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Early prediction of acute respiratory distress syndrome (ARDS) after liver transplantation 
(LT) facilitates timely intervention. We aimed to develop a predictor of post-LT 
ARDS using machine learning (ML) methods. Data from 755 patients in the internal 
validation set and 115 patients in the external validation set were retrospectively 
reviewed, covering demographics, etiology, medical history, laboratory results, 
and perioperative data. According to the area under the receiver operating 
characteristic curve (AUROC), accuracy, specificity, sensitivity, and F1-value, 
the prediction performance of seven ML models, including logistic regression 
(LR), decision tree, random forest (RF), gradient boosting decision tree (GBDT), 
naïve bayes (NB), light gradient boosting machine (LGBM) and extreme gradient 
boosting (XGB) were evaluated and compared with acute lung injury prediction 
scores (LIPS). 234 (30.99%) ARDS patients were diagnosed. The RF model had 
the best performance, with an AUROC of 0.766 (accuracy: 0.722, sensitivity: 
0.617) in the internal validation set and a comparable AUROC of 0.844 (accuracy: 
0.809, sensitivity: 0.750) in the external validation set. The performance of all 
ML models was better than LIPS (AUROC 0.692, 0.776). The predictor variables 
included the age of the recipient, BMI, MELD score, total bilirubin, prothrombin 
time, operation time, standard urine volume, total intake volume, and red blood 
cell infusion volume. We firstly developed a risk predictor of post-LT ARDS based 
on RF model to ameliorate clinical practice.
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1 Introduction

For patients with end-stage liver disease, liver transplantation (LT) is currently the most 
effective treatment (Samuel et al., 2024), while acute respiratory distress syndrome (ARDS) is 
a common postoperative complication following liver transplantation (LT) with high 
morbidity and mortality rates. In recent studies, ARDS after LT has been reported to cause a 
range of morbidities, with an incidence between 1 and 30% (Feltracco et al., 2013). ARDS plays 
a pivotal role in the poor survival of post-LT patients, leading to prolonged intensive care unit 
(ICU) and hospital stays, increased in-hospital mortality, and long-term physical, 
psychological, and social disabilities (Gorman et al., 2022; Oh et al., 2023).
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Although postoperative ARDS significantly impacts the clinical 
outcomes of LT patients, it is often unrecognized and underdiagnosed, 
leading to the underutilization of timely and effective treatments 
(Tariparast et al., 2025). Therefore, the current research efforts mainly 
focus on identifying the risk factors which assist clinicians in 
implementing preventive interventions in the early stage (Grasselli 
et al., 2023). Earlier studies have reported many risk factors related to 
ARDS after LT, and these risk factors include recipient age, smoking 
history, ongoing dialysis, and preoperative total bilirubin (Ripoll et al., 
2020). In addition, relevant prediction models, such as acute lung 
injury (ALI) prediction scores (LIPS), were established to predict 
ARDS/ALI (Kim B. K. et al., 2021). Using routinely available clinical 
data, we can identify patients at high risk of ARDS/ALI by LIPS in the 
early stage of their illness (Wei et al., 2025). However, the prediction 
performance of LIPS in post-LT patients has not been reported. 
Furthermore, the nonlinear relationship between the outcome 
variables and the explanatory variables could not be excluded, and the 
overfitting and multicollinearity limitations could not be  avoided 
during traditional regression analysis (Bayman and Dexter, 2021).

Novel applications of machine learning (ML) methods in medicine 
have emerged and are constantly evolving (Gotlieb et al., 2022). ML 
has the ability to minimize the above limitations of regression analysis 
and to analyze large, complex datasets, yielding sophisticated outcomes 
and prediction models (Rubulotta et al., 2024). ML methods have 
already been applied in different fields in transplant medicine (Bhat 
et al., 2023), including organ allocation, prediction of overall survival, 
and short-and long-term complications, resulting in the development 
of significant prediction models with the potential to improve clinical 
practice (Swinckels et al., 2024; Tran et al., 2022). However, currently, 
no studies have reported the performance of machine learning models 
in predicting postoperative ARDS in LT patients (Tran et al., 2024).

Therefore, we tried to use our perioperative database to determine 
risk factors for perioperative ARDS in adult LT patients. Moreover, 
we compared the prediction performance of LIPS and seven machine 
learning models, including logistic regression (LR), random forest 
(RF), decision tree (DT), gradient boosting decision tree (GBDT), 
naïve bayes (NB), light gradient boosting machine (LGBM), and 
extreme gradient boosting (XGB). Finally, a visualized risk predictor 
based on an optimal machine learning model was developed to 
predict post-LT ARDS at ICU admission.

