individual recognition, highlighting the increasing 
deployment of AI-driven solutions in livestock settings. Historical 
approaches like nose print-based identification also laid foundational 
work for facial biometrics in livestock (Bello et  al., 2020). Early 
computer vision approaches employing techniques like Scale-Invariant 
Feature Transform (SIFT) with Random Sample Consensus 
(RANSAC) leveraged unique facial patterns in cattle for individual 
identification (Awad et  al., 2013). These early efforts laid the 
groundwork for what is now considered a new frontier in animal 
biometrics, where facial features serve as non-invasive, reliable 
markers for individual cattle recognition and classification (Kumar 
and Singh, 2020). Other handcrafted feature techniques, such as Local 
Binary Patterns (LBP), were also explored for cattle face recognition, 
demonstrating potential under constrained conditions (Cai and Li, 
2013). However, these methods struggled under real-world conditions 
characterized by inconsistent lighting, occlusion, background clutter, 
and pose variability (Scott et al., 2024; Araújo et al., 2025; Li et al., 

2021), limiting their scalability and robustness in commercial 
dairy environments.

The emergence of classical machine learning methods such as 
Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and 
Artificial Neural Networks (ANN) enabled the automated 
classification of biometric features, thereby reducing manual 
annotation efforts (Hossain et al., 2022). Nevertheless, these models 
depended heavily on handcrafted features, limiting their generalization 
capacity across varied farm conditions. Their performance was further 
constrained by small datasets and rigid preprocessing pipelines, as 
noted by Cockburn (2020).

The advent of deep learning, particularly Convolutional Neural 
Networks (CNNs), has significantly advanced visual feature extraction 
and classification in livestock management. Architectures like ResNet 
(He et al., 2016), YOLO (Redmon et al., 2016; Redmon and Farhadi, 
2018; Bochkovskiy et  al., 2020; Yılmaz et  al., 2021), and VGG16 
(Simonyan and Zisserman, 2014) have demonstrated high 
performance in image-based cattle recognition tasks. For example, 
El-Henawy et al. (2016) and Andrew et al. (2017) reported notable 
improvements using CNNs enhanced with texture and region-based 
analysis for Friesian cattle, while de Lima Weber et al. (2020) achieved 
classification accuracies approaching 99% in controlled settings. 
Earlier studies by Yao et al. (2019) explored cow face detection and 
recognition through automatic feature extraction algorithms, marking 
foundational steps toward non-invasive biometric identification 
in livestock.

Weng et al. (2022) further advanced this domain by developing a 
two-branch CNN architecture tailored for cattle face recognition, 
demonstrating the field’s progression toward more specialized 
network designs. Yang et al. (2024) fused RetinaFace with an improved 
FaceNet to identify individual cows in unconstrained farm 
environments, highlighting the move toward integrated detection and 
embedding systems specifically designed for livestock facial 
recognition. However, despite these advancements, CNN-based 
systems have their limitations. VGG16, for instance, is computationally 
intensive and slow to train (Simonyan and Zisserman, 2014), while 
YOLO, although efficient, may produce false positives for smaller 
regions such as cattle faces without extensive parameter tuning 
(Neethirajan, 2024a, 2024b).

Facial biometrics, particularly the detection of consistent 
landmarks such as eyes, nostrils, ears, and muzzle contours, offers a 
stable and anatomically grounded alternative to full-body analysis 
(Qiao et al., 2019; Bergman et al., 2024). These facial keypoints—
discrete, localizable points on the animal’s face—allow for the 
construction of a geometrically meaningful representation that 
remains relatively invariant across time, environmental conditions, 
and physiological changes (Rashid et  al., 2017). Unlike body 
posture, which can vary significantly due to gait, pregnancy, injury, 
or coat shedding, facial features provide reliable identifiers that are 
well-suited for longitudinal monitoring (Meng et  al., 2025). 
Moreover, facial recognition systems can be seamlessly integrated 
into existing farm infrastructure (e.g., feeding stations, milking 
parlors), minimizing additional hardware needs and animal 
disturbance (Bergman et  al., 2024). Recent study highlight the 
predictive power of facial biometrics in dairy cows, noting that 
changes in features such as eye openness, muzzle texture, and ear 
orientation can serve as early indicators of health and stress, 
underscoring the potential value of integrating facial feature 
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tracking into physiological group classification systems (Mahato 
and Neethirajan, 2024). Further advancing this field, Meng et al. 
(2023) demonstrated enhanced cattle face recognition systems 
capable of distinguishing even unfamiliar individuals, illustrating 
the growing sophistication of AI-driven biometric approaches in 
smart livestock management. Other study has shown that 
non-invasive computer vision approaches can effectively predict 
both age and welfare status in dairy cows, underscoring their 
potential as automated veterinary support systems (Fuentes 
et al., 2022).

Building on these insights, this study introduces Dairy DigiD, 
a novel deep learning-based biometric classification system 
designed to categorize dairy cattle into four physiologically 
meaningful groups: young, mature milking, pregnant, and old. 
Importantly, this study does not aim to individually identify cattle 
in a biometric sense (i.e., assigning unique IDs), but instead 
leverages biometric facial features to perform robust group 
classification. To explore the most effective method for this task, 
we  performed two distinct deep learning strategies: first, 
we employed DenseNet121 (Huang et al., 2017) as a baseline model, 
to evaluate classification performance using full-image inputs; later 
utilized Detectron2, an advanced object detection and keypoint 
estimation framework developed by Facebook AI Research (Wu 
et al., 2019), to focus exclusively on facial regions annotated with 30 
anatomical landmarks.

Detectron2’s modular design and precise keypoint detection 
capabilities enable it to outperform generic CNNs in environments 
marked by occlusion, shadow, and background variability - conditions 
common in commercial farms. Unlike methods that rely on 
rectangular bounding boxes, Detectron2 uses pixel-level segmentation 
and keypoint mapping to extract fine-grained, anatomically relevant 
features. This allows for richer, more explainable model behavior and 

more consistent predictions under challenging visual conditions (Wu 
et al., 2019).

In this study, we address two primary research objectives:

	 1	 To investigate whether advanced deep learning methods  - 
starting with a full-image classification approach 
(DenseNet121) and later to a keypoint-driven facial biometrics 
approach (Detectron2) - can effectively categorize dairy cattle 
under realistic farm conditions.

