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This research proposes a novel approach to cryptographic key generation using 
biometric data from face and finger vein modalities enhanced by deep learning 
techniques. Using pretrained models FaceNet and VGG19 for feature extraction and 
employing a Siamese Neural Network (SNN), the study demonstrates the integration 
of multimodal biometrics with fuzzy extractors to create secure and reproducible 
cryptographic keys. Feature fusion techniques, combined with preprocessing and 
thresholding, ensure robust feature extraction and conversion to binary formats 
for key generation. The model demonstrates impressive accuracy with a vector 
converter, achieving a sigma similarity of 93% and a sigma difference of 64.0%. 
Evaluation metrics, including False Acceptance Rate (FAR) and False Rejection 
Rate (FRR), indicate significant improvements, achieving FRR < 3.4% and FAR < 
1%, outperforming previous works. Additionally, the adoption of Goppa code-
based cryptographic systems ensures post-quantum security. This study not only 
enhances biometric cryptography’s accuracy and resilience but also paves the 
way for future exploration of quantum-resistant and scalable systems.
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1 Introduction

In the age of digital transformation, ensuring the security of personal data has become 
more critical than ever. Traditional authentication systems, relying on passwords or PINs, are 
increasingly vulnerable to cyber-attacks and data breaches (Raja, 2024). Biometric 
authentication, which uses unique physical or behavioral traits such as fingerprints, face 
recognition, and vein patterns, offers a more secure and user-friendly alternative. Among 
these, the fusion of facial and finger vein biometrics has gained significant attention due to 
their robustness and accuracy. The process of extracting cryptographic keys directly from these 
biometric features, through techniques such as fuzzy extractors, promises a novel approach to 
secure data encryption and authentication (Akintoye and Akinwamide, 2024; Babu et al., 2024; 
Shamili Shanmugapriya et al., 2024).

Fuzzy extractors are cryptographic tools designed to generate secure keys from noisy 
biometric data. The concept leverages error-correcting codes to recover biometric traits even 
in the presence of minor variations, making them suitable for real-world applications where 
data are not always perfectly consistent. Traditional fuzzy extractors were primarily focused 
on single-modal biometric data, such as fingerprints or iris patterns. However, with the 
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advancement of deep learning and multimodal biometrics, there is 
growing potential to combine face and finger vein recognition to 
generate more reliable and secure cryptographic keys (Shevchenko 
and Anikin, 2023; Kuznetsov et al., 2018).

Deep learning, particularly convolutional neural networks 
(CNNs), has revolutionized how we process and understand biometric 
data. Pretrained models such as FaceNet for face recognition and 
specialized CNNs for finger vein recognition have demonstrated 
exceptional performance in extracting discriminative features from 
biometric images. These features can then be fused to create a unique 
cryptographic key (Kuznetsov et  al., 2022; Yao et  al., 2024). This 
approach not only enhances the accuracy of biometric authentication 
but also improves the robustness of the generated keys, making them 
less susceptible to errors caused by environmental factors or 
user behavior.

Traditional authentication techniques, such as PINs and 
passwords, are susceptible to a number of online attacks. Although 
biometric authentication provides a more secure option, current 
methods for generating biometric cryptographic keys have issues with 
scalability, security, and consistency. Because of biometric variances, 
previous studies that concentrated on unimodal biometric data, such 
as fingerprints, faces, or iris, had high False Acceptance Rates (FARs) 
and False Rejection Rates (FRRs) (Bele, 2024).

This research introduces a multimodal biometric cryptographic 
key generation framework using deep learning. By fusing face and 
finger vein features, the proposed method enhances security and 
reliability over single-modal approaches. Additionally, incorporating 
a McEliece cryptosystem with Goppa codes ensures resistance against 
quantum computing attacks. The experimental results confirm the 
superiority of this method, achieving FRR < 3.4% and FAR < 1%, 
outperforming prior works that report FRR of 8.3% and FAR of 7.4%.

2 Related work

Biometric authentication has gained widespread attention as a 
robust alternative to traditional password-based security systems. 
Among various biometric modalities, face and finger vein recognition 
stand out due to their high accuracy, non-intrusiveness, and resilience 
to spoofing attacks. Face recognition has become a prominent method 
due to its ease of use and widespread availability through cameras in 
smartphones and other devices. Recent advancements in deep 
learning, particularly with models such as FaceNet, have significantly 
improved face recognition accuracy by learning discriminative 
features directly from large datasets (Sydor et al., 2024). Studies have 
reported a face recognition accuracy of 97.35% on the Labeled Faces 
in the Wild (LFW) dataset, showcasing the reliability of deep learning-
based approaches. However, despite these improvements, face 
recognition is still susceptible to adversarial attacks, occlusions, and 
variations due to aging or environmental conditions, necessitating 
additional layers of security.