2 Methods

2.1 Study design and subjects

This was a retrospective study conducted at a single center and 
was approved by the Ethics Committee of the Third Affiliated Hospital 

of Sun Yat-sen University ([2021]02-023-01). We  retrospectively 
reviewed the electronic medical records of 952 LT patients in our 
institution between January 2015 and February 2020. The recipients 
of organ transplantation were all registered in the China Organ 
Transplant Response Systems (www.cot.org.cn). During retrospective 
enrollment, patients who were under the age of 18 (n  = 111), 
underwent combined organ transplantation (n = 13), presented with 
preoperative ARDS (n = 24) or were missing sufficient data (n = 49) 
were excluded from this study. A total of 755 patients were included 
in the final cohort, which was used to develop and internally validate 
the prediction models of postoperative ARDS in LT patients.

Meanwhile, according to the same inclusion and exclusion 
criteria, 143 patients who underwent LT from March 2020 to 
December 2020 in our institution were screened for temporal external 
validation of the prediction models. Among the 143 identified 
patients, those who were under the age of 18 (n = 21), underwent 
combined organ transplantation (n = 1), presented with preoperative 
ARDS (n = 2) or were missing sufficient data (n = 4) were excluded. A 
total of 115 patients were included in the external validation set.

As the primary outcome of our analysis, ARDS was identified 
according to the Berlin Definition (Ranieri et al., 2012), including 
PaO2/FiO2 ≤ 300 mmHg within 7 days after liver transplantation, 
respiratory failure not fully explained by fluid overload or cardiac 
failure, and bilateral opacities consistent with pulmonary edema on a 
chest radiograph. The secondary outcomes included lengths of stay 
(ICU, hospital), overall hospitalization cost, and one-year survival of 
patients after liver transplantation.

In addition, the predictive capability of the models was compared 
with LIPS, which is currently used to predict the ARDS/ALI risk. 
Finally, the optimal prediction model was visualized as an online risk 
predictor for clinical application at ICU admission. The flow diagram 
of this study is presented in Figure 1.

2.2 Data collection

In the EPR systems of our institution, a database platform was 
established by extracting medical records from the hospital 
information system, picture archiving, and communication system, 
laboratory information system, and care anesthesia system. The 
medical data chosen for our analysis were extracted from this database 
platform in our hospital and were grouped into the following 
categories: (1) Demographics: age of recipient, gender and body mass 
index (BMI); (2) Etiology for liver transplantation: hepatitis, 
hepatocellular carcinoma, alcoholic liver cirrhosis, acute hepatic 
failure, cholestatic liver cirrhosis, genetic metabolic diseases and other 
reasons; (3) Comorbidities: hypertension, diabetes mellitus, 
cardiovascular disease, chronic kidney disease, cerebrovascular 
disease, bronchiectasis, old tuberculosis, chronic obstructive 
pulmonary disease (COPD), pulmonary hypertension, lung infection, 
pulmonary nodules, smoking history and alcohol history; (4) 
Complications and treatments: use of preoperative continuous renal 
replacement therapy (CRRT), plasma exchange (PE) and respirator, 
hepato-pulmonary syndrome, hepato-renal syndrome, pleural 
effusion, spontaneous bacterial peritonitis, hepatic encephalopathy, 
thrombogenesis, esophageal and gastric varices, model for end-stage 
liver disease (MELD) score and Child–Turcotte–Pugh score; (5) 
Laboratory results: white blood cells, red blood cells, platelet, 

Abbreviations: ARDS, Acute Respiratory Distress Syndrome; ICU, Intensive Care 

Unit; LR, Logistic Regression; DT, Decision Tree; RF, Random Forest; GBDT, Gradient 

Boosting Decision Tree; NB, Naïve Bayes; LGBM, Light Gradient Boosting Machine; 

XGB, eXtreme Gradient Boosting; LIPS, Lung Injury Prediction Score; MELD, Model 

for End-stage Liver Disease; SpO2, Saturation of Peripheral Oxygen; FiO2, Fraction 

of Inspiration O2; BMI, Body Mass Index; RFE, Recursive Feature Elimination; SHAP, 

SHapley Additive exPlanations; ALI, Acute Lung Injury; AUROC, Area Under the 

Receiver Operating Characteristic curve.
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hemoglobin, aspartate transaminase, alanine transaminase, albumin, 
total bilirubin, concentration of K+, Na+, Ca2+, Cl−, HCO3

− in blood, 
blood glucose, creatinine, urea nitrogen, fibrinogen, prothrombin 
time and international normalized ratio; (6) Surgery and anesthesia 
characteristics: operation time, anesthesia time, cold ischemic time 
and anhepatic phase time; (7) Intraoperative fluid administration and 
transfusions: crystalloid, colloid, sodium bicarbonate, albumin, urine 
output, standardize urinary output, blood loss, ascites removal, the 
total amount, the total output, red blood cell transfusion, fresh frozen 
plasma transfusion, cryoprecipitate transfusion and platelet 
transfusion. A total of 72 potential perioperative predictive variables 
were included in the initial analysis.