	 2	 To compare the performance and interpretability of these two 
approaches, emphasizing the robustness and contextual 
specificity afforded by keypoint-based classification.

While our original scope included comparisons with other 
architectures such as VGG16 and YOLO, this study focuses on 
DenseNet121 as a representative baseline for CNN-based global image 
classification. This refinement enables a more targeted and in-depth 
comparison with Detectron2, preserving methodological clarity. A 
broader benchmarking analysis remains an important avenue for 
future work. The conceptual overview and methodological pipeline of 
our system are presented in Figure 1.

2 Dataset and methodology

Our study draws on a carefully curated dataset designed to reflect 
the diversity, environmental complexity, and physiological variability 
of dairy cattle populations across Nova Scotia and New Brunswick, 
Canada. The dataset comprises over 8,700 high-resolution images, 
representing approximately 600 Holstein and Jersey cows, and 
supports the development of scalable AI models for precise, 
non-invasive cattle classification.

FIGURE 1

Workflow diagram illustrating the key steps in developing the Dairy DigiD cattle image classification model, from data collection to model evaluation.
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2.1 Ethical approvals

All procedures were reviewed and approved by the Dalhousie 
University Ethics Committee (Protocol 2024–026). Data collection 
involved no physical contact with animals. Participating farm owners 
were fully informed of the study’s objectives and provided written 
consent. In adherence to ethical guidelines, data were collected 
exclusively through passive image and video capture.

2.2 Cattle demographics and dataset 
composition

Images were collected from commercial farms housing Holstein 
and Jersey cattle, with herd sizes ranging from 60 to 110 animals. 
Animals were photographed in natural farm environments including 
barns, pastures, and open yards. This contextually rich data was 
critical for training models to perform reliably under diverse real-
world conditions. Images were categorized based on 
physiological state:

	•	 Young cows (<2 years): 520 images
	•	 Mature milking cows: 5,740 images
	•	 Pregnant cows: 1,290 images
	•	 Dry cows: 1,197 images

2.3 Data collection methods

Visual data were collected using consumer-grade high-resolution 
cameras (Samsung S21, iPhone 13/14), capturing multiple poses and 
lighting conditions. Over 6,000 images captured side, frontal, and 
angled views. Selected video frames were extracted to supplement 
image diversity and improve environmental robustness.

2.4 Data partitioning

To ensure robust model training and evaluation, the dataset was 
partitioned into training (70%), validation (10%), and independent 
test (20%) sets. The validation set was used during training for 
hyperparameter tuning and early stopping, while the independent test 
set was reserved exclusively for final performance assessment on 
unseen data. Stratified sampling was employed during partitioning to 
maintain approximate class balance across all subsets. However, due 
to the inherent class imbalance in the original dataset - particularly 
the underrepresentation of the “Pregnant Cow” category - perfectly 
equal distribution was not feasible. To address this, targeted data 
augmentation was applied only to the training set to enhance model 
learning without introducing data leakage into the validation or test 
sets. This approach ensured that both the validation and test sets 
remained representative of real-world distributions, preserving their 
value as unbiased evaluation tools. For Detectron2-specific evaluation, 
a 5-fold cross-validation protocol was applied to a curated subset of 
the training data. Each fold preserved relative class distributions via 
stratified sampling, allowing for consistent benchmarking while 
accounting for variability in image quality and environmental 
conditions (see Section 4.5).

2.5 Labeling and annotation

To create a robust dataset for biometric classification, three 
animal-science experts annotated approximately 8,700 cattle 
images using the Computer Vision Annotation Tool (CVAT). Each 
image was labeled with 30 anatomically derived facial landmarks, 
systematically distributed across the eyes (points 1–8), ears (9–18), 
muzzle (19–24), and head contours (25–30). This landmark 
schema, based on established protocols (Han et  al., 2022; 
Shojaeipour et al., 2021), enables physiologically relevant feature 
extraction under varying farm conditions—supporting pose 
normalization, individualized biometric marker identification, 
and geometric alignment for downstream machine 
learning models.

Prior to the main annotation phase, a 300-image calibration 
round was conducted in which all annotators independently 
placed keypoints, allowing us to directly assess the consistency 
and spatial precision of landmark placement. Inter-annotator 
agreement was quantified using Fleiss’ κ, producing a strong value 
of 0.87, which reflects high reliability in keypoint localization 
across experts. Discrepancies in this round were carefully 
reviewed and codified into standardized anatomical guidelines. 
Annotations throughout the project were performed manually—
CVAT provides organizational tools but does not automate 
keypoint placement—ensuring that all labels reflected expert 
anatomical judgment.

After calibration, one thoroughly trained annotator completed the 
full dataset, with rolling quality control: a second expert spot-checked 
every 10th batch (approximately 5% of the data), making corrections 
when minor discrepancies (<2% of keypoints) were detected. 
Additionally, images associated with high training loss during initial 
model development were manually re-inspected to identify rare 
labeling errors.

Simultaneously, each image was associated with a physiological 
category label corresponding to four distinct groups: young, mature 
milking, pregnant, and dry cows. Importantly, these class 
assignments were not determined by the annotators from image 
review, but were instead sourced from up-to-date veterinary records 
and on-farm information provided by the farmers and animal 
caretakers at the time of image capture. This approach ensures that 
the physiological status of each animal—reflecting age and 
reproductive stage—was definitively known and objectively 
recorded, providing a gold-standard ground truth for supervised 
model training.

Our annotation pipeline balanced thoroughness, biological 
validity, and efficiency: dual annotation of the full corpus was 
precluded by resource constraints, but high calibration agreement, 
transparently manual anatomical labeling, rolling spot-check audits, 
and the use of farm-verified physiological categories provided rigorous 
safeguards against label noise.

2.6 Computational resources and code 
availability

All experiments were conducted on Google Colab using 
NVIDIA Tesla T4 GPUs (16 GB). The environment utilized PyTorch 
1.10, CUDA 11.2, OpenCV, and CVAT. Detectron2 was installed 
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from the official Facebook AI Research GitHub repository (Wu 
et al., 2019).

2.7 Data augmentation techniques

To mitigate class imbalance, particularly in the pregnant cow 
category, we applied extensive augmentation. The original 89 images 
were expanded to 1,200 via controlled geometric (rotation, flipping, 
scaling) and color-space transformations. These techniques enhanced 
model generalization and improved classification performance for 
underrepresented groups, as reflected by an increase in training 
F1-score from 0.93 to 0.96.