Studies have reported varying performance metrics for different 
biometric authentication methods. For instance, the work “Securing the 
Digital World: A Comprehensive Guide to Multimedia Security” 
achieved a False Rejection Rate (FRR) of 2.5% and a False Acceptance 
Rate (FAR) of 1.8%, demonstrating a strong balance between security 
and usability. Implementation and Analysis of Digital Watermarking 
Techniques for Multimedia Authentication reported an authentication 

accuracy of 96.4%, emphasizing the robustness of watermarking 
techniques for secure biometric verification. Secure and Imperceptible 
Frequency-Based Watermarking for Medical Images achieved a Peak 
Signal-to-Noise Ratio (PSNR) of 52 dB and a Structural Similarity Index 
(SSIM) of 0.98, indicating high imperceptibility and robustness against 
attacks. Additionally, Robust Medical and Color Image Cryptosystem 
Using Array Index and Chaotic S-Box recorded an encryption efficiency 
of 99.2%, ensuring secure transmission of biometric data while 
maintaining high image quality (Kavitha et  al., 2024). These results 
highlight the effectiveness of different biometric security approaches, but 
challenges such as reproducibility, robustness against adversarial attacks, 
and computational efficiency remain significant concerns. Our work 
addresses these issues by integrating multimodal biometric fusion with 
optimized cryptographic key generation techniques, ensuring a more 
secure and scalable authentication system.

A previous study (Sulavko et al., 2025) presents a secure method 
for handling user-specific information using a Neural Fuzzy Extractor 
(NFE). The NFE integrates pre-existing classifiers with fuzzy extractors 
through an artificial neural network-based expander, maintaining 
performance while enhancing security. The reported FAR and FRR of 
4.5% suggest a trade-off between security and usability. The authors 
demonstrate the NFE’s effectiveness by retrofitting it to classic neural 
networks for basic biometric authentication scenarios. However, the 
reliance on neural network-based expansion may introduce 
computational overhead, and further work is needed to explore its 
application to multimodal biometrics. Future research could focus on 
optimizing NFEs for different biometric traits and improving 
efficiency in large-scale deployments.

Another significant contribution comes from the article “A Secure 
Biometric Key Generation Mechanism via Deep Learning and Its 
Application” (Wang et al., 2022). This method utilizes random binary 
codes to represent biometric data and establishes a relationship 
between biometric data and the codes for each user. To protect privacy 
and ensure revocability, a random permutation operation shuffles the 
binary code to update a new biometric key. A fuzzy commitment 
module generates helper data without revealing biometric information 
during enrollment. The method is evaluated using benchmark datasets 
and outperforms existing methods in terms of the genuine accept rate 
at a 1% False Acceptance Rate, while also meeting revocability and 
randomness criteria. However, the need for network retraining limits 
its applicability in zero-shot enrollment scenarios, where users enroll 
without retraining the model. Future work should explore ways to 
improve stability and security under zero-shot conditions to enhance 
the practicality of biometric key generation systems.

Furthermore, the article “Deep Learning-based Biometric 
Cryptographic Key Generation with Post-Quantum Security” 
(Kuznetsov et al., 2023) explores convolutional neural networks for 
extracting biometric features from human facial images for key 
generation. Code-based cryptographic extractors process these 
features, resulting in a low error rate of less than 10%. Post-quantum 
cryptography enhances the security of generated keys, making them 
resilient to future computational threats. However, the study primarily 
focuses on facial biometrics, which alone may not provide the highest 
level of security due to potential vulnerabilities such as face spoofing. 
Future research should investigate the integration of multimodal 
biometrics and further optimization of code-based extractors to 
improve security and performance. Another method by De Oliveira 
Nunes et  al. (2024) introduces oblivious extractors, which allow 
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authentication without transmitting helper data (HD) to the client. 
While this approach enhances privacy by reducing the risk of HD 
interception, achieving suitable FRR and FAR rates below 10% 
remains a challenge. The effectiveness of this method could 
be  improved by optimizing feature extraction techniques and 
integrating stronger cryptographic principles to mitigate statistical 
and reusability attacks.

Deep learning-based fuzzy extractors show promise for generating 
cryptographic keys from biometrics. They overcome the limitations of 
traditional methods and offer improved security and privacy. 
However, further research is needed to address challenges with 
accuracy and high error rates because of using unimodal to generate 
biometric keys. Therefore, we proposed code-based cryptography key 
generation using deep learning from multimodal biometrics.

Our research extends these works by integrating biometric 
multimodal fusion, deep learning, and quantum-resistant 
cryptography, ensuring a more secure and scalable authentication 
system. By employing FaceNet and VGG19 for feature extraction, a 
Siamese Neural Network (SNN) for pattern learning, and a McEliece 
cryptosystem for quantum-resistant security, our approach surpasses 
existing methods in terms of robustness, accuracy, and resilience 
against modern cyber threats. Unlike traditional methods that rely on 
either unimodal biometrics or non-optimized feature fusion, our 
approach ensures better generalization and resistance to 
environmental variations, making it suitable for real-world biometric 
authentication applications.

3 Methodology

3.1 Dataset

Biometric technologies, particularly face and finger vein 
recognition, have become key in security and authentication, 
supporting applications from personal devices to large-scale 
government systems. Their reliability and efficiency make them vital 
for enhanced security and seamless authentication. This research 
utilized a dataset from Kaggle, containing 425 images across 85 classes 
each for face and finger vein data.

3.2 Dataset preprocessing

To prepare face and fingerprint data for machine learning models, 
preprocessing is essential. Preprocessing for both face and fingerprint 
data can be carried out as follows:

3.2.1 Preprocessing face dataset
Dataset preprocessing: Preprocessing is essential to prepare face 

and fingerprint data for machine learning models. Pre-trained Haar 
cascade classifiers were used to locate faces within images 
accurately. Detected face images were resized to a uniform 
dimension of 160 × 160 pixels in Red, Green, Blue (RGB) format. 
Gaussian blurring was applied to reduce background noise in face 
images, enhancing clarity and feature distinction. Each class was 
ensured to have exactly five images using the ImageDataGenerator 
from Keras. Various transformations were performed, including 
rotation, shear, zoom, and horizontal flipping, to generate additional 

samples for underrepresented classes and maintain uniformity 
across classes.

