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Large language models for
intelligent RDF knowledge graph
construction: results from
medical ontology mapping

Apostolos Mavridis, Stergios Tegos, Christos Anastasiou,

Maria Papoutsoglou and Georgios Meditskos*

School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

The exponential growth of digital data, particularly in specialized domains like

healthcare, necessitates advanced knowledge representation and integration

techniques. RDF knowledge graphs o�er a powerful solution, yet their creation

and maintenance, especially for complex medical ontologies like Systematized

Nomenclature of Medicine - Clinical Terms (SNOMED CT), remain challenging.

Traditional methods often struggle with the scale, heterogeneity, and semantic

complexity of medical data. This paper introduces a methodology leveraging the

contextual understanding and reasoning capabilities of Large Language Models

(LLMs) to automate and enhance medical ontology mapping for Resource

Description Framework (RDF) knowledge graph construction. We conduct a

comprehensive comparative analysis of six systems–GPT-4o, Claude 3.5 Sonnet

v2, Gemini 1.5 Pro, Llama 3.3 70B, DeepSeek R1, and BERTMap—using a novel

evaluation framework that combines quantitative metrics (precision, recall, and

F1-score) with qualitative assessments of semantic accuracy. Our approach

integrates a data preprocessing pipeline with an LLM-powered semantic

mapping engine, utilizing BioBERT embeddings and ChromaDB vector database

for e�cient concept retrieval. Experimental results on a dataset of 108 medical

terms demonstrate the superior performance of modern LLMs, particularly

GPT-4o, achieving a precision of 93.75% and an F1-score of 96.26%. These

findings highlight the potential of LLMs in bridging the gap between structured

medical data and semantic knowledge representation, toward more accurate

and interoperable medical knowledge graphs.
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1 Introduction

The accelerating digitization of information across all sectors has created an

unprecedented surge in the volume, velocity, and variety of data (Venkatachaliah, 2011;

Chakraborty et al., 2017). This “data deluge” presents significant challenges for traditional

data management and integration techniques, which often struggle to effectively handle

the complexity and scale of modern datasets (Nashipudimath et al., 2020). This challenge

becomes even more evident in fields such as healthcare, where vast amounts of data

must be managed. The complexity arises from the diversity of formats, the nuanced

interconnections within the data, and the presence of sensitive information. As a result,

the demand for scalable, resilient, and semantically enriched methods for representing and

integrating knowledge has never been greater.
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The Resource Description Framework (RDF) knowledge

graphs have emerged as a paradigm for addressing these challenges

(Wu and Banerjee, 2014). RDF offers a flexible and expressive

framework for representing interconnected data in a machine-

readable format. By utilizing Uniform Resource Identifiers (URIs)

to uniquely identify entities and defining relationships between

them, RDF graphs enable the creation of semantically rich

representations that facilitate advanced querying, reasoning and

analysis (Zou, 2020). The visual nature of knowledge graphs further

enhances their utility, providing intuitive means for exploring and

interpreting datasets (Sayed Ahmed Soliman and Tabak, 2020).

These characteristics make RDF knowledge graphs particularly

suited for applications that require sophisticated data integration,

such as drug discovery, personalizedmedicine, and clinical decision

support systems.

Despite the advantages of RDF, several key challenges hinder

the widespread adoption and effective utilization of knowledge

graphs. The construction and maintenance of large-scale RDF

graphs often require significant manual effort, particularly for

ontology mapping and data integration (Singh et al., 2023).

Conventional approaches to constructing knowledge graphs,

including manual curation and rule-based techniques, often face

challenges in scaling effectively to accommodate the continuous

expansion of data. Additionally, interacting with RDF databases

through SPARQL can be daunting for users unfamiliar with

such technologies (Han et al., 2015). This difficulty reduces the

accessibility of RDF knowledge graphs and hinders their broader

practical adoption.

Mapping structured data, especially from common formats

like CSV files, to RDF presents specific obstacles (Chaves-Fraga

et al., 2020). Domain-specific terminology, abbreviations, and

inconsistent data formats require significant preprocessing and

interpretation to ensure accurate semantic representation within

the RDF graph. Numeric data, prevalent in many datasets, needs

careful contextualization and alignment with relevant ontologies, as

raw numbers lack the inherent symbolic meaning crucial for RDF’s

semantic expressiveness. These challenges are particularly evident

in the medical domain, where data is often highly structured but

requires extensive domain knowledge for accurate mapping to

established medical ontologies like SNOMED CT.

The recent advent of Large Language Models (LLMs)

has revolutionized the field of natural language processing,

offering promising new solutions for knowledge representation

and semantic integration (Xue, 2024; Kulkarni, 2023). Trained

on massive text corpora, LLMs like GPT-4o, Claude, and

Gemini possess remarkable capabilities in understanding context,

disambiguating terminology, and inferring relationships within

text (Raiaan et al., 2024). Their ability to process and generate

human-like text has opened up new possibilities for automating

complex tasks, including knowledge graph construction, ontology

mapping, and semantic enrichment (Kommineni et al., 2024;

Trajanoska et al., 2023; Jia et al., 2024).