3 Model development and 
experimental procedures

3.1 Overview of the classification pipeline

This study developed a two-stage deep learning pipeline for 
non-invasive classification of dairy cattle into physiologically 
meaningful groups based on facial images. In the first stage, 
DenseNet121 - a convolutional neural network optimized for efficient 
feature propagation - was trained using facial images, each explicitly 
assigned to one of four physiological class categories: young, mature 
milking, pregnant, or dry cow. These category labels were determined 
objectively from up-to-date veterinary records and farm-provided 
status information.

DenseNet121 thus learned to discriminate among these general 
groups based solely on class labels linked to each image, leveraging 
global visual cues across the animal’s head. In the second stage, a 

keypoint-based approach was applied using Detectron2, which extracted 
and utilized 30 anatomical facial landmarks to enhance classification 
specificity. This approach enabled the model to focus on fine-grained 
biometric features and reduce sensitivity to background variation.

By comparing the global, label-supervised classification of 
DenseNet121 with the anatomically focused analysis provided by 
Detectron2, our sequential pipeline enables rigorous assessment of both 
holistic and localized visual features under realistic farm conditions.

3.2 DenseNet121 full-image classification

3.2.1 Configuration and training
DenseNet121 was fine-tuned using pre-trained ImageNet weights. 

Input images were resized to 224 × 224 pixels to match model input 
dimensions. We used the Adam optimizer with an adaptive learning 
rate starting at 0.0001, a batch size of 16, and categorical cross-entropy 
as the loss function. Training proceeded for up to 50 epochs with early 
stopping based on validation loss to prevent overfitting. The model 
architecture features dense connections between convolutional layers, 
which facilitate gradient propagation and enhance learning efficiency 
(Huang et al., 2017). To examine the internal logic of DenseNet121’s 
predictions, we applied Gradient-weighted Class Activation Mapping 
(Grad-CAM) (Selvaraju et al., 2020) (Figure 2).

3.3 Facial landmark design and annotation

3.3.1 Detectron2 keypoint integration and 
training protocol

The 30 anatomically annotated facial landmarks were harnessed 
to train Detectron2’s Keypoint R-CNN module (Girshick, 2015), 

FIGURE 2

Diagrammatic representation of the 30 annotated facial landmarks on cattle images. Color-coded markers distinguish key regions: eyes, ears, muzzle, 
and head contour. These landmarks form the basis of the keypoint detection system used in Detectron2.
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enabling the network to learn spatially precise keypoint localization 
in conjunction with class labels and bounding boxes. This integration 
allowed the model to focus on high-signal facial features—such as the 
eyes, ears, muzzle, and head contours—instead of background noise, 
thereby enhancing classification robustness.

Training was performed over 2,000 iterations with a batch size of 
4, using a learning rate of 0.0005 scheduled to decay at 1,500 and 3,000 
iterations. The AdamW optimizer (Loshchilov and Hutter, 2017) 
facilitated adaptive gradient control and improved regularization. 
Hyperparameters—including learning rate, batch size, and the 
number of epochs—were empirically tuned to optimize convergence 
while minimizing overfitting and GPU memory usage. The model was 
trained for up to 10 epochs, with close monitoring of both training 
and validation loss curves; convergence was typically reached by 
epochs 8–9. To further guard against overfitting, an early stopping 
protocol was implemented with a patience of 2 epochs, ensuring 
training ended automatically if validation loss plateaued. This strategy 
guaranteed that the final model reflected the optimal balance between 
generalization performance and learning depth.

3.4 Detectron2 model configuration and 
architecture

3.4.1 Architectural components
Detectron2’s architecture (Figure  3) comprises a ResNet-50 

backbone with Feature Pyramid Networks (FPN) for multi-scale 
feature extraction (He et al., 2016; Lin et al., 2017). A Region Proposal 
Network (RPN) identifies candidate object regions, which are then 
passed through ROI heads responsible for classification, bounding box 
regression (Figure  4), segmentation, and keypoint detection. ROI 

Align preserves spatial resolution during feature pooling, ensuring 
precise alignment critical for landmark localization.

3.4.2 Multi-task loss and symmetry augmentation
Detectron2 employs a multi-task loss function that combines 

classification (cross-entropy), bounding box regression (smooth L1), 
segmentation (binary cross-entropy), and keypoint detection losses. 
The keypoint loss is computed either via heatmap-based cross-entropy 
or smooth L1 regression, with optional weighting via Object Keypoint 
Similarity (OKS). The ROI head was configured to evaluate 128 
proposals per image. A custom keypoint flip map was implemented to 
preserve left–right anatomical symmetry during training, supporting 
consistent keypoint labeling across mirrored poses.

3.5 Robustness in real-world farm 
conditions

Detectron2 exhibited strong performance under real-world farm 
conditions, handling occlusions, lighting variations, and cluttered 
scenes effectively. Detectron2’s robustness under varied environmental 
conditions aligns with its demonstrated performance in other 
challenging domains, where it has been shown to effectively localize 
targets in visually complex scenes (Abdusalomov et  al., 2023). 
Integration with high-resolution video frames, along with landmark-
based constraints, enhanced its adaptability. However, training required 
careful resource management due to GPU memory constraints and 
CUDA compatibility issues. Variations in cattle appearance—such as 
breed-specific features, ear positioning, and coat patterns—posed 
classification challenges, which were mitigated by the anatomical focus 
of the model and the structural consistency offered by landmark-based 

FIGURE 3

The framework diagram illustrates Detectron2’s integrated architecture for cattle classification. While keypoint detection is emphasized, instance 
segmentation was employed to refine facial region proposals and remove background interference during pre-processing.
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detection. Similar challenges were addressed by Xiao et al. (2022), who 
combined an improved Mask R-CNN with SVMs to achieve cow 
identification in free-stall barns, highlighting the need for 
segmentation-aware models in practical deployments.

4 Results

To assess the performance of the investigated Detectron2 and 
DenseNet121 models in classifying dairy cattle, we  systematically 
evaluated each approach’s capacity to accurately differentiate among 
four distinct categories: Young Cows, Dry Cows, Mature Milking 
Cows, and Pregnant Cows. The analysis concentrated on standard 
evaluation metrics precision, recall, and F1-score, alongside 
convergence analysis to establish model robustness.