3.2.2 Preprocessing finger vein dataset
In preprocessing of the finger vein dataset, the focus was on 

enhancing finger vein images using ROI extraction and contrast 
improvement. Each image was converted to grayscale, Gaussian blur 
was applied to reduce noise, and the Canny edge detector was used to 
extract the region of interest (ROI). The contrast of the extracted ROI 
was then enhanced using CLAHE (Contrast Limited Adaptive 
Histogram Equalization). This method ensures efficient and systematic 
preprocessing of finger vein data for subsequent analysis.

3.3 Feature extractor models

FaceNet was chosen for face feature extraction due to its 
performance in biometric applications. It creates complex feature 
vectors, or embeddings, that capture unique facial traits such as 
landmarks and expressions, which are crucial for differentiating 
individuals. To produce embeddings that preserve facial similarity and 
enable accurate face identification and verification, FaceNet uses a 
deep metric learning technique. It is a great option for challenging 
facial recognition tasks due to its adaptability in managing various 
stances, lighting scenarios, and expressions.

VGG19 was selected for fingerprint feature extraction because of 
its deep architecture, which consists of 19 layers, effectively learns 
intricate patterns in images, and captures subtle features such as ridges 
and valleys in fingerprints. It is the ideal choice for accurate fingerprint 
identification and classification because of its straightforward 
architecture, performance on large datasets, and dependable 
generalization to fresh fingerprint photographs. To further improve 
feature representation, Principal Component Analysis (PCA) is 
applied to the high-dimensional features that VGG19 has recovered. 
PCA reduces dimensionality by transforming the data into a more 
manageable 128-dimensional space and identifying and retaining the 
most significant primary components.

3.4 Feature fusion

Feature fusion is a technique that combines features from different 
modalities, such as face and fingerprint data, to create a more 
comprehensive representation for recognition tasks. This integration 
can occur at various stages in machine learning, including early 
fusion, where features are combined at the input level, and late fusion, 
where they are extracted separately and combined later. Early fusion 
enhances model performance by capturing connections between 
modalities simultaneously, requiring only one training step, making it 
more efficient than late fusion, which involves training 
multiple models.

3.4.1 SNN model development
An architecture known as a Siamese Neural Network (SNN) is made 

for tasks that require learning or verifying similarity between three 
inputs: an anchor, a positive that is similar to the anchor, and a negative 
that is different from the anchor. Every input is routed via identical 
subnetworks with the same architecture and weights, producing 
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high-dimensional embeddings for every input. The network maximizes 
the distance between different input embeddings and minimizes the 
distance between similar input embeddings using the triplet loss 
function. The architecture consists of two dense layers activated by 
sigmoid and Rectified Linear Unit (ReLU). The shared weights are tuned 
during training to discriminate between different and similar data points 
according to their embeddings. The end product is an SNN that can map 
comparable inputs more closely together while separating them in the 
embedding space, as shown in Figure 1.

3.5 Features of binary string converter

The function used for the feature vector converter is defined 
mathematically in Equation 1, which applies a thresholding rule to 
convert continuous real-valued features into binary format. One part of 
the extractor recommended for creating reliable keys from biometric 
photos is the feature vector converter. A feature vector with real-valued 
elements can be entered into the feature vector converter. Deep learning 
techniques extract the feature vector from the biometric images. The 
converter transforms the real-valued feature vector into a binary string 
using a binarization rule. A threshold value is used to define the 
binarization rule. The binarization rule compares each element of the 
feature vector with the threshold value. If an element is greater than the 
threshold, it is converted to 1; otherwise, it is converted to 0. The converter 
processes each element of the binarized feature vector and concatenates 
the binary values to form a binary string representation. The feature 
vector converter plays a crucial role in transforming the continuous real-
valued features extracted from biometric images into a binary format. The 
binary distance between vectors is calculated using Equation 2, which 
computes the mean of the absolute differences between the elements of 
the two vectors. This binary representation is then used in the fuzzy 

extractor to generate cryptographically strong keys for authentication and 
security purposes. In general, we have used thresholds to convert the 
continuous real-valued features extracted from biometric images into a 
binary format. These are using zero thresholding and mean thresholding 
values. These values are compared with continuous real-valued features 
extracted from biometrics, and values below these are converted to zeros 
and values above these are converted to ones.

The similarity between binary vectors is determined using 
Equation 3, which is based on the binary distance.

The function used for the feature vector converter is:
The mathematical equation for the to_binary_string function can 

be written as

 

≥  =  <  

1 i
0i
if fi t

B
if fi ti  

(1)

Where iB  is the i-th element of the binary output vector, fi is the 
i-th element of the input vector, and ti is the i-th element of the 
threshold vector t . This equation applies the rule I (f > t), meaning it 
returns 1 if the condition fi > =ti is satisfied and 0 otherwise for each 
element i in the vectors.

The equation for the binary distance as implemented in the code 
can be expressed mathematically as:

 
( )

=
= −∑

1

1,
n

i i
i

D x y x y
n  

(2)

Where D (x, y) is the binary distance between vectors x and y, n is 
the number of elements in each vector, xi and yi are the corresponding 
elements of vectors x and y, and ∣xi − yi∣ is the absolute difference 

FIGURE 1

Development of the SNN model.
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between the elements xi and yi. This equation computes the mean of 
the absolute differences between the elements of the two vectors.