2.3 Variable selection

To reduce the effects of overfitting during training for the model 
performance, we implemented a univariate analysis to filter out the 39 
statistically significant features among the 72 variables. The statistically 
significant features in the univariate analysis were screened by 5-fold 
cross-validation (Liu et al., 2019) and the recursive feature elimination 
(RFE) method embedded with random forest (Li et al., 2024), which 
was trained on the above variables. The least important variables were 
then recursively removed. We finally selected the subset of variables 
with the highest F1-value to develop machine learning prediction 
models. As shown in Figure 2, the results showed that the model 
performed best when the number of features was nine. Therefore, the 
nine features included the age of the recipient, BMI, MELD score, total 
bilirubin, prothrombin time, operation time, standard urine volume, 
total intake volume, and red blood cell infusion volume. In addition, 
the rank of feature importance was determined.

2.4 Classification algorithms

To systematically evaluate the predictive capacity of machine 
learning (ML) in post-LT ARDS, we implemented seven algorithms 
representing diverse computational paradigms. These models were 
selected based on their established performance in medical data 
analysis, methodological heterogeneity, and ability to address clinical 
challenges such as imbalanced outcomes and feature interactions 
(Haug and Drazen, 2023; Liu et  al., 2019). These models were 
developed using Scikit-learn, XGBoost, and LightGBM libraries with 
hyperparameters optimized through 5-fold cross-validation. Missing 
values were addressed via median/mode imputation consistent with 
clinical data preprocessing standards. The comparative optimization 
algorithm is outlined below.

(1) Logistic Regression (LR): A linear probabilistic model serving 
as the baseline for its interpretability and compatibility with 
traditional clinical risk scoring systems. LR provides odds ratios that 
align with conventional statistical analyses while accommodating 
nonlinear relationships via feature engineering (Zabor et al., 2022). 
(2) Decision Tree (DT): A rule-based classifier generating transparent 
decision pathways through recursive binary splitting. DT was 
included to establish interpretable decision thresholds and contrast 
performance against ensemble methods (Luo et  al., 2022). (3) 
Random Forest (RF): An ensemble of 100 decor-related decision trees 
utilizing bootstrap aggregation and randomized feature subset 
selection. Chosen for its intrinsic overfitting resistance and ability to 
model complex interactions between surgical parameters and 
biochemical markers through feature importance ranking (Becker 
et  al., 2023). (4) Gradient Boosting Decision Tree (GBDT): A 
sequential boosting algorithm optimizing prediction residuals 
through additive tree construction. Selected for its superior 

FIGURE 1

Study flowchart. LR, logistic regression; DT, decision tree; RF, random forest; GBDT, gradient boosting decision tree; NB, naive bayes; LGBM, light 
gradient boosting machine; XGB, extreme gradient boosting.
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performance on imbalanced datasets via adaptive instance 
reweighting (Seto et  al., 2022), critical given the 30.99% ARDS 
incidence rate. (5) Naïve Bayes (NB): A probabilistic classifier 
assuming conditional feature independence. Implemented for 
computational efficiency in real-time clinical settings and tolerance 
to minor data missingness (Zhang, 2016). (6) Light Gradient Boosting 
Machine (LGBM): High-performance gradient boosting framework 
employing histogram-based optimization and leaf-wise tree growth. 
Adopted to efficiently process temporal intraoperative variables while 
minimizing computational overhead (Yanagawa et  al., 2024). (7) 
eXtreme Gradient Boosting (XGB): Regularized gradient boosting 
with sparsity-aware split finding and L2 penalty terms. Utilized to 
handle heterogeneous clinical data types while maintaining model 
generalizability through strict regularization constraints (Hou 
et al., 2020).

2.5 Model training and evaluation

The patients were randomly divided into a training dataset (80%) 
and a test dataset (20%). Patients from the training dataset were used 
to develop machine learning models. Patients from the testing dataset 
were used to validate and compare the performance of the developed-
models. We used 5-fold cross-validation to determine the optimal 
hyperparameter combination of each machine learning method. The 
hyperparameters with the highest average validation area under the 
receiver operating characteristic curve (AUROC) were considered the 
optimal hyperparameters. Furthermore, we  used 500 bootstrap 
resamples to calculate the 95% confidence intervals around the sample 
correlation estimates. Missing data were present in less than 5% of the 
total records. Moreover, we substituted the mean for the missing data 
for continuous variables and the mode for incidence variables.

The prediction capability of the machine learning models was 
assessed and compared according to AUROC, accuracy, specificity, 
sensitivity, and F1-value. Accuracy indicates the percent of correct 
prediction among all the samples. Specificity illustrates the correct 
prediction ratios of the negative samples, while sensitivity denotes the 
correct prediction ratios of the positive samples. The F1-value is a 
comprehensive evaluation index that combines precision 
and sensitivity.

2.6 Statistical analysis

Our analysis was performed using the Python programming 
language (Python Software Foundation, version 3.7.4). We expressed 
continuous variables as the medians (interquartile ranges) and 
categorical variables as numbers (percentages). Continuous variables 
were analyzed using the nonparametric Mann–Whitney U test and 
Wilcoxon W-test. Categorical variables were compared using the 
chi-squared test with continuity correction. Statistical significance was 
determined by a p-value less than 0.05.

