
TYPE Original Research
PUBLISHED 18 June 2025
DOI 10.3389/frai.2025.1549085

OPEN ACCESS

EDITED BY

Georgios Leontidis,
University of Aberdeen, United Kingdom

REVIEWED BY

Parisa Kordjamshidi,
Michigan State University, United States
Santhosh Kumar Selvam,
o9 Solutions, India

*CORRESPONDENCE

Florian Peter Busch
florian_peter.busch@tu-darmstadt.de

RECEIVED 20 December 2024
ACCEPTED 12 May 2025
PUBLISHED 18 June 2025

CITATION

Busch FP, Zečević M, Kersting K and Dhami DS
(2025) Elucidating linear programs by neural
encodings. Front. Artif. Intell. 8:1549085.
doi: 10.3389/frai.2025.1549085

COPYRIGHT

© 2025 Busch, Zečević, Kersting and Dhami.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Elucidating linear programs by
neural encodings

Florian Peter Busch1,2*, Matej Zečević1, Kristian Kersting1,2,3,4 and
Devendra Singh Dhami5

1Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany, 2Hessian
Center for AI (hessian.AI), Darmstadt, Germany, 3Centre for Cognitive Science, Technical University of
Darmstadt, Darmstadt, Germany, 4Foundations of Systems AI, German Center for Artificial Intelligence
(DFKI), Darmstadt, Germany, 5Department of Mathematics and Computer Science, Eindhoven
University of Technology, Eindhoven, Netherlands

Linear Programs (LPs) are one of the major building blocks of AI and have
championed recent strides in di�erentiable optimizers for learning systems.
While e�cient solvers exist for even high-dimensional LPs, explaining their
solutions has not receivedmuch attention yet, as explainable artificial intelligence
(XAI) has mostly focused on deep learning models. LPs are mostly considered
white-box and thus assumed simple to explain, but we argue that they are not
easy to understand in terms of relationships between inputs and outputs. To
mitigate this rather non-explainability of LPs we show how to adapt attribution
methods by encoding LPs in a neural fashion. The encoding functions consider
aspects such as the feasibility of the decision space, the cost attached to
each input, and the distance to special points of interest. Using a variety of
LPs, including a very large-scale LP with 10k dimensions, we demonstrate the
usefulness of explanation methods using our neural LP encodings, although the
attribution methods Saliency and LIME are indistinguishable for low perturbation
levels. In essence, we demonstrate that LPs can and should be explained, which
can be achieved by representing an LP as a neural network.

KEYWORDS

XAI, linear programming, attributions, neural encodings, machine learning

1 Introduction

With the rise in popularity of Deep Learning in recent years which was corroborated by

its tremendous success in various applications (Krizhevsky et al., 2012; Mnih et al., 2013;

Vaswani et al., 2017), the popularity of methods which help to understand such models

has increased as well (Sundararajan et al., 2017; Selvaraju et al., 2017; Hesse et al., 2021).

The latter works constitute a new sub-field within artificial intelligence (AI) research,

often referred to as explainable artificial intelligence (XAI). While XAI has tried a wide

variety of methods and techniques to unravel the “black-box” of deep learning models,

many restrictions can be found regarding the notion of explainability or interpretability

that is expected and sought (Stammer et al., 2021). Therefore, to move beyond simple

“heat-map” type of attributions, explainable interactive learning research [XIL; see for

instance Teso and Kersting (2019)] poses one such alternative. However, in our work, we

explore alternativemodels rather than other data streams or alternative definitions, moving

“beyond” conventional attributionmethods, i.e., we consider Linear Programs (LPs).While

there has been considerable progress in increasing the understanding of neural networks

(NNs), the complexity of deep models has received significant attention from the field of

XAI, even though other fields might benefit from such techniques as well—for example,

LPs from mathematical optimization.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1549085
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1549085&domain=pdf&date_stamp=2025-06-18
mailto:florian_peter.busch@tu-darmstadt.de
https://doi.org/10.3389/frai.2025.1549085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1549085/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

Interestingly, LPs are, at first glance, on the opposite spectrum

of model complexity, and they give the impression of being

“white-box”. Representing problems with linear constraints and

relationships, LPs can be useful and, in fact, are used for a multitude

of real-world problems, and there exist many solvers capable of

solving even high-dimensional LPs. It is even possible to use, solve,

and backpropagate through LPs in a NN (Paulus et al., 2021; Ferber

et al., 2020) and recent research has even shown the potential of

using NNs to help solve LPs (Wu and Lisser, 2023; Li et al., 2024).