4.1 DenseNet121 baseline performance

4.1.1 Performance and limitations
The DenseNet121 model achieved strong performance, recording 

a training accuracy of 98.1% and a test accuracy of 97.1%. However, 
classification performance was uneven across categories.

The evaluation on the test dataset reveals strong overall 
classification performance across all cow categories. Notably, Young 
Cows and Pregnant Cows achieved perfect F1-scores of 1.00, 
indicating highly accurate and consistent predictions for these classes. 
Mature Milking Cows also showed robust performance with a high 
F1-score of 0.96, supported by the largest sample size. While Dry Cows 
exhibited slightly lower recall (0.91), their precision remained high 
(0.97), resulting in a respectable F1-score of 0.94. These results suggest 
the model is particularly effective in distinguishing between distinct 
physiological states, though minor misclassifications may still occur 
in closely related categories such as Dry Cows.

4.1.2 Attention mapping and diagnostic insights
To examine the internal logic of DenseNet121’s predictions, 

we  applied Gradient-weighted Class Activation Mapping (Grad-
CAM). As shown in Figure 5, while the model occasionally attended 
to informative facial areas, it frequently focused on irrelevant regions 
such as the neck, legs, or barn backgrounds. These inconsistencies 
underscored the need for a more constrained approach that focuses 
explicitly on biologically salient facial features.

Visual overlap between “Young” and “Pregnant” cows led to 
misclassifications, suggesting that the model relied on global features 
like posture, ear shape, and coat color, which were contextually 
variable and not always discriminative. This reliance reduced 
generalization performance, especially under changing 
environmental conditions.

4.2 Overall performance of Detectron2

The Detectron2 framework demonstrated robust overall 
classification performance on the independent test set. After training, 
the model achieved an overall weighted accuracy of 0.93 and a 
weighted average F1-score of 0.92 (Table  1 for detailed per-class 
metrics on the test set).

4.3 Training convergence and validation 
stability

We closely monitored Detectron2’s training performance across 
2,000 iterations. As shown in Figure 6, the model exhibited three 
distinct training phases. In the initial phase (0–250 iterations), a 
sharp reduction in loss indicated rapid learning of basic visual 
features. During the intermediate phase (250–1,500 iterations), the 
model fine-tuned class-distinguishing features, and in the final 

FIGURE 4

Representative output from the dairy DigiD system showing cattle facial images annotated with bounding boxes, predicted classification labels, and 30 
keypoints. This visualization highlights Detectron2’s ability to perform detailed facial biometric analysis by accurately localizing anatomical landmarks 
and associating them with physiological category predictions under real-world farm conditions.
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phase (after 1,500 iterations), the loss curve plateaued, signaling 
convergence. Further validation results are illustrated in Figure 7. 
Here, training and validation loss and accuracy are plotted per 
epoch. The close alignment between validation and training curves 
supports strong generalization. The model showed no major signs 
of overfitting across epochs, aided by early stopping protocols and 
regularized training.

4.4 Environmental factors and 
generalization performance

The performance of the Detectron2 model was shaped not only 
by its architecture but also by environmental conditions and data 

FIGURE 5

Grad-CAM visualizations highlighting DenseNet121’s attention regions during classification. Heatmaps show that predictions were not consistently 
driven by facial features, with attention sometimes misdirected to background or body areas, thereby motivating a shift to a facial landmark-based 
approach.

TABLE 1  Five-fold cross-validation results illustrating fold-wise accuracy 
and F1-score, along with mean values and standard deviations, 
highlighting the Detectron2 model’s robustness and capacity for 
consistent generalization across diverse data partitions.

Fold Accuracy F1-score

1 0.7867 0.7602

2 0.8252 0.8176

3 0.7587 0.7456

4 0.7902 0.7845

5 0.7965 0.7711

Mean 0.7915 0.7758

Std 0.0197 0.0283
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partitioning strategies. Similar effects have been documented by 
Chen et al. (2021), who reported a decline in model performance 
when cattle were imaged under heterogeneous farm conditions. To 
quantify generalization, we  conducted a 5-fold cross-validation 
using the training and validation subset associated with the 
Detectron2 model. Each fold maintained an 80-to-20 split between 
training and validation data, with stratified sampling to preserve 
class proportions.

These results confirm the model’s consistent generalization 
capability across diverse data subsets, highlighting stability and 

minimizing concerns of overfitting within the cross-
validation process.

4.5 Addressing class imbalance with 
ROC-AUC analysis

To better understand the effect of class imbalance, we conducted 
ROC-AUC analysis (Figure  8). The “Young Cow” and “Mature 
Milking Cow” classes displayed exceptionally high separability with 

FIGURE 6

Training loss curve of the Detectron2 model across 2,000 iterations, demonstrating rapid initial learning followed by gradual convergence, indicating 
effective feature extraction and stable optimization.

FIGURE 7

Training and validation loss (left) and accuracy (right) across epochs for the Detectron2 model, confirming consistent convergence and minimal 
overfitting.
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AUC values of 0.99, while the “Pregnant Cow” class showed a notably 
lower AUC of 0.75. While the “Pregnant Cow” class exhibited a lower 
AUC of 0.75, this level of performance is still indicative of effective 
discrimination, especially given the visual similarity with other classes 
and the inherent biological challenges of this task. Such challenges are 
not unexpected in livestock classification tasks, where closely related 
physiological categories often exhibit subtle anatomical differences 
that make clear separation more difficult.

4.6 Explainability via grad-CAM and 
perturbation-based analyses

Grad-CAM visualizations (Figure 9) validated that Detectron2’s 
predictions were grounded in meaningful facial regions. Keypoints 
such as the nostrils, eye center, and muzzle perimeter were highly 
activated, reflecting alignment with biologically relevant landmarks. 
To test robustness, we employed Perturbation-Based Explainability 
(PBE), systematically occluding facial features and observing the effect 
on prediction confidence. Figure 10 shows that occlusions of central 
features (e.g., muzzle or eye region) caused significant performance 
drops. Occluding peripheral or non-facial regions had little effect, 
reinforcing the critical role of facial landmarks.

The results indicate that both models deliver high classification 
performance across most physiological categories. Detectron2 
demonstrated robust precision and recall, with especially strong 
separation between classes, which may reflect the impact of its keypoint-
based architecture. DenseNet121 achieved marginally higher F1-scores 
in most categories on the independent test set, except for Dry Cows, 

where its F1-score was slightly lower than that of Detectron2. These 
findings suggest that both global (DenseNet121) and landmark-driven 
(Detectron2) approaches are effective for visual cattle classification, with 
nuanced performance differences across specific categories.