Here is the equation for the similarity based on the binary distance:

 ( ) ( )= −, 1 ,S x y D x y  (3)

Where S (x, y) is the similarity between vectors x and y and D (x, y) is 
the binary distance between the vectors, which is computed above.

3.6 Evaluation parameters

The average similarity for items from the same class is calculated 
using Equation 4, which aggregates similarity scores across feature 
vectors. When evaluating the precision and efficacy of a system, model, 
or procedure, evaluation parameters are essential. They offer measurable 
metrics that aid in assessing a system’s performance in many scenarios. 
These criteria are crucial for determining one’s advantages, disadvantages, 
and potential growth areas. Researchers and developers can optimize the 
performance of their systems by examining these metrics. In this study, 
we measured the effectiveness of our biometric authentication system 
using a number of evaluation factors.

Similarity evaluation ( σ̂  same): This parameter represents the 
average similarity between binary vectors formed for pairs of the same 
individual. It measures how closely the binary strings extracted from 
biometric data of the same person match each other. Higher values of 
σ̂  same indicate a higher degree of similarity between the binary 
vectors, which is desirable for accurate authentication.

For a batch of feature vectors from the same class, the sigma_same 
(similarity between pairs of vectors in the same class) is calculated as:

The average similarity for items from different classes is computed 
using Equation 5, which measures cross-class similarity.

 
( )σ +

= =
= ∑∑ 1

1 1

1ˆ same sim ,
Nsame

C M

j j
i j

f f

 
(4)

Hère: σ̂  same is the averaged similarity (sigma) for items from 
the same class, C is the total number of unique classes, M is the 
number of items in the batch corresponding to class C (i.e., the 
number of vectors in that class), ( )+1sim ,j jf f  is the similarity function 
applied to consecutive pairs of feature vectors, and Nsame is the total 
number of same-class pairs summed over all classes, which is equal to 
the sum of M−1 for each class.

Similarity evaluation (ó̂ diff): This parameter represents the 
average similarity between binary vectors formed for pairs of different 
individuals. It measures the level of similarity between the binary 
strings extracted from the biometric data of different individuals. 
Lower values of ó̂ diff indicates a higher degree of dissimilarity between 
the binary vectors, which is important for distinguishing individuals.

 

( )
( )σ

+ −−

+
= =

= ∑ ∑
min , 1 11

, 1,
1 1

1ˆ diff sim ,
Ndiff

Mi MiC

i j i j
i j

f f

 
(5)

Hère: σ̂  diff is the averaged similarity (sigma) for items from 
different classes. C is the total number of unique classes. Mi and Mi + 1 

are the number of vectors in class i and class i + 1, respectively. 
( )+, 1,sim ,i j i jf f is the similarity between vectors from class i and class 

i + 1. Ndiff is the total number of cross-class pairs considered, which 
is equal to the sum of ( )+ −min , 1 1Mi Mi  over all adjacent class pairs.

By using these two parameters, ( σ̂  same) and ( σ̂  diff) can 
comprehensively evaluate the performance of the biometric 
authentication system. High (ó̂ same) values ensure the system reliably 
recognizes the same individual, enhancing the true positive rate. 
Conversely, low (ó̂  diff) values ensure that the system effectively 
distinguishes between different individuals, reducing the false positive 
rate. Together, these parameters help balance the trade-off between 
security and convenience in biometric authentication systems.

3.7 Code-based fuzzy extractor for 
biometric cryptography

The Code-Based Fuzzy Extractor for Biometric Cryptography is a 
cryptographic method that uses the McEliece code-based 
cryptosystem. It can extract error-tolerant, nearly uniform 
randomness (K) from biometric data (w) and recover it from an 
analogous input (w’). K can be used as a cryptographic key without 
the requirement for conventional key storage thanks to this technique, 
which integrates information-theoretic security with cryptographic 
systems, even though computational security is frequently relied upon 
in such applications (Kuznetsov et al., 2018).

By leveraging the strength and resilience of the McEliece 
cryptosystem against quantum cryptanalysis, the suggested fuzzy 
extractor enhances the security of biometric cryptography. The extractor 
ensures accuracy even in errors by correcting biometric image 
distortions. By doing away with the requirement for a non-secret helper 
string, it also streamlines the key creation procedure. Even with cutting-
edge quantum computing technology, the extractor should be immune 
to quantum cryptanalysis, making it appropriate for safe cryptographic 
key production. To ensure a dependable and secure technique for key 
extraction from biometric data, the study investigates the balance 
between False Rejection Rate (FRR) and False Acceptance Rate (FAR) in 
biometric key creation. The McEliece cryptosystem, named after its 
creator, Robert McEliece, uses error-correcting codes, specifically Goppa 
codes, for public-key encryption. The security of the McEliece 
cryptosystem relies on decoding random linear codes, which are 
impervious to attacks such as factoring or discrete logarithm-based 
attacks. The proposed fuzzy extractor offers a secure and efficient 
approach to encrypting and decrypting messages, as shown in Figure 2.