3 Results

3.1 The basic information and prognosis of 
the study subjects

A total of 755 patients were included in the final cohort and were 
used to develop and internally validate machine learning models for 
predicting postoperative ARDS. It is noteworthy that ARDS occurred 
in 234 patients after liver transplantation, accounting for 30.99% of the 
study subjects, while 521 (69.01%) patients did not have ARDS. The 
basic clinical characteristics of the enrolled patients are presented in 
Table 1.

The patients with ARDS had significantly increased ICU stay 
hours (169.1 vs. 79.3 h, p < 0.001), hospital stay days (26.9 vs. 24.5 d, 
p = 0.003), total hospitalization cost (413513.0 vs. 305144.8, p < 0.001), 
and decreased 7-day survival rate (94.0% vs. 98.7%, p = 0.001), 
1-month survival rate (82.9% vs. 96.0%, p < 0.001), 6-month survival 
rate (76.5% vs. 92.7%, p < 0.001), 1-year survival rate (73.5% vs. 88.7%, 
p ≤ 0.001). The postoperative prognosis of the LT patients is shown in 
Table 2.

3.2 Internal validation performance of the 
machine learning models

The AUROC, accuracy, specificity, sensitivity, and F1-value of the 
internal validation of the machine learning models are shown in 
Table 3 and Figure 3. Among the seven models, LGBM had the largest 

FIGURE 2

The results of features screening and selection. (A) Number of features screened by RFE method. (B) Feature importance ranking of the selected nine 
features illustrated by random forest. MELD, model for end-stage liver Disease; BMI, body mass index.
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TABLE 1 Clinical basic characteristics.

Variables Patients without ARDS Patients with ARDS p-value

(n = 521) (n = 234)

Demographics

Age of recipient (years) 48 (14.0) 50 (16.0) 0.011

Gender (female) 74 (14.2%) 27 (11.5%) 0.379

BMI (kg/m2) 22 (4.1) 23 (4.5) 0.001

Etiology for liver transplantation

Hepatitis (n) 118 (22.7%) 69 (29.5%) 0.055

Hepatocellular carcinoma (n) 243 (46.6%) 53 (22.7%) <0.001

Alcoholic liver cirrhosis (n) 14 (2.7%) 9 (3.9%) 0.530

Acute hepatic failure (n) 118 (22.7%) 96 (41.0%) <0.001

Cholestatic liver cirrhosis (n) 20 (3.8%) 2 (0.9%) 0.043

Genetic metabolic diseases (n) 7 (1.3%) 5 (2.1%) 0.623

Other reasons (n) 1 (0.2%) 0 (0.0%) 0.681

Comorbidities

Hypertension (n) 47 (9.0%) 28 (12.0%) 0.263

Diabetes mellitus (n) 78 (15.0%) 35 (15.0%) 0.916

Cardiovascular disease (n) 17 (3.3%) 15 (6.4%) 0.073

Chronic kidney disease (n) 6 (1.2%) 3 (1.3%) 0.834

Cerebrovascular disease (n) 4 (0.8%) 2 (0.9%) 0.750

Bronchiectasis (n) 12 (2.3%) 2 (0.9%) 0.283

Old tuberculosis (n) 16 (3.1%) 5 (2.1%) 0.629

COPD (n) 15 (2.9%) 13 (5.6%) 0.111

Pulmonary hypertension (n) 2 (0.4%) 2 (0.9%) 0.778

Lung infection (n) 343 (65.8%) 190 (81.2%) <0.001

Pulmonary nodules (n) 170 (32.6%) 47 (20.1%) 0.001

Smoking history (n) 162 (31.1%) 101 (43.2%) 0.002

Alcohol history (n) 134 (25.7%) 84 (35.9%) 0.006

Complications and treatments

Use of preoperative CRRT (n) 25 (4.8%) 35 (15.0%) <0.001

Use of preoperative PE (n) 23 (4.4%) 28 (12.0%) <0.001

Use of preoperative respirator (n) 15 (2.9%) 32 (13.7%) <0.001

Hepato-pulmonary syndrome (n) 0 (0.0%) 0 (0.0%) 1.000

Hepato-renal syndrome (n) 8 (1.5%) 22 (9.4%) <0.001

Pleural effusion (n) 139 (26.7%) 74 (31.6%) 0.191

Spontaneous bacterial peritonitis (n) 46 (8.8%) 39 (16.7%) 0.002

Hepatic encephalopathy (n) 87 (16.7%) 85 (36.3%) <0.001

Thrombogenesis (n) 30 (5.8%) 12 (5.1%) 0.859

Esophageal and gastric varices (n) 327 (62.8%) 126 (53.9%) 0.026

MELD score 17 (19.0) 33 (18.8) <0.001

Child–Turcotte–Pugh score 9 (5.0) 11 (3.0) <0.001

Laboratory results

White blood cells (109/L) 5.0 (4.3) 6.7 (6.6) <0.001

Red blood cells (1012/L) 3.3 (1.6) 3.0 (1.4) 0.001

(Continued)
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AUROC (0.769, 95% CI 0.699–0.830) and highest specificity (0.700, 
95% CI 0.350–1.000). DT had the smallest AUROC (0.707, 95% CI 
0.617–0.781). RF (0.766, 95% CI 0.693–0.825) had a better AUROC 
than the other models, with the exception of LGBM. XGB showed the 
highest accuracy (0.735, 95% CI 0.665–0.795), while LR had the 

lowest accuracy (0.649, 95% CI 0.579–0.715) and the highest 
sensitivity (0.682, 95% CI 0.548–0.814). RF had the highest F1-value 
(0.574, 95% CI 0.467–0.667). Since the RF model had the greatest 
comprehensive prediction performance in the internal validation set, 
we eventually chose the RF model for further analysis and application.