This paper introduces a novel methodology that harnesses

the power of LLMs to address the persistent challenges in

creating and utilizing RDF knowledge graphs, particularly

in the context of medical ontology mapping. Our approach

operates on two interconnected levels. First, we implement a

robust data preprocessing pipeline that addresses the inherent

heterogeneity and ambiguity of real-world medical data.

This pipeline incorporates techniques such as terminology

normalization, abbreviation expansion, and unit standardization,

ensuring that the input data is consistent and amenable to

semantic interpretation.

Second, we leverage the contextual understanding and

reasoning capabilities of LLMs to perform intelligent ontology

mapping. This involves formulating targeted prompts designed

to elicit specific mappings between medical terms and concepts

within the SNOMED CT ontology. To optimize retrieval and

comparison of semantic representations, we employ a vector

database (ChromaDB) populated with pre-computed BioBERT

embeddings of both the input medical terms and the SNOMED CT

concepts. This allows us to efficiently identify the most semantically

similar concepts within the ontology based on cosine similarity

between the embedding vectors. The integration of these two

components—a robust data preprocessing pipeline and an LLM-

powered semantic mapping engine—facilitates the automated

generation of context-aware RDF triples, capturing the rich

relationships embedded within the medical data and aligning them

with the established semantic framework of SNOMED CT. This

approach builds upon recent advancements in cloud-based RDF

stores and distributed graph processing (Janke and Staab, 2018),

enabling scalable and efficient knowledge graph construction. We

specifically focus on the medical domain, demonstrating how

LLMs, combined with a tailored preprocessing strategy and vector

database integration, can be effectively employed to map complex

medical terminology and structured data to the SNOMED CT

ontology. This work aims to bridge the gap between structured data

and semantic knowledge representation, facilitating the creation

of more accurate, comprehensive, and interoperable medical

knowledge graphs.

Our key contributions are threefold. First, we present a

comprehensive comparative analysis of six distinct systems—

GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro, Llama 3.3 70B,

DeepSeek R1, and BERTMap—for medical ontology mapping and

RDF knowledge graph construction. This analysis examines the

advantages and drawbacks of each method, providing insights for

researchers and practitioners looking to utilize LLMs in knowledge

graph construction. Additionally, we propose a new evaluation

framework for measuring the effectiveness of language models

in mapping medical terminology. This framework integrates

both quantitative metrics and qualitative evaluations of semantic

accuracy, ensuring a comprehensive and rigorous assessment.

Lastly, we showcase the enhanced capabilities of modern LLMs,

particularly GPT-4o, in processing intricate medical concepts

and relationships. Our findings indicate substantial advancements

over the BERTMap baseline, with GPT-4o demonstrating a 44.91

percentage point improvement in precision (93.75% vs. 48.84%)

and a 38.33 percentage point increase in F1-score (96.26%

vs. 57.93%), highlighting the potential of LLMs to automated

knowledge graph construction. This study highlights the impact

of combining LLMs with RDF knowledge graphs to develop

more intelligent, adaptive, and semantically enriched information

systems. It paves the way for harnessing the vast and intricate

realm of digital information to extract deeper insights and improve
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decision-making across multiple fields, which marks a crucial

advancement in reshaping how we access, integrate, and manage

information in complex settings (Lenzerini, 2018).

The remainder of this paper is structured as follows: Section 2

reviews related work in RDF knowledge graphs, ontology mapping,

and the application of LLMs in semantic web technologies. Section

3 details our methodology, including the system architecture,

testing framework, and evaluation metrics. Section 4 presents the

experimental results, providing a detailed performance analysis of

the evaluated systems. Finally, Section 5 discusses the findings,

highlights the implications of our work, and outlines future

research directions.

2 Related work

The Resource Description Framework (RDF) serves as a

cornerstone of the Semantic Web, enabling structured data sharing

on a global scale. As Berners-Lee (2019) explains, RDF extends

the hypertext Web by using URIs to identify and describe

resources, employing various serializations for data exchange. Its

focus on data content meaning rather than structure makes it

particularly suitable as a semantic data model for cloud computing

(Kanmani et al., 2017). However, the growing size of RDF datasets

presents significant challenges for data management systems,

necessitating efficient storage techniques, indexing strategies, and

query execution mechanisms (Wylot et al., 2018).

SPARQL, the standard query language for RDF, has

motivated extensive theoretical studies of RDF and SPARQL

fundamentals (Arenas et al., 2013). While RDF data can be handled

using relational tables, querying large triple tables becomes

computationally expensive due to the multiple nested joins

required for graph queries (Wylot et al., 2018). The increasing

availability of RDF data on theWeb underscores the urgent need to

address scalability issues in RDF data management (Arenas et al.,

2013).