The McEliece cryptosystem uses the private key, consisting of the 
inverses of matrices S and P (denoted as S_inv and P_inv), along with the 
Goppa code used to generate the public key using Equation 6. To encrypt 
a message, the sender multiplies the message by the public key Gx, 
creating a codeword using Equation 7. Random errors are then 
introduced at t locations to enhance security. The encrypted codeword is 
sent to the recipient, who uses S_inv and P_inv to decode it. The recipient 
first unshuffles the cipher using P_inv using Equation 8, decodes it with 
the Goppa code, and finally unscrambles it with S_inv to using Equation 9 
retrieve the original message. The security of McEliece comes from the 
difficulty of decoding random linear codes, which resists attacks such as 
factoring or discrete logarithm-based methods. The system’s challenge lies 
in determining the generator matrix of a code from the code itself. As an 
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efficient and secure approach to public-key encryption, the McEliece 
cryptosystem exemplifies robust key generation, encryption, and 
decryption processes.

Select a Goppa code using the given parameters (n, k, and t): n 
represents the length of the codeword, k represents the dimension of 
the code, and t represents the error-correcting capabilities of the code.

Public key k x n matrix Gx is generated by:

 = . .x pG G S P  (6)

Encoding the biometric data using the public key and introducing 
t errors, I is k bit information of the biometric.

 
∗ = +. ex xB I G  (7)

Where = .x xB I G  is the codeword of masked code with a generator 
matrix GP, I is the k-bit public text or biometric information, vector e 
is the secret error vector with hamming weight (number of non-zero 
positions) that equals wH(e) = t.

Decoding:

 
∗ ∗

−= = +′ ′


. .x x inv pB B P I G e  (8)

In addition, decoded it to obtain ′I .

 −= inv'.I I S  (9)

then I is generated. Here, I is the password, which is expressed 
above as K.

3.7.1 Initial registration
This is the process where information (biometric information) is 

converted into a particular form or codeword using a public key 

known as encoding. Unmasking of codeword: This step involves 
revealing or interpreting the encoded data using the secret keys. Noise 
immune decoding: This implies that the codeword can be decoded in 
the presence of some noise or interference using the Goppa code.

3.7.2 Usage stage
Encoding: Once again, this represents the encoding of information 

using the public key of the data provided by users. Unmasking of 
information: Similar to the “Unmasking of codeword” in the first 
diagram, it might involve revealing the encoded information. Noise 
immune decoding: As before, it suggests that the information can 
be decoded notwithstanding noise interference.

Here, B and B* belong to the same person as defined in Figure 1 
and in our interpretation, = +. exB I G  and ∗ ∗= +. xB I G e  (3). If e and 
e* are distinct vectors with a Hamming weight lower than t, then 
decoding the vectors will result in the recovery of the identical vector 
I′. Once the vector is unmasked, the secret key K is generated.

3.8 Biometric extractor performance 
indicators

The False Rejection Rate (FRR) is calculated using Equation 10, 
which considers the probability of distortions in biometric features. 
False Rejection Rate (FRR) and False Acceptance Rate (FAR) are 
important metrics in biometric authentication. The FAR quantifies the 
possibility of an unauthorized person being erroneously granted access 
by the biometric system, whereas the False Rejection Rate (FRR) 
assesses the extent of inaccurate access denials for authorized users. To 
assess this probability, we shall examine two scenarios.

Let us assume that the biometric data scanning and processing 
produced a binary string ∗ ∗= +. xB I G e , where the hamming weight of 
an error vector e* represents the potential differences between B* and 
a reference biometric set B. The number of non-zero positions in a 
vector e* is defined by the probability of a non-zero character occurring 
in e*. This probability represents the likelihood of a character in the 
codeword = .x xB I G  being distorted for both authorized and 

FIGURE 2

Developed SNN model with code-based cryptography.
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unauthorized users. However, these probabilities fluctuate between the 
two. Let us examine the initial scenario: Assume that the vector 
∗ ∗= +. xB I G e  is owned by the authorized user. The probability of a 

single character distortion in B_x is denoted as P0. The formula can 
be used to estimate the value of FRR (Kuznetsov et al., 2022):

 
( ) −

=
= − −∑



i
0 0

0
FRR 1 1 p

t
ki i

k
I

C p
 

(10)

The term ∑  represents the summation from i = 0 to t, where t is 
the maximum number of allowable errors or distortions in the 
biometric feature. i

kC  denotes the combination or binomial coefficient, 
which calculates the number of ways to choose i distortions out of k 
total distortions. 0

ip is the probability of having i distortions in the 
biometric feature. ( ) −− i

01 kp represents the probability of having k-i 
correct characters in the biometric feature. For each possible number 
of distortions (i) from 0 to t, the formula calculates the probability of 
that specific scenario occurring. The probabilities are then subtracted 
from 1 to get the overall False Rejection Rate.

Assume that the vector ∗ ∗= +. xB I G e  is possessed by an 
unauthorized user. The probability of a single character distortion is 
denoted as p1. The False Acceptance Rate (FAR) is determined using 
Equation 11, which evaluates the likelihood of unauthorized access. 
Subsequently, the value of FAR can be assessed in accordance with the 
prescribed formula (Kuznetsov et al., 2022):
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The term ∑  represents the summation from i = 0 to t, where t is 
the maximum number of allowable errors or distortions in the 
biometric feature. i

kC  denotes the combination or binomial coefficient, 
which calculates the number of ways to choose i distortions out of k 
total distortions. 1

ip  denotes the likelihood of occurrence i distortions 
in the biometric feature. ( ) −− i

11 kp  denotes the likelihood of 
occurrence k-i correct characters in the biometric feature. For each 
possible number of distortions (i) from 0 to t, the formula calculates 

the probability of that specific scenario occurring. The probabilities 
are then summed up to get the overall False Acceptance Rate.