While a solver can be used to calculate the optimal solution

of an LP, some applications could benefit from an increased

understandability of their underlying LPs. To better illustrate how

our method aims to go beyond optimal solutions, consider a

scenario as shown in Figure 1. A company wants its employees to be

able to perform multiple tasks instead of only working on a single

problem. The company’s overall goal is to assign the amount of time

each person spends on each task, i.e., a variable represents a person-

task pair, see top left in Figure 1. In other words, a solution consists

of a full assignment plan with information on how long each person

is supposed to work on each task. There are several constraints.

Each person only has a specific amount of time available. For each

task, there is a minimum amount of time required to finish the

necessary work and a maximum amount of time that should not

be exceeded. There could be further constraints like a minimum

and maximum amount of time spent on each task per person or

even person-specific constraints where certain individuals are not

allowed to work on a specific task. Even with such constraints, there

can be multiple solutions. In order to prefer a feasible solution

over another, a score can be assigned to each variable where, if

possible, more time should be assigned to variables with higher

scores (green bars). This score could represent how much a person

would like to work on the respective task, and the optimal solution

would represent the assignment plan where the overall happiness

is maximized without violating any constraints. This entire task

assignment problem can be formulated as an LP. Given a large

number of tasks, persons, and constraints, one can see how such

a problem might quickly become quite complex.

Now, conventionally, one can use an LP solver on this problem,

resulting in an optimal solution (top right of Figure 1). We propose

to, in addition, get further insights into the role of the individual

task assignments in an assignment plan (i.e., variable setting

or instance) under consideration of the constraints. Different

possibilities to do so can be seen as different “questions” to be asked

on which the attributions for the respective assignment plan will

depend.

To achieve this goal, we propose to combine the field of

XAI and LPs by utilizing the methods from XAI to increase

the understanding of LPs. Figure 2 illustrates our basic approach.

Given an LP, we use an encoding function φ to create data based

on that LP, which is then used to train a NN. In the second

step, we use common XAI methods mostly designed for use

in Deep Learning to analyze the so-trained NN. By introducing

different encodings for an LP, we create meaningful learnable

tasks for the NN models. This, in turn, allows for applying any

attribution method designed to help explain NNs, and hence, we

can make use of the XAI literature to gain a better understanding

of the given LP. We look at the attribution methods Integrated

Gradients (Sundararajan et al., 2017), Saliency (Simonyan et al.,

2014), Feature Permutation (Breiman, 2001), and LIME (Ribeiro

et al., 2016).

Other attribution methods exist that are based on similar

principles (e.g., perturbations, gradients) or have different goals,

such as evaluating the importance of single layers within a

NN (Dhamdhere et al., 2019; Shrikumar et al., 2018). We focus

on the aforementioned attribution methods as they are well-known

methods and based on different principles.

Getting closer to the goal of making LPs “properly explainable”,

such that this refers to an intuitive, human-level understanding,

would have incredible implications for science and industry (well

beyond AI research). Scheduling problems (Jaumard et al., 1998;

Garaix et al., 2018) could be looked at from an additional

angle, considering aspects outside of the optimal solution. Energy

systems researchers could design sustainable infrastructure to

cover long-term energy demand (Schaber et al., 2012). Also, LP

explainability naturally comes with strong implications within AI

research, for instance in quantifying uncertainty and probabilistic

reasoning (Weiss et al., 2007).

Overall, we make the following contributions: (1)We introduce

an encoding function that distinguishes feasible from infeasible

instances, including the cost of LP solutions, two functions focusing

on the constraints, and a function using the LP vertices. (2) We

look at the attribution methods and compare them depending

on these encodings. (3) We once again explain the importance

of selecting an appropriate baseline for Integrated Gradients. (4)

We show similarities between Saliency and LIME, and we propose

the property of Directedness as the main discriminative criterion

between Saliency and LIME on the one hand and our Feature

Permutation approach on the other hand.

We make our code publicly available at: https://github.com/

olfub/XLP.

2 Background and related work

First, a short introduction to linear programs is given. After

that, the necessary background on XAI is explained, including

short descriptions of the attribution methods Integrated Gradients,

Saliency, Feature Permutation, and LIME. This section ends with a

list of general properties of attribution methods.

2.1 Optimization using linear programs

A linear program (LP) consists of a cost vector c ∈ Rn and

a number of inequality constraints specified by A ∈ Rm×n and

b ∈ Rm. The objective of an LP is to find a point (or instance)

x ∈ Rn which minimizes the cost cTx, is non-negative (x ≥ 0), and

does not violate the constraints specified by A and b in the form of

Ax ≤ b.