Knowledge graphs have emerged as powerful tools for

representing complex, interconnected information in a machine-

readable format. They are increasingly utilized across various

domains, including libraries, digital humanities, and explainable

machine learning (Haslhofer et al., 2018; Tiddi and Schlobach,

2022). These graphs represent concepts and their semantic

relationships, supporting resource discovery, navigation, and

visualization (Haslhofer et al., 2018). Recent research has

focused on knowledge graph representation learning, acquisition,

completion, and temporal aspects (Ji et al., 2022). Embedding

methods have gained popularity, enabling various applications with

implicit semantics derived from context (Kejriwal et al., 2019).

The process of generating RDF knowledge graphs from raw

data has shifted from manual efforts to automated techniques.

Recent approaches utilize existing ontologies, knowledge bases, and

machine learning models to derive structured insights from various

sources, including research publications (Constantopoulos and

Pertsas, 2020). Advanced algorithms and tools, such as the SDM-

RDFizer, have been designed to streamline the transformation

of heterogeneous datasets into RDF representations (Iglesias

et al., 2020). Additionally, real-time extraction of RDF triples

from unstructured data streams has been explored through a

combination of statistical analysis and machine learning strategies

(Gerber et al., 2013).

Ontology mapping is essential for addressing heterogeneity

challenges and ensuring semantic interoperability across diverse

information sources (Benslimane et al., 2008). It plays a key

role in knowledge graph construction by integrating multiple

heterogeneous datasets (Iglesias-Molina et al., 2019). Various

methods have been proposed, such as declarative mappings

and language-independent templates using spreadsheets, which

enhance maintainability and accessibility for non-experts (Iglesias-

Molina et al., 2019). Additionally, frameworks, such as MapSDI,

optimize semantic data integration through pre-processing based

on mapping rules (Jozashoori and Vidal, 2019).

Furthermore, recent research has focused on enhancing

the semantic interpretation of structured data sources in

privacy-preserving environments. Karalka et al. (2023) propose

SemCrypt, a framework for schema enrichment through

semantic annotations and mappings to knowledge bases and

ontologies, aiming to assess privacy-preserving technologies

based on data sensitivity. This approach builds upon earlier

work in semantic integration of heterogeneous data sources

(Bergamaschi et al., 1999) and semi-automatic mapping of

structured sources to ontologies (Knoblock et al., 2012),

which facilitate the creation of shared ontologies, semantic

relationships, and mapping rules for integrated data access.

The importance of privacy preservation in data analysis is

emphasized by Dwork (2011). By integrating semantic analysis

with privacy-aware methodologies, researchers aim to create more

sophisticated and intelligent strategies for managing sensitive

data across domains, such as healthcare, finance and cyber

threat intelligence.

The emergence of Large Language Models (LLMs) has

significantly transformed natural language processing, showcasing

exceptional performance in grasping context, meaning, and

intricate relationships (Xue, 2024). Evolving from rule-based

methods to highly advanced architectures, these models leverage
transformer-based frameworks and sophisticated training

paradigms to execute a wide range of tasks, including text
generation, sentiment analysis and question answering (Kulkarni,

2023; Xue, 2024). Their capabilities extend well beyond artificial
intelligence, shaping advancements in diverse fields, such as

medicine, engineering, social sciences, and the humanities (Fan
et al., 2024).

Recent studies use Machine Learning in different aspects
of knowledge graph development and ontology alignment,

demonstrating potential in areas, such as entity learning, ontology
learning, and knowledge reasoning (Zhao et al., 2023). They have
been applied to key tasks, including entity extraction, relation

extraction, entity linking and link prediction (Zhao et al., 2023).
Moreover, machine learning has been leveraged to automate

data preparation and cleaning for knowledge graph curation, as

well as data integration (Berti-Equille, 2019). Large Language

Models (LLMs), in particular, show promise in streamlining data

extraction and resolution processes for heterogeneous data sources

(Remadi et al., 2024). For example, the LLMs4OM framework

demonstrates the effectiveness of LLMs in ontology matching

tasks, potentially surpassing traditional systems (Giglou et al.,

2024). Additionally, integrating LLMs with scholarly knowledge
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FIGURE 1

LLM-based system architecture.

graphs enhances query processing, enabling comprehensive and

efficient information retrieval from academic research artifacts

(Jia et al., 2024). In addition, transfer learning and pre-

trained language models have significantly advanced natural

language processing tasks, with domain-specific pre-training

emerging as a powerful technique to enhance performance on

specialized tasks (Zhong and Goodfellow, 2024). In this context,

memory-augmented models have been proposed to address the

potential loss of general knowledge during domain adaptation,

combining domain-specific learning with preserved general

knowledge (Wan et al., 2022).

Despite these advancements, several challenges remain in

information extraction and query processing. Examples include

handling ambiguity, scaling to large datasets and adapting to

domain-specific terminology. Recently proposed solutions, such as

systems to resolve query ambiguity using large-scale user behavioral

data (Korayem et al., 2015), models for automatic term ambiguity

detection (Baldwin et al., 2013), and query relaxation approaches,

leverage external knowledge sources (Lei et al., 2020). These studies

demonstrate progress, highlighting the need for advancements

in handling ambiguity, scalability and domain adaptation in

knowledge representation and retrieval systems.