4.7 Saliency analysis via grad-CAM

To better understand the basis of model decision-making, 
we  examined saliency maps generated by Grad-CAM for both 
Detectron2 and DenseNet121. These visualizations indicate which 
image regions most strongly influenced the models’ classifications. For 
Detectron2, Grad-CAM activations were consistently concentrated on 
specific facial features—particularly the predefined anatomical 
landmarks of the muzzle and eyes—with a majority of activation mass 
(~80%) localized in these relevant regions across diverse test images. 
In contrast, DenseNet121 exhibited more diffuse attention, with a 
substantial proportion of its activation extending to background 
elements such as barn rails and bedding; only around 45–55% of the 
activation typically fell on the animal’s face. These differences suggest 
the keypoint-based model’s architecture is more anatomically focused 
and potentially less susceptible to background confounding.

4.8 Generalization and comparative 
performance on the independent test set

To assess the real-world utility of our models, we evaluated both 
Detectron2 (keypoint-based) and DenseNet121 (full-image classifier) 

FIGURE 8

Multi-class ROC curves illustrating the Detectron2 model’s discriminative performance. The “Pregnant Cow” class exhibited reduced separability, 
reflecting class imbalance and visual overlap.
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on a shared, independent test dataset representing all four physiological 
cattle categories. Table 2 summarizes classification metrics—precision, 
recall, and F1-score—for both the models and class. Detectron2 
demonstrated robust generalization, with strong performance on “Dry 
Cows” and “Young Cows.” “Pregnant Cows” were identified with high 
recall and improved F1-score, reflecting the benefits of targeted data 
augmentation and fine-grained anatomical feature use. For “Mature 
Milking Cows,” Detectron2 achieved perfect precision but somewhat 
lower recall, attributable to class imbalance in the test set.

Direct comparison of Detectron2 and DenseNet121 was 
conducted using standardized confusion matrices and the same 
evaluation metrics. This side-by-side analysis revealed that while 
both models performed well across most categories, Detectron2 
generally provided tighter class separation and greater sensitivity to 
group-specific anatomical features, whereas DenseNet121—trained 
on holistic visual patterns—exhibited higher sensitivity to 
background variation and greater variability in misclassification 
patterns. These results indicate the complementary strengths of 

FIGURE 10

Perturbation-based explainability heatmaps revealing sensitivity to occlusions of key facial landmarks like the nostrils and eyes.

FIGURE 9

Gradient-weighted class activation mapping (Grad-CAM) visualizations for Detectron2, highlighting biologically relevant attention regions.
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anatomical keypoint and full-image strategies for automated 
cattle classification.

5 Discussion

This study provides a comprehensive assessment of two deep 
learning frameworks—DenseNet121 and Detectron2—for 
non-invasive dairy cattle classification. The results highlight both 
progress and remaining limitations in deploying automated vision 
systems under field conditions. Our findings show that while both 
models achieve strong overall performance, the keypoint-based 
Detectron2 framework offers significant advantages in robustness and 
interpretability by focusing on anatomically consistent facial features 
rather than variable full-image context.

5.1 The role of class imbalance in model 
performance

One of the persistent challenges faced was class imbalance, 
stemming primarily from unequal representation across categories in 
the dataset. The relatively lower performance of the Detectron2 model 
on the “Pregnant Cow” class—even with targeted augmentation—can 
be directly attributed to this limited representation during training. As 
noted by Hossain et al. (2022), underrepresented categories in livestock 
datasets often yield reduced accuracy due to less learning exposure, a 
trend further corroborated by Li et al. (2022) in their study of cattle 
recognition systems under dataset skew. This pattern is evident in our 
results: ROC-AUC analysis (Figure 8) and per-class metrics (Table 2) 
both illustrate the effect of class imbalance. Despite these challenges, 
category-level analysis reveals strong overall model performance; for 
example, “Mature Milking Cow” achieved perfect precision (1.00) on the 
test set, while “Young Cows” returned a high F1-score of 0.96 and 
“Pregnant Cows” reached an F1-score of 0.97 (Table 2 and Figure 11). 
The “Pregnant Cow” category, represented by just 89 images before 
augmentation, registered a lower AUC (0.75) and showed greater 
confusion with visually similar groups such as “Young Cows” (Figure 12), 
leading to reduced classification metrics in some evaluation phases.

Despite being the majority class with extensive representation in 
the dataset, the “Mature Milking Cow” category exhibited lower recall 
(0.65) and F1-score (0.67) in Detectron2, suggesting that factors 
beyond sample size—such as higher intra-class variability or feature 
overlap with other groups—may have limited the model’s class-
specific generalization. In contrast, “Young Cows” and “Dry Cows” 
showed more consistent and robust classification results across 
evaluation metrics (Table 2). Models trained on imbalanced datasets 
typically bias predictions toward majority classes, limiting their 

capacity to accurately generalize features of minority categories. These 
findings indicate that even state-of-the-art models like Detectron2 
struggle to learn discriminative representations when trained on 
imbalanced datasets.

Although the 300-image calibration round (κ = 0.87) greatly 
reduced inconsistencies, residual label noise in the full corpus can still 
propagate systematic bias—capping attainable F1 scores and 
magnifying errors for under-represented classes. Duplicating all 8,700 
images was financially prohibitive in the present study, so future work 
will (i) compute a corpus-wide Fleiss’ κ, (ii) train with noise-robust 
losses such as generalized cross-entropy (Zhang and Sabuncu, 2018), 
and (iii) deploy an active-learning relabelling loop that automatically 
surfaces uncertain samples for expert review, progressively purging 
noise and tightening performance estimates. To further reduce 
minority-class error, we will generate high-quality synthetic images via 
class-conditional GANs and expand targeted data collection, injecting 
realistic intra-class variability without prohibitive annotation costs 
(Mullick et al., 2019).

5.2 Transition to keypoint-based 
classification

The anticipated performance limitations of DenseNet121, 
particularly its sensitivity to background noise and contextual 
variability, motivated a transition to Detectron2. Detectron2 offers a 
modular framework for object detection, instance segmentation, and 
keypoint detection (Wu et al., 2019). By focusing on detailed facial 
features, it enables classification based on structurally stable, pose-
invariant anatomical landmarks. This approach was hypothesized to 
be more beneficial in farm environments characterized by clutter, 
occlusion, and lighting inconsistencies. The new pipeline emphasized 
robustness and interpretability by anchoring the model’s decision-
making to consistent facial biometric indicators.