There can either be no solution, one solution, or infinitely

many solutions (Hoffman et al., 1953). Theminimization task is the

objective function and can also be written as a maximization task

of the negative cost (i.e.,maximizing the gain instead ofminimizing

the cost). In this paper, unless stated otherwise, when talking about

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://github.com/olfub/XLP
https://github.com/olfub/XLP
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

FIGURE 1

Task assignment example. The LP sketched here consists of variables describing the amount of time spent by a person on a specific task. Constraints
restrict the space of feasible assignment plans. An LP solver can calculate the optimal assignment plan with respect to some cost/reward (top right).
We propose to also look at attributions of assignments to get additional insights into the role of the individual assignment values (bottom right).

FIGURE 2

Schematized overview. For the first time, we apply XAI to LPs. To justify said application, we first propose an encoding φ of the initial LP, which is then
used for learning a NN. Subsequently, said NN is analyzed using XAI (best viewed in color).

the constraints, we refer to Ax ≤ b and not x ≥ 0. When referring

to a certain number of constraints in a specific LP, we refer to such

a number of rows in A and corresponding elements b.

Sensitivity analysis (Bazaraa et al., 2008; Ward and Wendell,

1990; Saltelli and Annoni, 2010) on the LP and its dual can be

used for explaining LPs. For example, it can answer questions

on the impact of changes of some value in c, A, or b on the

optimal solution or even of adding an entirely new constraint to

the LP. These approaches, as well as infeasibility analysis (i.e., how

an unsolvable LP can be changed to have at least one feasible

solution) (Murty et al., 2000), can result in very useful insights on

an LP for a specific question. Overall, our approach is inherently

different from sensitivity analysis. While there are explanations

that are easiest to obtain using sensitivity analysis, our approach

of utilizing various types of encoding functions and attribution

methods introduces entirely new possibilities for explaining LPs.1

1 For an in-depth comparison between sensitivity analysis and our

approach, we refer to the Supplementary material.

2.2 Attribution methods from XAI

We follow the standard notion defined in Sundararajan et al.

(2017):

Definition 1. Let F :Rn → R be a NN and x = (x1, . . . , xn) ∈

Rn denote an input. Then we call AF(x) = (a1, . . . , an) ∈ Rn

attribution where ai is the contribution of xi for prediction F(x).

Therefore, the attribution AF(x) for the instance x consists of one

attribution value for each feature of x. Such an attribution value

ai for the i-th feature describes the contribution of that feature to

the output. How exactly this contribution should be understood

depends on the attribution method.

The attribution methods here were chosen with the aim of

enabling a comparison of different approaches. “Captum” was used

to apply these methods (Kokhlikyan et al., 2020). We briefly cover

the attribution methods relevant to this work’s analysis. For a more

general overview of XAI methods, surveys exist that extensively

cover the entire breadth of this field (Schwalbe and Finzel, 2023;

Abhishek and Kamath, 2022).

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

2.2.1 Integrated gradients
Sundararajan et al. (2017) proposed an attribution method for

deep networks that calculates attribution relative to a baseline.

Formally, we are given IGi(x) = (xi − x′i)×
∫ 1
α=0

∂F(x′+α×(x−x
′))

∂xi
dα

where xi is the ith element of x and x
′ is the baseline.

2.2.2 Saliency
Simonyan et al. (2014) proposed a straightforward approach in

which the attribution is obtained by taking the predictive derivative

with respect to the input. Therefore SALi(x) =
dF
dxi

(x).

2.2.3 Feature permutation
In the following, we consider a perturbation-based notion to

feature permutation to allow for comparison in later sections.

Feature Permutation (Breiman, 2001) requires multiple instances

for calculating the attribution. The general idea is to use a batch

of instances, iterate over every feature, permute the values of the

respective feature in that batch, and then derive the attribution for

each feature and instance by calculating the difference in predictive

quality before and after the permutation. Since we want to have

attributions for only single instances, we first define the feature

importance (FI) function as acting on batches, that is FI :X ⊂

Rm×n → Rm×n, where X is the space of all batches of m

instances with n features. FI takes a batch of instances and calculates

attribution for each instance and feature by applying permutation.

To obtain attribution for a single instance, we generate instances

around the input instance using perturbation. We say that function

p(x,m) ∈ R(m+1)×n generates m ∈ N random perturbations of

x and returns those perturbations and x (x in the last column).