TABLE 1 (Continued)

Variables Patients without ARDS Patients with ARDS p-value

(n = 521) (n = 234)

Platelet (109/L) 75.0 (87.0) 67.5 (66.8) 0.023

Hemoglobin (g/L) 102.0 (40.0) 96.0 (37.0) 0.022

Aspartate transaminase (U/L) 60.0 (75.0) 81.0 (85.5) <0.001

Alanine transaminase (U/L) 38.0 (44.0) 49.0 (78.3) 0.003

Albumin (g/dL) 35.6 (7.2) 35.2 (5.9) 0.253

Total bilirubin (umol/L) 72.2 (380.3) 363.6 (449.2) <0.001

K+ (mmol/L) 3.8 (0.6) 3.9 (0.6) 0.918

Na+ (mmol/L) 139.5 (6.4) 138.8 (6.1) 0.129

Ca2+ (mmol/L) 2.3 (0.2) 2.3 (0.3) 0.006

Cl− (mmol/L) 103.1 (8.5) 101.2 (8.9) 0.074

HCO3
− (mmol/L) 22.8 (4.2) 22.4 (4.9) 0.655

Blood glucose (mmol/L) 4.9 (2.0) 5.0 (3.3) 0.730

Creatinine (umol/L) 72.0 (27.0) 72.5 (46.5) 0.105

Urea nitrogen (mmol/L) 3.8 (3.3) 2.9 (3.3) <0.001

Fibrinogen (g/L) 2.7 (2.9) 2.0 (3.6) 0.043

Prothrombin time (s) 18.2 (13.2) 31.0 (19.8) <0.001

International normalized ratio 1.6 (1.4) 3.0 (2.3) <0.001

Surgery and anesthesia characteristics

Operation time (min) 420 (100.0) 440 (100.8) <0.001

Anesthesia time (min) 505 (110.0) 527 (112.0) <0.001

Cold ischemic time (min) 360 (77.0) 360 (75.0) 0.223

Anhepatic Phase time (min) 45 (13.0) 47 (15.0) 0.057

Intraoperative fluid and transfusion

Crystalloid (mL) 3,000 (1500.0) 3,200 (1600.0) 0.269

Colloid (mL) 0 (0.0) 0 (0.0) 0.447

Sodium bicarbonate (mL) 0 (125.0) 110 (250.0) <0.001

Albumin (mL) 250 (150.0) 250 (200.0) 0.043

Urine output (mL) 1,600 (1200.0) 1,200 (1385.0) <0.001

Standardize urinary output (mL/kg/h) 3.1 (2.2) 2.4 (2.1) <0.001

Blood loss (mL) 1,000 (1200.0) 1948 (2000.0) <0.001

Ascites removal (mL) 300 (1500.0) 1,000 (1800.0) <0.001

The total amount (mL) 7,090 (3190.0) 8,450 (4343.8) <0.001

The total output (mL) 3,650 (2800.0) 4,280 (3880.0) <0.001

Red blood cell transfusion (mL) 1,000 (1070.0) 1,500 (1500.0) <0.001

Fresh frozen plasma transfusion (mL) 2,400 (1200.0) 3,000 (1662.5) <0.001

Cryoprecipitate transfusion (unit) 30 (20.0) 36 (10.5) <0.001

Platelet transfusion (n) 38 (7.3%) 33 (14.1%) 0.005

Data were presented as median (interquartile range) or number (%).
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3.3 External validation performance of the 
machine learning models

A total of 115 patients were included in the external validation set, 
including 28 (24.35%) with ARDS and 87 (75.65%) without ARDS. The 
AUROC, accuracy, specificity, sensitivity, and F1-value of the various 
machine learning models are shown in Table 4 and Figure 4. Among the 
seven models, LGBM had the largest AUROC (0.849, 95% CI 0.831–
0.865) and highest specificity (0.667, 95% CI 0.158–1.000). DT had the 
smallest AUROC (0.790, 95% CI 0.661–0.855). Similarly, the AUROC of 
the RF model (0.844, 95% CI 0.823–0.862) was better than that of the 
other models but worse than that of the LGBM model. NB showed the 
highest accuracy (0.826, 95% CI 0.817–0.835), while LR showed the 
lowest accuracy (0.748, 95% CI 0.713–0.783) and the highest sensitivity 
rate (0.821, 95% CI 0.750–0.857). RF had the highest F1-value (0.646, 
95% CI 0.606–0.688). The RF model also had the best comprehensive 
performance for predicting ARDS after LT in the temporal validation set.