5.3 Visual overlap and the limits of facial 
biometrics

Our findings reaffirm that fine-grained classification between 
physiologically adjacent categories remains a challenge, especially 
when using facial biometrics alone. Facial landmarks like eyes, ears, 
nostrils, and muzzle generally offer stable biometric references less 
prone to short-term variability. Detectron2’s reliance on 30 anatomical 
landmarks—although robust to pose and lighting variation—was not 
always sufficient to resolve inter-class ambiguities between “Young” 
and “Pregnant” cows or “Pregnant” and “Mature Milking” cows, 
suggesting the intrinsic limitations of purely landmark-focused 

TABLE 2  Classification metrics (precision, recall, and F1-score) for Detectron2 and Densenet121 on the independent test set.

Model Detectron2 Densenet121

Category Precision Recall F1-Score Precision Recall F1-Score

Young cows 1.00 0.93 0.96 0.99 1.00 1.00

Dry cows 0.98 1.00 0.99 0.97 0.91 0.94

Mature milking cows 1.00 0.65 0.67 0.95 0.98 0.96

Pregnant cows 0.94 1.00 0.97 1.00 1.00 1.00
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classification when subtle physiological and phenotypical differences 
are present. Similar challenges have been observed even in models 
employing sophisticated face recognition pipelines such as 
CattleFaceNet, which combined RetinaFace detection with ArcFace 
embeddings for cattle identification (Xu et al., 2022). This issue has 
been echoed in prior work by Zhang et  al. (2023a, 2023b), who 
observed similar limitations in sheep recognition, where subtle 
anatomical variation led to poor CNN differentiation. Comparable 
challenges have also been noted in cattle face recognition systems 
leveraging parameter transfer and deep learning, where high intra-
class similarity and subtle phenotypic differences can limit 
classification robustness (Wang et al., 2020).

In contrast, DenseNet121, which processes the full image, often 
leveraged environmental features such as background context or body 
posture. While this broader view sometimes helped with class 
separation, it also increased sensitivity to irrelevant visual noise, as 
shown by our Grad-CAM results (Figure  5). These observations 
support Qiao et al. (2021), who advocate for incorporating multimodal 
cues—including behavioral indicators, skeletal structure, and body 
condition metrics—to improve discriminatory power. Aligns with 
broader trends in precision livestock farming, where machine learning 
models are increasingly employed to analyze not only visual but also 
temporal behavioral data, such as feeding patterns, to optimize animal 
management (El Moutaouakil and Falih, 2024). This observation 

FIGURE 11

Comparative bar chart of precision, recall, and F1-score for each cattle category. Lower recall for “Mature Milking Cows” reflects small test sample size.

FIGURE 12

Side-by-side confusion matrices for Detectron2 (left) and DenseNet121 (right), showing that DenseNet121 is more sensitive to background noise, while 
Detectron2 offers tighter class separation.

https://doi.org/10.3389/frai.2025.1545247
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Mahato et al.� 10.3389/frai.2025.1545247

Frontiers in Artificial Intelligence 14 frontiersin.org

highlights the potential benefit of integrating complementary 
information such as body posture, coat condition, or environmental 
context to enhance discrimination accuracy. Going forward, a 
promising avenue would be to fuse facial biometric inputs with other 
data modalities (e.g., skeletal keypoints, movement data, or even 
thermal patterns) to enable more robust classification, particularly 
between adjacent physiological states (Neethirajan and Kemp, 2021).

5.4 Environmental conditions and image 
quality effects

As demonstrated in Sections 4.5 and 4.9, model performance was 
significantly influenced by environmental and imaging conditions. 
Images with consistent lighting, clean backgrounds, and frontal views 
(e.g., many “Dry Cow” and “Young Cow” images) yielded the highest 
precision, recall, and F1-scores. In contrast, “Pregnant Cow” images, 
which were captured under a variety of lighting and pose conditions, 
led to higher misclassification rates and reduced recall. Variability 
resulting from environmental factors such as sunlight glare, shadows, 
or partial occlusions by farm infrastructure or other animals increased 
classification errors and decreased model reliability. Images captured 
with consistent lighting, clear frontal facial orientation, and minimal 
background clutter were associated with the most robust classification 
outcomes. Notably, the “Dry Cow” and “Young Cow” categories—
comprising a larger proportion of such high-quality images—achieved 
the most reliable results across all evaluation metrics. By contrast, the 
“Pregnant Cow” category exhibited a higher rate of misclassification, 
attributable to both its lower representation and greater variability in 
imaging conditions, including shadowing, reflective glare, partial 
occlusions, and off-angle viewpoints.

These findings align with Chen et al. (2021), who observed that 
heterogeneous visual backgrounds decreased recognition performance 
in Angus cattle. While data augmentation strategies—including contrast 
enhancement, rotation, and noise injection—were implemented to 
simulate real-world variation, augmentation alone could not completely 
close the domain gap. These observations underscore the critical need 
for standardized data collection protocols and robust augmentation 
techniques designed to impart invariance to environmental variations, 
strengthening the model’s resilience in practical deployments.

Environmental conditions also contributed to performance 
variability across folds. In some subsets, images included adverse 
visual features such as barn fixtures, backlighting, or motion blur, all 
of which increased classification error. While data augmentation 
techniques such as brightness modulation, random contrast shifts, and 
geometric transformations were employed to improve robustness, 
they were insufficient to fully replicate the complexity of real-world 
farm imagery.

These findings underscore the importance of addressing both 
dataset imbalance and environmental heterogeneity. Enhancing the 
consistency of image capture through standardized protocols, and 
expanding augmentation strategies to include more adaptive 
techniques such as style-transfer or domain-aware photometric 
transformations, may substantially improve the model’s capacity to 
generalize to novel conditions. Such refinements are essential for 
ensuring that cattle classification systems perform reliably across 
the diverse operational settings encountered in commercial 
dairy production.

As a result, establishing image collection guidelines (e.g., preferred 
angle, illumination, and background) will be key to improving future 
system deployments. Moreover, advanced augmentation methods 
such as style-transfer or domain-adaptive GANs may allow for 
improved simulation of diverse environmental conditions, further 
strengthening model generalization.