While significant progress has been made in RDF knowledge

graph construction, ontology mapping and the application

of machine learning to these domains, the need for more

sophisticated, context-aware approaches that can handle the

complexity and nuance of real-world data remains. Our research

is driven by this need and leverages recent advancements in LLMs

for semantically rich RDF knowledge graphs.

3 Method

3.1 Implementation

Our study embarked on a meticulous comparative analysis

to evaluate the efficacy of six distinct computational systems in

the realm of medical ontology mapping and RDF knowledge

graph construction (see Figure 1). This endeavor was motivated

by the critical need for accurate and scalable methods to process

the increasingly voluminous and complex data prevalent in

modern healthcare settings. The systems under scrutiny were

GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro, Llama 3.3

70B, DeepSeek R1 representing state-of-the-art Large Language

Models (LLMs), and BERTMap, a well-established baseline system

in ontology mapping. The central objective was to rigorously

assess the potential of LLMs to surpass traditional methodologies

in handling the intricacies of medical terminology, thereby

facilitating the creation of semantically rich and accurate RDF

knowledge graphs.

The selection of LLMs for this paper was based on several

criteria, including their representation of both cutting-edge

and open-source models, their proven effectiveness in handling
complex tasks, and their accessibility for ensuring reproducibility.

Among the state-of-the-art models, we included GPT-4o,
Claude 3.5 Sonnet v2, and Gemini 1.5 Pro, developed by

OpenAI, Anthropic, and Google, respectively. These models
represent the forefront of LLM advancements, each with

distinct architectural strategies and strong performance in

complex reasoning and domain-specific applications, while

their stable API access facilitates experimental reproducibility.

To provide a more comprehensive analysis and acknowledge

the increasing significance of open-source alternatives in

healthcare, we incorporated two high-performing open-source

LLMs: Llama 3.3 70B from Meta, which boasts 70 billion

parameters and excels across diverse tasks, and DeepSeek

R1, a recently introduced open-source model demonstrating

promising capabilities in language understanding and generation.

BERTMap was selected as the baseline due to its well-established

role in ontology mapping research and its widespread use as a

benchmark system.

Implementation parameters:

• GPT-4o: Temperature = 0.1, max tokens = 2,048, cost =

$0.03/1K tokens.

• Claude 3.5 Sonnet v2: Temperature = 0.1, max tokens = 2048,

cost = $0.015/1K tokens.

• Gemini 1.5 Pro: Temperature = 0.1, max tokens = 2,048, cost

= $0.01/1K tokens.

• Llama 3.3 70B: Temperature = 0.1, max tokens = 2,048,

indirect costs for setup.

• DeepSeek R1: Temperature = 0.1, max tokens = 2,048, indirect

costs for setup.

• BERTMap: Default parameters as per public implementation.
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The proposed framework in this paper is a key component

of the ENCRYPT project,1 which focuses on addressing privacy

and security challenges in critical sectors such as healthcare,

finance, and entertainment. Within the ENCRYPT framework,

Knowledge Graphs (KGs) play a central role in enabling data

interoperability, semantic understanding, and efficient information

sharing across heterogeneous datasets. This work presents

a comprehensive approach to constructing semantically rich

RDF Knowledge Graphs specifically tailored for healthcare

data. By leveraging advanced privacy-preserving technologies

such as Fully Homomorphic Encryption (FHE), Secure Multi-

Party Computation (SMPC), and Differential Privacy (DP), the

ENCRYPT project ensures that sensitive data can be securely

managed and analyzed in compliance with GDPR regulations. Our

approach integrates semantic web standards, utilizing ontologies

such as SNOMED CT and DICOM to enable accurate semantic

representation of medical data. This paper highlights the full

methodology, combining LLM-powered ontology mapping, a

robust preprocessing pipeline, and vector database integration, to

demonstrate the transformative potential of Knowledge Graphs in

addressing the complexities of healthcare data management.

In constructing our evaluation pipeline, a critical component

was the selection and implementation of a vector database to

efficiently manage and retrieve the embeddings representing our

medical terms (Csource) and the corresponding concepts within the

SNOMED CT ontology (Ctarget). For this purpose, we employed

ChromaDB, an open-source vector database renowned for its ease

of use, scalability, and seamless integration with natural language

processing workflows. ChromaDB served as the central repository

for storing and indexing the vector representations generated for

both the input medical terms and the SNOMED CT concepts.

To generate these vector representations, we leveraged pre-

trained embeddingmodels tailored for biomedical text. Specifically,

we utilized the BioBERT model, a domain-specific variant of BERT

trained on a large corpus of biomedical literature. BioBERT has

demonstrated superior performance in capturing the semantic

nuances of medical terminology compared to general-purpose

embedding models. Each medical term in our evaluation dataset

and each concept in the relevant subset of SNOMED CT were

processed through BioBERT to produce dense vector embeddings.

These embeddings encapsulated the semanticmeaning of each term

or concept, allowing for efficient similarity comparisons within the

vector space.