3.4 Comparison of the prediction 
performance: the machine learning 
models vs. LIPS

The prediction performance of the lung injury prediction 
score (LIPS) in the internal validation set is shown in Table 3 and 
Figure  3. The AUROC was 0.692, 95% CI 0.601–0.774. The 

accuracy was 0.722, 95% CI 0.695–0.748. The specificity was 
0.608, 95% CI 0.500–0.696; the sensitivity was 0.370, 95% CI 
0.300–0.462; and the F1-value was 0.459, 95% CI 0.390–0.507. 
The prediction performance of the LIPS model in the temporal 
validation set is shown in Table 4 and Figure 4: the AUROC was 
0.776, 95% CI 0.657–0.880; the accuracy was 0.809, 95% CI 
0.783–0.843; the specificity was 0.688, 95% CI 0.588–0.786; the 
sensitivity was 0.458, 95% CI 0.387–0.519; and the F1-value was 
0.531, 95% CI 0.468–0.593. Surprisingly, the prediction 
performance of all the machine learning models was better than 
that of LIPS. These results indicated the poor ability of the LIPS 
model to predict postoperative ARDS in LT patients.

3.5 The SHAP value and feature 
importance

The feature importance evaluated using the SHAP value in the 
RF prediction model is shown in Figure  5. MELD score, 
prothrombin time, and red blood cell infusion volume ranked as 
the top three important predictors. The transparency of the 
prediction made by the RF model was increased according to the 
SHAP summary plot. Each point represents a sample, and a wide 
area means a large number of samples are gathered. The color on 
the right indicates the value of the feature, red indicates that the 
feature value is high, and blue indicates that the feature value is 
low. Therefore, the results showed that the age of the recipient, 
BMI, MELD score, total bilirubin, prothrombin time, operation 
time, total intake volume, and red blood cell infusion volume was 
associated with higher SHAP value output, indicating a higher 
likelihood of ARDS after liver transplantation. Conversely, the 
standard urine volume was associated with a lower probability of 
postoperative ARDS. These results are consistent with what 
we observed in clinical practice.

To achieve clinical application and improve clinical practice, 
we  developed a forecasting website based on the RF model. 
There were nine blank inset boxes for users to input the main 
relevant variables, and the incidence of ARDS after LT could 
be calculated and shown on this page. The results were expressed 
as a binary outcome with the probability (%) of developing 
postoperative ARDS. Visit the website at http://wb.aidcloud.cn/
zssy/ards.html.

TABLE 2 The postoperative prognosis of LT patients.

Variables Patients 
without 

ARDS

Patients 
with ARDS

p-value

ICU stay hours 79.3 (74.4) 169.1 (130.0) <0.001

Hospital stay days 24.5 (13.7) 26.9 (15.5) 0.003

Total hospitalization 

cost

305144.8 

(109557.5)

413513.0 

(161721.3)

<0.001

7-days survival 514 (98.7%) 220 (94.0%) 0.001

1-month survival 500 (96.0%) 194 (82.9%) <0.001

6-months survival 483 (92.7%) 179 (76.5%) <0.001

1-year survival 462 (88.7%) 172 (73.5%) <0.001

Data were presented as median (interquartile range) or number (%).

TABLE 3 Performance of machine learning models and LIPS in the internal validation set.

Models AUROC Accuracy Specificity Sensitivity F1-value

LR 0.715 (0.632–0.787) 0.649 (0.579–0.715) 0.458 (0.353–0.558) 0.682 (0.548–0.814) 0.547 (0.442–0.637)

RF 0.766 (0.693–0.825) 0.722 (0.652–0.781) 0.540 (0.422–0.661) 0.617 (0.488–0.735) 0.574 (0.467–0.667)

DT 0.707 (0.617–0.781) 0.675 (0.589–0.755) 0.481 (0.362–0.611) 0.641 (0.449–0.8) 0.551 (0.429–0.64)

GBDT 0.739 (0.662–0.803) 0.728 (0.662–0.792) 0.600 (0.433–0.777) 0.391 (0.265–0.537) 0.470 (0.351–0.585)

NB 0.753 (0.676–0.819) 0.728 (0.656–0.788) 0.565 (0.419–0.716) 0.520 (0.394–0.659) 0.545 (0.412–0.643)

LGBM 0.769 (0.699–0.830) 0.728 (0.649–0.801) 0.700 (0.350–1.000) 0.245 (0.019–0.440) 0.359 (0.038–0.53)

XGB 0.750 (0.678–0.811) 0.735 (0.665–0.795) 0.606 (0.457–0.761) 0.423 (0.291–0.554) 0.494 (0.378–0.596)

LIPS 0.692 (0.601–0.774) 0.722 (0.695–0.748) 0.608 (0.500–0.696) 0.370 (0.300–0.462) 0.459 (0.390–0.507)

Data were presented as mean (95% confidence interval).
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4 Discussion