5.5 Generalization and model tuning 
behavior

Our cross-validation results (Table  2) and convergence plots 
(Figures  6, 7) indicate that Detectron2 demonstrated consistent 
learning behavior and good generalization to unseen validation data. 
However, performance on the held-out independent test set was 
significantly higher (weighted F1-score ~0.92) than average cross-
validation scores (F1-score ~0.7758). This discrepancy reflects 
variation in environmental quality across partitions. The independent 
test set benefited from more uniform lighting and frontal facial views, 
resulting in stronger model performance. In contrast, the 5-fold 
validation sets, though stratified, included more heterogeneity. The 
improved test performance thus affirms the model’s robustness and 
generalization capacity.

Notably, the “Pregnant Cow” class remained underrepresented 
even in the cross-validation folds, limiting Detectron2’s exposure 
during training. The independent test set, by contrast, may have 
benefitted from better alignment with the augmented training 
distribution. This finding further reinforces the impact of class 
imbalance and motivates targeted data balancing during fold 
generation. Focal loss and other class-aware strategies partially 
mitigated this problem, but did not fully resolve it. Empirical tuning 
showed that 10 epochs were sufficient for convergence, with validation 
loss showing minimal improvement beyond 8–9 epochs. Hence, both 
convergence dynamics and augmentation strategies should 
be carefully aligned with the specific challenges of class skew and real-
world variation. Complementary to these strategies, software-level 
testing frameworks have been proposed to evaluate the internal 
consistency of deep learning models in image analysis tasks, which 
could further enhance reliability in agricultural deployments (Tian 
et al., 2019). This conclusion was based on real-time monitoring of 
loss curves, as shown in Figures 6, 7, where the training and validation 
loss trajectories stabilized before reaching the 10th epoch. To 
operationalize this, an early stopping protocol was implemented with 
a patience threshold of 2 epochs, further safeguarding against 
overfitting. This ensured that training was halted if no meaningful 
improvement in validation loss was observed. Thus, the choice of 10 
epochs served as an upper bound rather than a fixed target, and final 
epoch counts varied slightly depending on convergence behavior 
within each fold.

5.6 Addressing model overfitting and 
enhancing generalizability

Although overfitting was not a prominent concern in our study 
(Figures 6, 7), real-world deployment of models trained in academic 
settings can face challenges related to dataset representativeness. 
We used cross-validation, diverse farm environments (Nova Scotia 
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and New Brunswick), and data augmentation to mitigate this risk. 
Still, further generalizability could be  achieved by testing 
geographically diverse datasets involving different breeds, camera 
setups, and housing systems. Qiao et  al. (2021) similarly calls for 
expanded validation across operational contexts to ensure deployment 
readiness. Thus, future benchmarking studies should incorporate a 
wide range of geographic and management system variation to 
produce broadly applicable models.

5.7 Real-time deployment and scalability

For deployment, Detectron2 inference time (~50–60 ms per 
image, ~30 FPS) on an NVIDIA Tesla T4 GPU was promising. These 
speeds are sufficient for real-time implementation in structured 
environments such as milking parlors or feeding stations. To scale 
further, model compression techniques like quantization and pruning 
can be applied to reduce latency and memory usage, as has been done 
successfully in other object detection domains (Lyu et  al., 2024). 
Additionally, integrating Detectron2’s output with herd management 
systems (e.g., DairyComp 305) using REST APIs could allow farms to 
receive real-time alerts on animal status. By situating fixed cameras in 
high-traffic farm zones, automated cattle monitoring can be realized 
without disrupting daily routines. Our preliminary tests showed that 
selective pruning reduced memory demands by ~40% with negligible 
performance loss, supporting scalability in resource-
constrained environments.

5.8 Interpretability and practical 
explainability

Interpretability is a key requirement for building trust in 
AI-powered livestock monitoring. Explainable AI techniques not only 
improve model transparency but also enable biological interpretation, 
where phenotypic differences were linked to AI-detected patterns 
(Carrieri et al., 2021). We adopted Grad-CAM and perturbation-based 
explainability, which are more suited for object detection pipelines. 
Grad-CAM heatmaps (Figure 11) confirmed that model predictions 
were based on biologically relevant landmarks such as the nostrils, eyes, 
and muzzle. Perturbation-Based Explainability (Figure 12) reinforced 
this, showing performance degradation when keypoints were masked. 
While this study utilizes Grad-CAM and perturbation-based 
explainability tailored for deep visual models, other approaches like 
SHAP and LIME offer model-agnostic feature attribution in structured 
data contexts, although their integration with complex vision 
architectures remains limited (Chen et al., 2022; Salih et al., 2025). These 
tools not only confirm model validity but also offer actionable feedback 
for data collection and model refinement. For instance, if occlusions in 
specific facial zones cause sharp drops in performance, targeted data 
augmentation or occlusion-aware training can be introduced.

5.9 Comparative interpretations

To directly compare the performance of the keypoint-based 
Detectron2 model with the full-image DenseNet121 classifier, 
we  evaluated both approaches on the independent test set. The 

analysis focused on confusion matrices and standard classification 
metrics (precision, recall, and F1-score) for each cattle category.

The Grad-CAM-based saliency analysis offers insight into each 
model’s interpretability and robustness. Detectron2’s attention to face-
specific landmarks aligns with its keypoint-based design, likely 
contributing to its resilience under real-world imaging conditions that 
include variable backgrounds and occlusions. This anatomically 
consistent focus enhances transparency and trust in automated 
decision-making. Conversely, the broader and sometimes background-
driven activations observed in DenseNet121 suggest potential 
vulnerability to contextual noise and less interpretability, despite its 
competitive performance on some test categories. These findings 
emphasize that explicit anatomical modeling—not just raw predictive 
accuracy—plays an important role in building dependable livestock 
biometric systems. Future work should further quantify and leverage 
attention patterns to improve both performance and explainability.