For the Large Language Models (LLMs)—GPT-4o, Claude

3.5 Sonnet v2, Gemini 1.5 Pro, Llama 3.3 70B, and DeepSeek

R1—we interacted with them via their respective API endpoints.

The API calls were programmatically managed using Python,

facilitating seamless integration with our evaluation framework.

The prompts presented to the LLMs were carefully engineered to

guide them toward generatingmappings to SNOMEDCT concepts.

Specifically, we employed a structured prompt formatter (prompt

engine) that included the medical term to be mapped, a clear

instruction to provide the corresponding SNOMED CT identifier,

and a request to provide a confidence score for the proposed

mapping. This structured approach ensured consistency in our

1 https://encrypt-project.eu/

interactions with the LLMs and facilitated the extraction of the

relevant information from their responses.

The responses obtained from the LLMs were then parsed

programmatically to extract the proposed SNOMED CT identifiers

and confidence scores. To identify the most relevant concepts,

we performed a nearest neighbor search within the ChromaDB

vector store. The vector embedding of the input medical term,

as generated by BioBERT, was used as the query vector. The

distance metric employed for the nearest neighbor search was

cosine similarity, which measures the cosine of the angle between

two vectors, providing a robust indicator of semantic similarity.

The top-k nearest neighbors, as determined by cosine similarity,

were retrieved from ChromaDB, representing the SNOMED CT

concepts most semantically similar to the input medical term.

For the baseline system, BERTMap, we utilized the publicly

available implementation and adhered to the recommended

parameter settings. BERTMap operates by generating

contextualized word embeddings for both the source and target

ontologies (in our case, the input medical terms and SNOMED

CT) and subsequently computes a similarity matrix based on

cosine similarity. Alignment candidates are then identified through

a greedy matching algorithm.

To ensure the reproducibility of our results and to manage

the complexities of our experimental setup, we employed a

containerization approach using Docker. Each component of

our pipeline, including the vector database, the embedding

generation scripts, the LLM interaction modules and the evaluation

scripts, was encapsulated within a Docker container. This strategy

ensured consistency across different environments and streamlined

the deployment of our evaluation framework. Additionally, we

employed a robust version control system via Git to systematically

track code modifications, experimental parameters, and evaluation

outcomes. This approach ensured detailed documentation of

our methodology and streamlined collaboration among the

researchers involved. Beyond the core technological aspects,

we implemented thorough data preprocessing procedures to

maintain the quality and consistency of input data. These steps

encompassed standardizing the formatting of medical terms,

managing abbreviations and acronyms, and resolving terminology

inconsistencies. All preprocessing procedures were carefully

documented to enhance transparency and reproducibility.

Throughout the evaluation process, we monitored the

performance of our system, paying close attention to computational

resource utilization, processing times and potential bottlenecks.

This performance monitoring allowed us to identify areas for

optimization and to ensure the scalability of our approach. The

datasets and prompts used for this study can be accessed at the

GitHub repository.2

3.2 Evaluation

To conduct a robust and representative evaluation, we

assembled a comprehensive dataset comprising 108 distinct

medical terms. This dataset was meticulously curated to reflect

2 https://github.com/enchatted/llms-kgs
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the diverse spectrum of clinical information routinely encountered

in healthcare, encompassing patient demographics, physiological

measurements, disease classifications, therapeutic interventions,

and intricate diagnostic and procedural terms. This diversity was

paramount to ensuring that the evaluation probed the full breadth

of the systems’ capabilities, challenging them with a range of

linguistic complexities from straightforward measurements like

age and weight to nuanced concepts such as disease staging and

treatment withdrawal. The selection of these terms was informed

by extensive consultation with domain experts, ensuring their

relevance and representativeness within the medical field.

Prior to the computational analysis, we established a definitive

ground truth to serve as the benchmark for evaluating the

performance of the six systems. This was achieved through a

rigorous expert elicitation process involving a panel of seasoned

medical professionals and ontology engineers. Each expert

independently reviewed the dataset, proposing mappings for each

medical term to corresponding concepts within the SNOMED CT

ontology. The selection of SNOMED CT, a globally recognized

comprehensivemedical ontology, was deliberate, given its extensive

coverage of clinical concepts and its pivotal role in enabling

interoperability in healthcare information systems. Following the

individual review, a collaborative session was convened wherein

the experts discussed discrepancies, negotiated disagreements, and

ultimately reached a consensus on the most appropriate mappings

for each term. This meticulous consensus-building process was

particularly vital for terms exhibiting ambiguity or multiple valid

interpretations, reflecting the complex and multifaceted nature

of medical language. The resultant expert-validated ground truth

provided a reliable standard against which the computational

systems’ performance could be measured.