Early recognition and prompt medical intervention of postoperative 
ARDS in LT patients are imperative for diminishing the risks of ARDS 
progression and improving the survival rate of patients (Wu et al., 2022). 
A reliable and accurate prediction model is needed to improve the 
prognosis of ARDS after LT. In our study, for the early prediction of 
postoperative ARDS after LT, we developed and validated the prediction 
performance of seven machine learning models and LIPS. The results 

showed that the random forest model performed optimally in predicting 
ARDS after LT among the above prediction models. Moreover, the RF 
model indicated that the age of the recipient, BMI, MELD score, total 
bilirubin, prothrombin time, operation time, standard urine volume, 
total intake volume, and red blood cell infusion volume were the nine 
most important weights for ARDS after LT. Based on the RF model, 
we  developed an online risk predictor for timely detection and 
intervention at ICU admission, and this predictor can ultimately 
improve clinical practices.

FIGURE 3

Performance of machine learning models and LIPS in the internal validation set. ROC, area under the receiver operating characteristic curve.

TABLE 4 Performance of machine learning models and LIPS in the external validation set.

Models AUROC Accuracy Specificity Sensitivity F1-value

LR 0.818 (0.799–0.833) 0.748 (0.713–0.783) 0.489 (0.451–0.535) 0.821 (0.75–0.857) 0.611 (0.568–0.658)

RF 0.844 (0.823–0.862) 0.809 (0.783–0.826) 0.583 (0.538–0.625) 0.750 (0.679–0.786) 0.646 (0.606–0.688)

DT 0.790 (0.661–0.855) 0.765 (0.678–0.826) 0.514 (0.400–0.617) 0.714 (0.536–0.857) 0.597 (0.476–0.696)

GBDT 0.827 (0.795–0.860) 0.809 (0.769–0.843) 0.630 (0.532–0.727) 0.536 (0.393–0.643) 0.577 (0.468–0.667)

NB 0.842 (0.831–0.851) 0.826 (0.817–0.835) 0.654 (0.630–0.680) 0.607 (0.571–0.643) 0.630 (0.611–0.655)

LGBM 0.849 (0.831–0.865) 0.791 (0.757–0.835) 0.667 (0.158–1.000) 0.304 (0.017–0.571) 0.421 (0.031–0.627)

XGB 0.833 (0.805–0.860) 0.809 (0.765–0.843) 0.609 (0.520–0.692) 0.571 (0.464–0.679) 0.593 (0.500–0.673)

LIPS 0.776 (0.657–0.880) 0.809 (0.783–0.843) 0.688 (0.588–0.786) 0.458 (0.387–0.519) 0.531 (0.468–0.593)

Data were presented as mean (95% confidence interval).
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In the last few decades, the current donor allocation system 
prioritized patients with the most severe liver disease (Lee et al., 2019), 
as evidenced by a large percentage of patients with multiorgan 
dysfunction and high MELD scores in our study cohort (Kim 
W. R. et al., 2021). Therefore, various underlying respiratory disorders 
might be  present in patients with end-stage liver disease before 
transplantation. Our study showed that the length of ICU stay, 
postoperative hospital stay, hospitalization cost, and mortality rate in 
LT patients suffering from ARDS were increased significantly. The 
findings of the present study were consistent with those of previous 
studies (Ripoll et al., 2020). Notably, our results demonstrated that the 
incidence of ARDS was 30.99%. However, the studies available in the 
literature with a comparable LT population reported an incidence of 
ARDS of less than 5% after the introduction of the Berlin definition 
(Ripoll et al., 2020; Zhao et al., 2016). One probable reason was that 
the proportion of LT patients with severe hepatitis and acute liver 
failure in our center was significantly higher than the proportion of 
patients in the above two studies. Higher degrees of hepatic 
impairment resulted in a higher incidence of postoperative ARDS 
(Ketcham et al., 2020).

To date, ML prediction models have already shown excellent 
performance in predicting diseases and clinical conditions, and 
personalized risk probabilities could be generated for each patient 
(Abdullah, 2024; Maddali et al., 2022). These models could provide 

decision-support tools to assist clinicians in targeting interventions 
(Cheng et al., 2025). After the development and validation of various 
machine learning models, our study showed that the RF model had 
the best performance in both internal (AUROC: 0.766) and external 
validation (AUROC: 0.844) for predicting ARDS after LT. This can 
be attributed to RF’s ensemble structure, which aggregates predictions 
from multiple decision trees to minimize overfitting, and its ability to 
handle nonlinear relationships through feature importance ranking. 
In contrast, simpler models like LR and DT showed lower sensitivity 
and specificity, likely due to their linear assumptions or susceptibility 
to noise. LGBM achieved the highest AUROC in external validation 
(0.849) but exhibited lower sensitivity (0.304), suggesting a trade-off 
between specificity and sensitivity in imbalanced datasets. Random 
forest is an extension of the traditional decision tree classifier. Each 
tree was constructed from a random subset of the explanatory 
variables and a random subset of the original training data. By voting 
for these randomly generated trees, random forests could minimize 
overfitting by making the decision (Hu and Szymczak, 2023).