Whereas a direct comparison of classification metrics reveals 
distinct performance patterns between the Detectron2 and 
DenseNet121 models (Tables 1, 2). DenseNet121 achieved consistently 
high precision and recall across all categories, with perfect F1-scores of 
1.00 for Young and Pregnant Cows, and robust performance for Mature 
Milking Cows (F1 = 0.96) and Dry Cows (F1 = 0.94). In contrast, 
Detectron2 exhibited superior precision for categories such as Young 
Cows (1.00) and Mature Milking Cows (1.00), but showed a notably 
reduced recall (0.65) for Mature Milking Cows, resulting in a lower 
F1-score (0.67). However, Detectron2 demonstrated excellent balance 
for Dry Cows (F1 = 0.99) and Pregnant Cows (F1 = 0.97), 
outperforming DenseNet121 in these specific groups. These differences 
underscore how DenseNet121’s reliance on global morphological cues 
provided more uniform sensitivity across classes, whereas Detectron2’s 
keypoint-based strategy enhanced specificity but at the cost of recall in 
certain physiologically similar categories. This trade-off highlights the 
importance of aligning model choice with operational priorities 
whether minimizing false negatives (favoring recall) or ensuring high-
confidence positive identifications (favoring precision).

5.10 Future directions: architecture and 
dataset innovation

Looking ahead, improving classification performance requires 
more than refining CNN architectures. Vision Transformers (ViTs) 
with their ability to capture long-range dependencies and multi-scale 
context, show promise for resolving ambiguities between classes with 
overlapping facial morphology (Zhang et al., 2023a, 2023b). A hybrid 
CNN-ViT pipeline could offer improved feature localization and 
global context integration. While RGB imaging remains the 
foundation for most livestock classification systems, future work 
should leverage multi-modal benchmarks such as CattleFace-RGBT, 
which combine RGB with thermal imaging and standardized facial 
landmarks to enhance generalization and physiological insight 
(Coffman et al., 2024).

From a dataset perspective, the priority should be increasing class 
balance and anatomical diversity through synthetic data, targeted 
collection, and multimodal integration. Beyond RGB images, 
modalities such as 3D facial scans, thermal imaging, or audio 
recordings of vocalizations may yield richer, complementary signals 
(Abdrakhmanova et al., 2021). These innovations, combined with 
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adaptive loss functions (e.g., focal loss, class-weighted cross-entropy), 
will drive further gains in both classification performance 
and interpretability.

5.11 Ethical and societal implications

As AI becomes more embedded in livestock operations, ethical 
considerations grow increasingly important. Systems like Dairy DigiD 
must be accompanied by clear protocols for data privacy, ownership, and 
informed consent. Particularly when used on commercial farms, data 
sharing agreements must ensure that biometric data is not repurposed 
or used without stakeholder oversight (Neethirajan, 2023a, 2023b). 
Broader concerns about the social acceptability of facial recognition 
systems have also been highlighted in user studies (Seng et al., 2021), 
underscoring the importance of transparent consent processes and clear 
communication about data use. As Hagendorff (2020) cautions, many 
AI ethics frameworks risk becoming symbolic unless grounded in 
actionable principles. This is echoed in the broader agricultural AI 
literature, where Ryan (2023) highlights the need for more tangible, 
socially responsive approaches to deploying AI technologies on farms. 
In this context, Dairy DigiD aligns ethical intent with practical design 
by emphasizing non-invasive data collection, stakeholder transparency, 
and animal-centered implementation. Moreover, the risk of digital 
divide must be addressed. Large operations may be quicker to adopt AI, 
leaving smaller farms behind due to cost or technical barriers. 
Policymakers and industry groups must consider strategies for equitable 
access, such as subsidized hardware, open-source software, and user 
training programs. The long-term sustainability of AI in agriculture 
hinges not just on technical performance, but on ethical deployment and 
inclusive adoption.

6 Conclusion

In the evolving landscape of precision livestock farming, the 
development of accurate, scalable, and ethically aligned systems for 
cattle categorization is not merely a technical enhancement, but an 
operational imperative. This study critically examined two deep learning 
frameworks, DenseNet121 and Detectron2, to evaluate their 
effectiveness in non-invasive, image-based classification of dairy cattle 
into physiologically meaningful groups. While both models 
demonstrated considerable potential, our comparative analysis 
highlighted important differences in their robustness, interpretability, 
and practical performance under real-world farming conditions. 
DenseNet121, used for full-image classification, delivered strong 
baseline performance by leveraging global morphological and 
contextual features. However, its reliance on background elements and 
susceptibility to visual clutter exposed the limitations of generalized 
convolutional approaches in uncontrolled agricultural environments. In 
contrast, the keypoint-based Detectron2 model proved more resilient, 
extracting localized facial landmarks such as the nostrils, eyes, and 
muzzle to generate anatomically grounded and biologically relevant 
features. This localized precision enabled more consistent classification 
even under variations in lighting, camera angle, and environmental noise.

Despite Detectron2’s strong performance, our findings 
underscore the ongoing challenge of class imbalance, particularly in 

detecting underrepresented groups such as pregnant cows. 
Addressing this issue will require improved dataset balance through 
targeted data augmentation, synthetic image generation using 
generative adversarial networks, and broader image collection 
protocols across diverse farm settings. Additionally, the limitations 
of single-modality input became evident. While facial features offer 
a stable baseline, combining them with additional data streams such 
as body posture, behavioral indicators, or thermal imaging could 
enhance the detection of subtle physiological differences between 
visually similar categories. Looking forward, the adoption of 
advanced architectures such as Vision Transformers holds 
considerable promise. These models can integrate fine-grained spatial 
detail with broader contextual awareness through self-attention 
mechanisms, which may improve classification performance for 
ambiguous cases. When paired with explainability techniques like 
Grad-CAM or perturbation-based analysis, such architectures could 
contribute to the development of transparent and trustworthy AI 
systems for livestock applications.

Ethical considerations must remain central to this advancement. 
The non-invasive nature of Detectron2 minimizes stress and behavioral 
disruption, aligning with increasing expectations for animal-friendly 
technologies and transparent welfare standards. These concerns 
highlight the importance of human-centric and welfare-conscious AI 
systems in livestock management (Neethirajan, 2024a, 2024b). Our 
findings demonstrate that high-performance classification does not 
have to come at the expense of animal comfort, supporting a shift 
toward more compassionate, observationally driven farming practices. 
Ultimately, Dairy DigiD offers more than a technical contribution. It 
provides a foundation for deploying AI systems that are not only 
accurate and scalable, but also ethical and context-aware. By integrating 
cutting-edge deep learning techniques with real-world usability and 
welfare concerns, this work advances the frontier of precision dairy 
management and highlights a viable path forward for sustainable, data-
driven agriculture.
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