4 Experimentation

This section includes the hyperparameters we employed, the 
model configurations created, the outcomes of experiments 
conducted during the training, the evaluation of the construction 
of the Siamese Neural Network (SNN), the Binary string 
converter, the Cryptography Code, and, lastly, an explanation of 
the summary discussion.

4.1 Extracted features

From the above Figures 3, 4, we extracted 128 features from each 
image in column format and saved them as CSV for later use to fuse 
the face features with the finger vein. From here, we saved the images 
with their labels, image paths, and features.

4.2 The averaged and normalized finger 
vein features

Before fusing face features, the averaged and normalized finger 
vein features for each class were calculated and saved as a separate 
CSV file, as shown in Figure  5. This process produces a 
representative feature vector that summarizes the attributes of 
samples within each class, reducing the dimensionality of the data 
and aiding in tasks such as visualization, grouping, and 
classification. Averaging features across multiple samples in a class 
minimizes noise and outliers, leading to more reliable and 
consistent class representations.

Specifically, for classes of faces and fingerprints defined as n × n, 
the first row of the finger vein class, which represents the first-class 
average of a finger vein, is combined with the first five rows of face 
features associated with that individual. This process continues 
incrementally, with each subsequent row of finger vein being fused 

FIGURE 3

Sample of the extracted feature of face.

https://doi.org/10.3389/frai.2025.1545946
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Gizachew Yirga et al. 10.3389/frai.2025.1545946

Frontiers in Artificial Intelligence 08 frontiersin.org

with the next five rows of facial features until all data are processed. 
This method ensures that each averaged finger vein feature contributes 
to the corresponding face features, facilitating a comprehensive 

representation in the fused dataset, as illustrated in Figure 6. The 
resulting combined value reflects an incremental addition of features, 
enhancing the overall input before model training.

FIGURE 4

Sample of finger vein features.

FIGURE 5

Sample of normalized and averaged finger vein features.

FIGURE 6

Sample feature of finger vein and face features of finger vein feature fused.
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4.3 Dataset splitting summary

The distinct train-validation-test splitting method used is an 
80-10-10 split. Table 1 summarizes the overall dataset splitting for the 
experiment and task.

The dataset split for each trial, with distinct categories and their 
associated values, is detailed in Table 1. It provides an overview of the 
data from the training, validation, and test sets used to build the 
model. So, in total, we used 425 datasets. We used 320 data to train the 
model, 40 for validation, and 45 for testing.

4.4 Hyperparameters used

We implemented a Siamese Neural Network with 
hyperparameter tuning using Keras and Kerastuner. The model 
includes adjustable parameters, batch size, regularization, dropout 
rate, and hidden layer size, using a custom distance loss function to 
train on triplet data. The SiameseHyperModel class manages 
hyperparameter optimization with RandomSearch and generates 
training batches. After training, the best model and its 
hyperparameters are evaluated and summarized. The model’s 
training process is configured based on 25 epochs, a batch size of 
35, and a learning rate of 0.001. The ‘hard number = 10’ parameter 
helps the model handle challenging examples, while the Adam 
optimizer ensures efficient weight updates with adaptive learning 
rates. Validation steps monitor performance to prevent overfitting, 
with steps per epoch and steps per validation set to 15 and 2, 
respectively. These hyperparameters together influence the model’s 
learning behavior, convergence, and generalization performance.

5 Experimental result

This article contains the results and conclusions from a number 
of tests we ran to assess how well our deep learning-based SNN 
model performed for the fusion features. We also presented the 
findings from the SNN model with the code-based cryptography 
key generation. Initially, we provided the SNN outcomes, which 
played a crucial role in developing our cryptographic key generation 
model. The performance of the SNN model was evaluated by 
computing loss training and validation.

5.1 Result of SNN model

The component of the SNN model evaluation’s accuracy and loss is 
shown in this section. Model Loss: “Loss” measures the performance of a 
machine learning model by quantifying the difference between the 
predicted and actual outputs. It tracks the model’s learning progress 
during training, with values showing improvement across epochs.

5.1.1 Accuracy
The accuracy of the model is measured using the similarity and 

dissimilarity of the features based on the label given, as shown in Table 2. 
If two images are similar, their difference is below the threshold value, and 
the images belong to the same person, but if the images are dissimilar, 
their difference is above the threshold, and they belong to different persons.

5.1.2 Results of FAR and FRR for the code-based 
cryptography

Table 2 exhibits the empirical calculation of the σ ̂ same, which is the 
average similarity of retrieved binary vectors for the same individual using 
multiple deep learning models. The provided data are utilized in the 
calculation of p0, which is p0 = 1−ó̂. Consequently, we determine that p0 is 
equal to 0.07. These numbers are used to compute p0 = 1− σ̂  same 
(Kuznetsov et al., 2022). Similarly, we assess the value of p1’s based on the 
empirical results for ó̂ diff. We have deduced that the value p1 = 0.37. These 
results provide significant novel insights into the performance of several 
deep learning models in generating binary vectors for biometric 
verification. They also indicate potential for additional progress and 
innovation in this field. The extraction approach relies on the use of code-
based cryptosystems that employ a linear block code (n, k, d) = (2m, 2m - 
mt, 2 t + 1) block (n, k, d) = − +m m(2 ,2 ,2 1mt t ) with a fast-decoding 
process of polynomial complexity. The binary Goppa code with parameters 
(n, k, d) = − +m m(2 ,2 ,2 1mt t ) for some m in Z+ is thought to be the best 
alternative (Kuznetsov et  al., 2022). A comprehensive analysis and 
comparison of the False Acceptance Rate (FAR) and False Rejection Rate 
(FRR) were conducted to evaluate the system’s performance. The method 
being discussed relies on code-based cryptosystems that utilize a linear 
block (n, k, d) code that can be  decoded rapidly with polynomial 
complexity. In our investigations, we generated binary strings of length 
n = 128 or m = 7. The parameters k and d of the Goppa codes for different 
t values are shown in Table 3. Table 3 also included the calculated values of 
FRR and FAR for estimations for different Goppa codes.