For statistical validation, we divided 500 repeat samples of patients 
into different training and test datasets (80% training and 20% test 
sets) and 5-fold cross-validation confirmed the robustness of RF, with 
tight confidence intervals for AUROC and F1-scores (Tables 3, 4). The 
results of the training dataset were validated using a temporal external 
validation set. Remarkably, in our study, some of the data distributions 

FIGURE 4

Performance of machine learning models and LIPS in the external validation set. ROC, area under the receiver operating characteristic curve.
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of the internal and temporal external validation sets had significant 
differences, reflecting the strong robustness and adaptability of the RF 
model on data with different distributions. Moreover, the wide 
application of structured data and database systems has created the 
technical foundation for applying complex big data algorithms in 
clinical settings (Swinckels et al., 2024). In this study, the perioperative 
database system included a variety of in-hospital data such as 
demographic data, medical history, preoperative test and examination 
results, and anesthetic and surgical records, as shown in Tables 1, 2.

Previous studies have shown that a variety of risk factors are 
associated with postoperative ARDS (Ketcham et al., 2020; Rubulotta 
et al., 2024). All features of the RF model identified in our study were 
in accordance with previous research on the risk factors for ARDS, 
and these results reflect the advantage of capturing correlations 
between independent variables in large complex datasets and finding 
trends in subsets of data. Our study highlights the limitations of the 
LIPS model, which showed suboptimal performance in predicting 
post-LT ARDS (AUROC: 0.692–0.776). Unlike LIPS, which relies on 
linear risk scoring, ML models like RF dynamically integrate nonlinear 
interactions between variables (e.g., the interplay between MELD 
score and red blood cell transfusions). This aligns with recent literature 
emphasizing the superiority of ML in complex clinical scenarios. For 
instance, the SHAP analysis of the RF model revealed that 
intraoperative factors (e.g., red blood cell infusion volume) and 
preoperative liver dysfunction (e.g., MELD score) synergistically 
contribute to ARDS risk—a relationship undetectable by traditional 
scoring systems. These findings underscore the need for data-driven, 
ML-based tools in perioperative critical care. In addition, the features 
are routinely recorded and widely used in clinical practice, and none 
of these factors are obtained by special instruments or equipment, 
indicating that our model is feasible and suitable for use in hospitals 
in a wide range of settings. Although the internal mechanisms remain 
unclear, the high clinical relevance of these factors has established a 

solid foundation for the subsequent development of machine learning 
models and has made the conclusions clinically and practically  
valuable.

Finally, we developed an internet-based risk estimator based on 
the RF model of this study, which was easy to use for clinicians. The 
forecasting website could facilitate the translation and clinical 
application of our research findings (Li et al., 2022). Our model was 
able to calculate the likelihood of developing postoperative ARDS in 
LT patients at ICU admission, allowing the output to reflect the risk 
of the target event rather than just providing a binary outcome. A 
definite time window before the event would probably make potential 
intervention more realistic. However, to optimize the model 
performance and to improve the accuracy of risk prediction, 
prospective multicenter datasets should be collected to validate the 
prediction performance of our machine learning model in the future.

This study had several limitations. First, this study is a single-
center retrospective study with a small sample size. The results 
need to be interpreted with caution because they lacked variables 
of intraoperative respiratory parameters, which might be critical. 
Second, it is more difficult to interpret the results of machine 
learning models than traditional methods. The different datasets 
in machine learning models might show different performances 
and results. Additionally, AUROC values could vary depending on 
the different parameters used in machine learning. The models 
need to correspond to the different occasions based on the 
requirements. Excessive prioritization of AUC values should 
be avoided because this might make models unreliable in real-
world applications. Third, many of the important variables 
reported in our study are not clinically modifiable. Therefore, it is 
not certain that our results could turn into a viable alternative to 
improve the clinical outcomes of patients undergoing 
liver  transplantation. However, personalized prevention might 
be appropriate based on risk information.

FIGURE 5

The SHAP value plot by combining feature importance with feature effects in RF model.
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5 Conclusion

In conclusion, this study focused on ARDS, a life-threatening 
complication following liver transplantation, by constructing machine 
learning predictive models through the integration of multidimensional 
perioperative clinical data. Feature selection identified nine core 
predictors. Comparative analysis revealed that predictive models 
developed using seven machine learning algorithms demonstrated 
significantly superior performance to conventional pulmonary injury 
prediction scores, with the random forest model exhibiting optimal 
predictive capability. To facilitate clinical translation, we developed an 
online risk calculator (accessible at http://wb.aidcloud.cn/zssy/ards.
html) based on the optimal model, which enables real-time 
individualized risk assessment through a dynamic interactive interface, 
thereby providing decision support for preoperative risk evaluation and 
intraoperative precision management. The findings not only enhance 
understanding of risk factors for post-transplant ARDS but more 
importantly establish a clinically applicable intelligent early-warning 
system, demonstrating substantial practical implications for improving 
patient prognosis.
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