With FI and p, we can now apply the feature permutation algorithm

of “Captum” on a single instance using FI ◦ p, but we still need

to decide how to use this attribution for this batch to obtain an

attribution for just one instance. To this end, we generate one

perturbed instance around the input point, calculate the attribution

of this batch of two points using feature permutation P = (FIi ◦

p)(x, 1) (where FIi returns the feature importances of feature i only),

and return only the attribution with respect to the original input

instance. In order to decrease the impact of randomness, this is

repeated several times, and the attributions are averaged. Therefore,

this feature permutation approach FP is given by FPi(x) =
∑10

j=1 P:,2

10 ,

where P:,2 is the second column of P (the column representing the

attribution with respect to the original input instance).

2.2.4 LIME
Ribeiro et al. (2016) used a strategy entirely different from

the aforementioned attribution methods. The key idea of LIME

is to train a surrogate model. While this model will only be able

to reliably predict accurate results for the area around the input

instance, this reduced complexity aims to make this additional

model more interpretable. We have LIMEi(x) = wIM where wIM

are the weights of the linear interpretable model surrounding

x. Then we simply state LIMEi(x) = R(p(x), FB(p(x))) where

p :Rn → Rj×n is a function which generates a batch of perturbed

data XP ∈ Rj×n, FB is a batch-version of F (FB :Rj×n → Rj,

FB(XP) = (F(x1), . . . , F(xj))) and R is a ridge regression model

(R(XP, FB(XP)) = argminw||FB(XP)− XPw||
2
2 + ||w||22).

2.2.5 General properties of attribution methods
There are several well-known properties of attributionmethods

that will be useful later. An attribution method is (a) Gradient

Based, if the attribution method relies on calculating gradients

(Ancona et al., 2019). It is (b) Perturbation Based, if the attribution

method uses perturbations to generate data around the input

point (Zeiler and Fergus, 2014). (c) Completeness is satisfied if the

attribution method relies on a baseline x
′, and

∑n
i=1 AF(x) =

F(x) − F(x′) is true (Sundararajan et al., 2017). And we refer to (d)

Randomness, if randomness is involved in the calculation for the

attribution. The impact of randomness can be reduced at the cost

of calculation time by increasing the number of samples, steps, etc.

3 Encoding priors for linear programs

So far, most XAI methods have focused on neural

methodologies (Gunning and Aha, 2019). To justify the usage of

XAI for LPs, we consider their similarities with neural models.

Specifically, we first show how to encode LPs in a “neural” manner

as this will enable the application of attribution methods on these

LPs. One of the most obvious approaches here could be to use c,

A, and b as inputs for the NN and the optimal solution x
∗ for the

output. This approach would give us attribution for the inputs,

so c, A, and b. While we believe that such attributions would also

carry valuable information, in this paper, we mostly focus on the

information we can obtain from looking at one specific, single LP,

where we consider c, A, and b fixed.

If we only train with a constant c, A, and b as inputs, the NN

will simply learn to output the optimal solution x
∗ without actual

“learning”. Therefore, we need a task fromwhich we can construct a

dataset with different inputs and corresponding outputs. We do so

by inputting instance vectors from the LP (x ∈ Rn). Now, we can

define the output and, thus, the corresponding learning problem.

This enables us to consider different aspects of an LP. We refer

to such a learning problem as an encoding (φ) of the original LP.

These encodings allow for the application of attribution methods

from XAI on the LP in such a way that different kinds of insights

can be gained depending on the choice of encoding function and

attribution method. They should, therefore, be considered with

the application of attribution methods in mind, as this is where

their value comes from. Note that this approach requires a new

NN to be trained for each encoding and LP, thereby learning the

relevant properties of the respective encoding well enough so that

XAI methods can be applied correctly. Obtaining enough useful

data and finding goodNNhyperparameters can be challenging. The

following paragraphs cover various reasonable encodings that we

initially propose and then systematically investigate.

3.1 Feasibility encoding

In a straightforward manner, we can distinguish between

feasible instances, i.e., instances that do not violate any constraints,

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

and infeasible instances, i.e., instances that violate at least one

constraint. Using binary coding, we have φ(x) =

{

1 (Ax ≤ b)

0 (Ax > b).
.

Note that for our LP encoding, we will usually keep the LP

constraints A, b constant. Therefore, in our notion, the encoding

function only depends on the optimization variable x.