5.2 Comparative analysis of results

The outcomes of various other pertinent studies were compared 
with the study we conducted, as shown in Table 4. We provided a 
thorough comparison analysis of these findings below.

TABLE 2 Sigma similarity.

Threshold type Sigma same # of same 
pairs

Sigma diff # of diff pairs Sigma score

0.5 vector tf.Tensor(0.92664933, shape = (), 

dtype = float32)

36 tf.Tensor(0.6359863, shape = (), 

dtype = float32)

32 0.613826

Expected value tf.Tensor(0.9863281, shape = (), 

dtype = float32)

36 tf.Tensor(0.9250488, shape = (), 

dtype = float32)

32 0.388859

TABLE 1 Dataset splitting.

Development Training Validation Testing Total

Exp 80% 10% 10% 1,500
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In comparison to previous research, our work demonstrates 
significant improvements in biometric key generation by achieving a 
lower False Rejection Rate (FRR) of less than 3.4% and a False 
Acceptance Rate (FAR) of less than 1%, outperforming (Kuznetsov 
et al., 2022) FRR of 8.3% and FAR of 7.4%. Additionally, while it 
generated 37-bit keys, our research produced up to 51, providing 
enhanced security, especially with post-quantum cryptosystems. 
Moreover, by utilizing bimodal biometrics, our approach improves 
accuracy and robustness over single-modal systems, as expressed in 
Table 4, addressing the limitations of relying on a single biometric 
modality. This shows not only technical improvement but also 
compassion for users by ensuring higher security and usability.

6 Discussion of results

This section covers the model configuration, experimental 
findings, and hyperparameters utilized in the SNN model and 
cryptography code.

The proposed system utilizes deep learning models, including 
FaceNet for face feature extraction and VGG19 for fingerprint feature 
extraction, combined with a Siamese Neural Network (SNN) for 
feature fusion. While the computational complexity of these models 
is significant, our study primarily focused on security and accuracy 
metrics rather than execution time. Future work will include detailed 
performance analysis, measuring training and inference speed across 
different hardware platforms to ensure the system’s feasibility for real-
time biometric authentication applications.

A dataset-splitting summary is shown in Table 1. Figure 6 lists the 
hyperparameters that were used: epoch, batch size, dropout, optimizer, 

activation function, length of the sequence, embedding dimension, 
loss, and train-test-split. One way to summarize the explanation of the 
experimental findings is as follows: Dataset Splitting: For the train and 
test SNN model, the dataset was divided into training, validation, and 
testing sets. Table  1 provides an overview of the data assigned to 
each set.

6.1 Model loss

Figure 7 shows that as the epoch increases, the model performs 
better, as can be seen by the decreasing value of the loss measure. The 
image depicts a graph illustrating the “Model loss” progression 
throughout the training of a machine-learning model across many 
epochs. An epoch in machine learning refers to a single iteration over 
the entire training dataset. The graph illustrates two lines, with one 
line depicting the loss on the training set (in blue) and the other line 
indicating the loss on the validation set (in red). Each line in the graph 
demonstrates a decrease in loss as the number of epochs increases, 
suggesting that the model is effectively acquiring knowledge from the 
data. The x-axis is labeled “Epoch” and shows the progression of 
epochs from 1 to 25. The y-axis is labeled “Loss” and measures the 
magnitude of loss, with values from 0 to approximately 0.35.

6.2 Accuracy

This is calculated by computing a sigma score based on two values. 
The method is computing the average similarity in a Siamese network 
between photos of the same class (i.e., similar pairs) and images of 
different classes (i.e., dissimilar pairings). A formula cubes the 
difference between the average similarity of similar and different 
pairings (sigma_same and sigma_diff), multiplies it by sigma_same, 
and caps the result at zero to assess how well the network separated 
these pairs. The score measures the network’s ability to discriminate 
between similar and dissimilar pairings; higher values correspond to 
better performance. Class grouping of feature vectors (embeddings) 
and associated labels facilitates comparisons both within and across 
classes. The first step of the technique is to classify the data points into 
batches and then compute the average similarity (sigma_same) for 
comparable pairings within each batch. After converting the 
embeddings, a similarity function computes the similarity scores, 

TABLE 3 FRR and FAR estimations for different Goppa codes.

t K d SNN model

FAR FRR

1 121 3 1.5754351486329734e-24 0.9990170515143107

5 79 15 4.100625196054598e-19 0.8905780902806273

10 65 19 2.6653196034529995e-14 0.28469187709689847

14 37 27 2.6218530171918587e-11 0.03455211265419574

17 9 35 2.0027487838478667e-09 0.003629338457096099

TABLE 4 A comparative analysis of the results.

Source Methods and technologies FRR FAR Additional Comments

Wang et al. 