While medical ontologies, like SNOMED CT, involve nuanced

relationships, temporal data, and hierarchical structures, the dataset

used in our study focused specifically on real-world terms extracted

from patient data within a clinical setting. This focus inherently

simplified the mapping task. The most frequent relationships

were those directly associated with a patient (e.g., “patient has

condition X”). The temporal scope primarily involved the patient’s

current condition and history, limiting the complexity of temporal

relationships. Additionally, the terms used often focused on specific

diagnoses, procedures, and medications, resulting in a relatively

flattened hierarchy for the mapping task. In essence, the dataset

reflected a practical use case where the complexities of SNOMED

CT were naturally constrained by the context of patient data. This

allowed us to focus on evaluating the models’ ability to accurately

map real-world medical terms to SNOMED CT concepts within

this specific domain.

With the ground truth established, we proceeded to

systematically evaluate the six computational systems under

controlled conditions. Each of the 108 medical terms was presented

as input to GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro, Llama

3.3 70B, DeepSeek R1, and BERTMap. For the LLMs, we employed

their default model configurations without any task-specific

fine-tuning, simulating a real-world scenario where researchers

might utilize these models out-of-the-box. The prompts provided

to these models were carefully designed to elicit mappings to

SNOMED CT concepts, framed in a clear and unambiguous

manner. BERTMap, serving as the baseline, was executed using its

standard parameter settings, representing the typical usage of this

system within the ontology mapping community. To eliminate

potential bias during the evaluation process, we implemented a

blind validation protocol. The mappings generated by each system

were presented to the evaluators without disclosing the originating

system, thereby preventing any subconscious influence on the

judgment of the results’ quality.

The quantitative evaluation of the systems’ performance was

based on standard classification metrics: precision, recall, and F1-

score. These metrics were derived from a comprehensive confusion

matrix, categorizing each mapping outcome as a true positive

(TP), false positive (FP), false negative (FN), or true negative

(TN). Precision measured the proportion of correctly identified

mappings out of all mappings proposed by a system, while recall

assessed the proportion of correctly identified mappings out of

all possible correct mappings in the ground truth. The F1-score

(the harmonic mean of precision and recall) provided a balanced

measure of the system’s overall accuracy. Beyond these quantitative

metrics, we have also performed a qualitative analysis to assess

the semantic relevance, clinical appropriateness and contextual

accuracy of the generatedmappings. This analysis had an important

role in assessing the systems’ capability to process complex medical

concepts, including temporal relationships (e.g., symptom onset),

detailed anatomical descriptions and multi-step procedural terms.

Domain experts conducted the review, examining the mappings

not only for their technical accuracy but also for their clinical

relevance and meaningfulness within the medical context.

Furthermore, we applied a chi-square test of independence

to determine whether the performance differences among the

six systems were statistically significant. This test allowed us to

determine whether the distribution of TP, FP, FN, and TN across

the systems deviated significantly from what would be expected by

chance. To quantify the magnitude of any detected associations,

Cramer’s V was calculated as a measure of effect size. This

analytical approach that combines quantitative metrics, qualitative

evaluation and statistical testing, provided a robust assessment of

the performance of GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro,

Llama 3.3 70B, DeepSeek R1, and BERTMap in the task of medical

ontology mapping.

Furthermore, we documented the specific challenges

encountered by each system, including recurring error patterns

and areas of ambiguity. This error analysis provided useful insights

into the inherent strengths and limitations of each approach.

The transparency and thoroughness of our methodology, from

dataset construction to evaluation, were designed to ensure the

reproducibility of our findings and to provide a solid foundation

for subsequent advancements in the field of automated medical

knowledge representation and semantic integration.

4 Results

Our evaluation comparing the LLMs and BERTMap revealed

substantial differences in performance across multiple metrics.

Analysis of the 108 medical terms in our dataset demonstrated

varying levels of effectiveness among the systems, with GPT-4o
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FIGURE 2

A comparison between the results of the baseline method and the top performance LLM.

TABLE 1 Comparison of method performance metrics.

Method Precision Recall F1-score

GPT-4o 93.75 98.90 96.26

Claude 3.5 Sonnet v2 53.75 69.35 60.56

Gemini 1.5 Pro 60.27 66.67 63.31

BERTMap 48.84 71.19 57.93

Llama 3.3 70B 19.19 70.37 30.16

DeepSeek R1 25.76 32.69 28.81

showing superior overall performance. Figure 2 depicts an example

of a comparison between the results of the baseline method and the

top performance LLM.

GPT-4o achieved the highest precision (93.75%) among all

systems, significantly outperforming Gemini 1.5 Pro (60.27%),

Claude 3.5 Sonnet v2 (53.75%), BERTMap (48.84%), DeepSeek

R1 (25.76%), and Llama 3.370B (19.19%). In terms of recall,

GPT-4o led with 98.90%, followed by Llama 3.370B (70.37%),

BERTMap (71.19%), Claude 3.5 Sonnet v2 (69.35%), Gemini 1.5

Pro (66.67%), and DeepSeek R1 (32.69%). The combined effect

of these metrics resulted in F1-scores of 96.26% for GPT-4o,

63.31% for Gemini 1.5 Pro, 60.56% for Claude 3.5 Sonnet v2,

57.93% for BERTMap, 30.16% for Llama 3.370B, and 28.81% for

DeepSeek R1, demonstrating GPT-4o’s substantial advantage in

overall performance (see Table 1).

Detailed analysis of the confusion matrix metrics revealed

significant differences among the systems (Table 2). GPT-4o

TABLE 2 Contingency table.

Method True
positives

False
positives

True
negatives

False
negatives

GPT-4o 90 6 11 1

Claude 3.5
Sonnet v2

43 37 9 19

Gemini 1.5
Pro Latest

44 29 13 22

BERTMap 42 44 5 17

Llama 3.3
70B

19 80 1 8

DeepSeek
R1

17 49 7 35

demonstrated the best performance, generating 90 true positives,

6 false positives, 1 false negative, and 11 true negatives. Gemini

1.5 Pro produced 44 true positives, 29 false positives, 22 false

negatives, and 13 true negatives, while Claude 3.5 Sonnet v2

achieved 43 true positives, 37 false positives, 19 false negatives,

and 9 true negatives. BERTMap produced 42 true positives, 44

false positives, 17 false negatives, and 5 true negatives. Llama

3.3 70B generated 19 true positives, 80 false positives, 8 false

negatives, and 1 true negatives, while DeepSeek R1 produced 17

true positives, 49 false positives, 35 false negatives, and 7 true

negatives. The notably lower number of false positives and false

negatives in the GPT-4o system (6 and 1, respectively) compared
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FIGURE 3

A depiction of the performance for all methods.

to the other systems indicates superior discrimination ability in

mapping medical terminology.

Performance analysis across different categories of medical

terms revealed specific patterns (see Figure 3). All systems

performed relatively well with basic clinical measurements such as

sex, age, weight, height, and BMI. However, GPT-4o demonstrated

superior performance in mapping complex medical concepts,

particularly in areas of diagnostic procedures and examinations,

treatment-related terminology, temporal relationships, and disease

complications and classifications. Llama 3.3 70B and DeepSeek

R1 showed particular weakness in handling these more complex

concepts, with high rates of incorrect mappings.

The systems’ performance diverged most notably in handling

complex procedural terminology and multi-component medical

concepts. GPT-4o maintained high accuracy in these cases, while

the other systems showed increased error rates. For instance,

GPT-4o accurately mapped complex terms such as “Exam Type,”

“Diagnostic question,” and “withdrawal of therapy,” where the other

systems produced more inconsistent results.

Error analysis revealed that GPT-4o’s few misclassifications

were primarily concentrated in specific areas of complex

quantitative measurements, multi-parameter clinical assessments,

and certain anatomical treatment locations. These included terms

such as “min_ECGstress,” “ECGstress_Result,” and anatomical

treatment specifications. While all systems demonstrated

competence in basic medical terminology mapping, GPT-

4o offered substantial improvements in handling complex,

context-dependent medical concepts and relationships.

A chi-square test of independence was performed to examine

the relationship between the six ontology matching methods (GPT-

4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro Latest, Llama 3.3 70B,

DeepSeek R1, and BERTMap) and their performance outcomes

(TP, FP, TN, and FN; see Table 1). The test revealed a statistically

significant difference between the methods, χ
2 (15, N = 648) =

196.94, p < 0.001, Cramer’s V = 0.32 (indicating a large effect size).

Post-hoc examination of the standardized residuals indicates

that GPT-4o demonstrated significantly higher true positive

rates and lower false positive rates than expected under the

null hypothesis. Specifically, GPT-4o achieved 90 true positives

compared to 17–44 for the other methods, representing a

substantial performance advantage.

5 Discussion

The results of our comparative study demonstrate significant

variations in performance across six systems evaluated for

medical ontology mapping and RDF knowledge graph creation.

GPT-4o’s superior performance, with precision of 93.75%,

stands in stark contrast to Gemini 1.5 Pro (60.27%), Claude

3.5 Sonnet v2 (53.75%), BERTMap (48.84%), DeepSeek R1

(25.76%), and Llama 3.370B (19.19%). This wide performance

gap illustrates the substantial advancement in automated

mapping accuracy achieved by the most advanced LLMs,

while also highlighting the challenges faced by smaller or less

sophisticated models.

The performance hierarchy among the systems provides

valuable insights into the evolution of language models for

specialized tasks. GPT-4o’s exceptional performance suggests that

its architecture and training approach are particularly well-

suited for handling medical terminology. The significant drop

in performance across other models creates a clear stratification:

Gemini 1.5 Pro’s intermediate performance (F1-score 63.31%)

positions it as the second-best option, followed by Claude 3.5

Sonnet v2 (60.56%) and BERTMap (57.93%), with DeepSeek

R1 (28.81%) and Llama 3.370B (30.16%) showing substantially

lower capabilities.

Of particular interest is Llama 3.370B’s relatively high recall

(70.37%) despite its low precision (19.19%), suggesting a tendency

toward over-generation of mappings. In contrast, DeepSeek R1’s
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more balanced but lower precision (25.76%) and recall (32.69%)

indicate consistent but limited capabilities across all aspects of

the task.