(2021)

A secure biometric key generation mechanism via 

deep learning and its application

GAR = 98.47 and 

EER = 1.09 at fixed 1% 

FAR

During new enrollment, retrain the network to learn the mapping b\n 

new biometric image and binary code

Jana et al. 

(2022)

Neural fuzzy extractors for biometric 

authentication

2.5%–4.4% 2.5%–

4.4%

Advances in iris-based biometric authentication have been made; 

however, the study of facial biometrics has not been expanded

Kuznetsov 

et al. (2022)

Code-based cryptographic extractor using Keras 

FaceNet face recognition

8.3% 7.4% For a produced key length of 37 bits with a helper string. Furthermore, 

the code-based cryptosystems on which our extractor is built offer 

post-quantum level security

Our 

research

Cryptographic key generation via deep learning 

using Bi-modal biometric face and fingerprint

<3.4% for t 

between 14 

and 17

<1% For producing a key length of 128 bits using bimodal. Furthermore, the 

code-based cryptosystems on which our extractor is built offer post-

quantum level security
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which are then averaged and added together. To ensure an equal 
amount of comparisons from both classes, data points for dissimilar 
pairings are compared across batches. These different pairs’ similarity 
scores (sigma_diff) are computed and averaged. The average values of 
sigma_same and sigma_diff are then used to compute the sigma score, 
which gives an overall indication of how well the network can 
distinguish between similar and different embeddings. Overall, this 
accuracy estimator provides a way to evaluate the performance of a 
Siamese network by calculating average similarities for similar and 
dissimilar pairs based on a chosen converter function. It also computes 
a sigma score to quantify how well the network separates the two 
categories. From Table 2, based on the 0.5 threshold, the output is 
given. The average sigma same similarity and sigma difference 
similarity based on the above definition using a 0.5 threshold is 0.93 
and 0.64, respectively.

Presently, FRR ≈ 25% and FAR ≈ 10% are considered acceptable 
markers of biometric identification based on a person’s facial picture. 
Meanwhile, facial recognition technology has advanced significantly in 
recent years. As per the National Institute of Standards and Technology 
(NIST) research (Libby and Libby, 2021), the optimal face recognition 
method exhibits an error rate of approximately 0.08% under ideal 
conditions. Furthermore, it is imperative to minimize the FAR values for 
biometric password generation systems as much as possible, ideally 
aligning them with the probability of password guessing. The situation 
in which the False Rejection Rate (FRR) is equal to or less than 10% is 
depicted in Table 3. The values shown are within the required range 
(<10%), with t varying from 10 to 17. The comparative analysis in Table 4 
highlights the evolution of biometric key generation mechanisms, 
showing significant advancements in accuracy, security, and adaptability 

over time. Early methods had higher error rates, while more recent 
approaches, like our research, demonstrate much lower FRR and FAR 
rates, achieving less than 3.4 and 1%, respectively, for t between 10 and 
17, with a strong up to 51-bit key length. Our biometric cryptographic 
key generation system ensures strong error tolerance and stability using 
Goppa codes, which correct variations in biometric data. Multimodal 
fusion significantly reduces spoofing risks by requiring multiple 
biometric traits for authentication. Unlike Rivest Shamir Adleman (RSA) 
and Elliptic Curve Cryptography (ECC), the McEliece cryptosystem 
provides post-quantum security, making it resistant to future quantum 
attacks. Compared to previous works, our method achieves a lower FRR 
(<3.4%) and FAR (<1%), significantly improving from previous FRR 
(8.3%) and FAR (7.4%). Additionally, our system generates 128-bit+ 
cryptographic keys, surpassing the 37-bit keys of earlier approaches, 
ensuring higher security and robustness.

Binary string output of the model: By feeding the model with a 
testing dataset from class 84, which includes the feature values shown 
in Figure 8, the model generates a binary string output. Using a binary 
string converter, the predicted values are transformed into a binary 
representation. The model’s prediction closely matches the expected 
output, demonstrating its accuracy in classification and conversion.

7 Conclusion and future work

This research demonstrates an advanced approach to cryptographic 
key generation by integrating deep learning with multimodal biometric 
data from face and finger vein modalities. Leveraging pretrained models 
such as FaceNet and VGG19, along with a Siamese Neural Network 

FIGURE 7

Model loss.

FIGURE 8

Binary string output.
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(SNN) and fuzzy extractors, the system achieves high accuracy and 
robustness, with a False Acceptance Rate (FAR) below 1% and a False 
Rejection Rate (FRR) below 3.4%. Incorporating Goppa code-based 
cryptographic systems ensures post-quantum security, making the 
approach highly resilient. Future work will focus on optimizing neural 
network architectures, integrating additional biometric modalities, and 
exploring quantum-resistant algorithms to address emerging challenges. 
Real-time implementation, enhanced scalability, and adaptability to 
diverse user environments will also be prioritized to improve usability and 
robustness. Future work will focus on testing with larger and more diverse 
biometric datasets to further validate the robustness of the approach. 
Additionally, efforts will be directed toward optimizing neural network 
architectures, integrating additional biometric modalities, and exploring 
quantum-resistant algorithms. Real-time implementation, enhanced 
scalability, and adaptability to diverse user environments will also 
be  prioritized to improve usability and robustness. While the 
computational complexity of these models is significant, our study 
primarily focused on security and accuracy metrics rather than execution 
time. Future work will include detailed performance analysis, measuring 
training and inference speed across different hardware platforms to 
ensure the system’s feasibility for real-time biometric 
authentication applications.
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