All systems demonstrated basic competence in mapping simple

clinical measurements, but their performance diverged significantly

when handling complex medical concepts. GPT-4o maintained

high accuracy across sophisticated scenarios, including disease

terms, temporal relationships, and procedural terminology. The

progressive degradation in performance as concept complexity

increased was most pronounced in the open source models like

Llama 3.370B and DeepSeek R1, which struggled particularly with

nuanced medical terminology.

Error analysis reveals distinct patterns across the systems.

GPT-4o’s minimal error profile (6 false positives and 1 false

negative) stands in sharp contrast to the higher error rates of

other systems. Gemini 1.5 Pro and Claude 3.5 Sonnet v2 showed

similar error patterns, with moderate false positive and false

negative rates, while BERTMap exhibited a moderate false positive

rate (44). The high false positive rates in Llama 3.370B and

DeepSeek R1 suggest that smaller models struggle significantly with

discriminating valid mappings from invalid ones, highlighting the

importance of model scale and training data quality in achieving

reliable performance.

We certainly acknowledge limitations across all systems.

Performance variability depends on training data quality and

coverage, with rare or highly specialized concepts presenting

challenges for all methods. GPT-4o’s fewmisclassifications centered

on complex quantitative measurements and multi-parameter

clinical assessments, while other systems showed broader patterns

of error across multiple concept types. The need for domain

expert validation remains, particularly for critical applications,

though the level of required oversight varies significantly among

the systems.

A possible reason for GPT-4o’s struggle with complex

quantitative measurements and multi-parameter clinical

assessments lies in the inherent challenges of such data.

Quantitative medical data often require precise numerical

reasoning and context-specific interpretation, which can be

difficult for language models primarily trained on textual

data. Multi-parameter clinical evaluation involves intricate

relationships among numerous variables, requiring not

only precise recognition of individual terms but also the

ability to synthesize and contextualize multiple data points

simultaneously. While GPT-4o demonstrated the highest

overall performance, the few misclassifications were mainly

relevant to these more complex areas, suggesting that the

strengths in language comprehension do not fully extend

to the complex quantitative reasoning that is necessary for

multi-parameter clinical assessments. This underlines the need

for further improvements in numerical reasoning capabilities

in LLMs, particularly in highly specialized domains, such

as healthcare.

Future research presents several promising directions. The

significant performance gap we observed between GPT-4o

and smaller models, like Llama 3.3 70B and DeepSeek R1,

indicates that architectural optimizations and refined training

strategies could enhance the capabilities of more compact

models. A major goal here is to develop more efficient

architectures that can match GPT-4o’s performance, while

requiring fewer computational resources. These insights have

practical implications. Although GPT-4o excels in medical

terminology mapping, its high computational demands and cost

may limit its feasibility for certain applications. The varying

performance characteristics across models emphasize the necessity

of balancing accuracy, efficiency and resource constraints when

selecting a system for specific use cases.

Finally, the dataset of 108 medical terms, derived from real-

world usage in a public hospital, was curated to reflect the

practical challenges of medical language in clinical settings. A

key advantage of this dataset is the availability of expert-validated

ground truth, ensuring a reliable standard for evaluating LLMs,

an aspect often difficult to achieve with larger datasets. While

a broader dataset could enhance generalizability, the focus here

was on assessing model performance in a realistic scenario

with high-quality annotations. The selected terms span diverse

clinical information, including patient demographics, physiological

measurements, disease classifications, and treatments, providing a

representative sample for medical ontology mapping. Additionally,

qualitative analysis by domain experts offers critical insights into

handling complex medical concepts. Future work aims to expand

this evaluation with a larger dataset covering more medical

subfields and data formats to further test the models’ scalability

and adaptability.

6 Conclusions

Our research highlights the evolving role of different LLM

architectures in advancing RDF knowledge graphs. By comparing

multiple systems, we’ve demonstrated not only the current state

of the art but also the progression of capabilities in this

field. The superior performance of GPT-4o suggests a pathway

toward more intelligent, adaptive, and semantically rich knowledge

representation systems, while the varying capabilities of other

systems provide insights into alternative approaches and potential

areas for improvement.

Our comparative study reveals a clear hierarchy in current LLM

capabilities for knowledge graph creation and ontology mapping,

with performance ranging from GPT-4o’s exceptional results, even

without fine-tuning, to the more limited capabilities of smaller

models like Llama 3.370B and DeepSeek R1. This spectrum of

performance highlights both the remarkable progress in the field

and the continuing challenges in developing more efficient and

accessible solutions. As these technologies evolve, we anticipate

further improvements across all systems, potentially narrowing

the current performance gaps while maintaining high standards

of accuracy and reliability. Future work will explore the models’

performance with datasets that involve more diverse relationships,

temporal data, and hierarchical structures. Also the investigation of

hybrid approaches that combine symbolic reasoning with machine

learning, as well as the performance of different LLMs in niche

areas of medical terminology mapping, especially for contexts with

limited computational resources, would significantly expand the

scope of this work.
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