3.2 Gain-penalty encoding

In this approach, the feasible instances get assigned their

corresponding gain and the score of an infeasible instance

now depends on how much it violates the constraints. This is

done by finding an ǫ-close (ideally the closest) feasible point,

calculating the gain of that point, and reducing it, depending on

the distance between these two points. Consequently, infeasible

instances with only a small constraint violation have almost

the same gain as the closest feasible instances, but infeasible

instances with large violations get assigned increasingly smaller

scores (gains). To some degree, real-world applications might

justify this approach since the constraints are not completely

prohibitive but rather because their violations are simply too

costly to be efficient. The Gain-Penalty encoding is defined

as φ(x) =

c
T
x (Ax ≤ b)

c
T
xf

(

1−min
(

1,
||x−xf ||2

||xf ||2

))

(Ax > b),
where

xf=argmin
xi
||xi − x||2 is the closest feasible instance in the setting

where c,A, b,> 0. Naturally, there exist various sensible variations

to this formulation.

3.3 Boundary distance encoding

This encoding considers the boundary between feasible and

infeasible instances. By calculating the minimum of b − Ax, we

can find out if an instance lies on the boundary and obtain a

score indicating how large the biggest violation is or, for feasible

instances, how much space there is until the closest constraint

would be violated: φ(x) = min(b − Ax). By taking the absolute

of this encoding |φ(x)| (Absolute Boundary Distance encoding),

we can treat the output as a distance to the boundary (margin),

changing the behavior of attribution methods.

3.4 Vertex distance encoding

Here, the distance to the nearest vertex is used. A vertex of

an LP is any feasible point lying on either the intersection of two

constraints or on the intersection of a constraint with an axis (or

at the origin). Note that there always exists an optimal solution on

one of those vertices, but since this approach does not include the

cost vector c, it does not contain any information about which of

those vertices is an optimal solution. Overall, the Vertex Distance

encoding is defined as φ(x) = minx V , with V = {||x − xv||2|xv ∈

Xv} where Xv denotes the set of vertices.

Why should one use a NN to learn encodings when this

requires training an entirely new model? Generally speaking, it is

possible that this NN does not learn the encoding without errors.

However, there is one important difference compared to standard

NN applications. In our approach, we always know all the true

inputs and outputs. Therefore, we can not only easily evaluate

whether the model in general managed to learn the problem well,

but also specifically check how accurate the model’s prediction is

for specific inputs whose attributions we compute. So while training

some encodings on large-scale problems can still be challenging and

time-consuming, the risk of unknowingly getting “bad” attributions

is relatively low. On the other hand, using a NN offers many new

possibilities. As a universal function approximator, a NN can learn

all the introduced encodings (and more), even if they were to

contain other constraints or elements that could not be formulated

as a LP. Not only does this make it possible to focus on different

aspects of the LP, but it also means that any attribution method

fromXAI can be applied. Depending on the choice of encoding and

attribution method, this leads to different attributions and, thus,

insights.

4 Properties of LP encodings and
attribution methods

Having introduced the main methodology used in this paper,

we now consider several properties of encodings and attribution

methods and discuss the implications of using NNs to learn LPs.

4.1 Properties of linear program encodings

Upon establishing various sensible encodings φ, we now

propose reasonable key properties for the discussed φ that we can

return to when discussing how attribution methods behave on

different encodings. To ease notation later on, we define the set

X ⊂ Rn
≥0 such that the properties are only related to instances that

are not infeasible for every single LP by construction (since x ≥ 0).

We propose the following key properties.

4.1.1 Continuity
We call an LP encoding φ continuous if ∀x, k ∈

X . (limx→k φ(x) = φ(k)).

4.1.2 Distinguish class/distinguish boundary
If an LP encoding φ computes values in such a way that the

feasibility of the point can be inferred from its output, we say that

φ satisfies Distinguish Class. Formally, ∃f , ∀x ∈ X . (Ax ≤ b ↔

f (φ(x))). Similarly, Distinguish Boundary is satisfied if we can infer

whether a point lies on the decision boundary: ∃g, ∀x ∈ X . (Ax =

b ↔ g(φ(x))).

4.1.3 Boundary extrema
This property is concerned with whether the boundaries of

the LP are at the extrema of φ. There are multiple possibilities

for defining such a property. We postulate that a method satisfies

Boundary Extrema if an extremum (maximum or minimum) of

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

φ lies on the decision boundary and if this extremum does not

appear outside the boundary. The extremummay appearmore than

once on the boundary itself. Let Pi : = min(Axi − b) = 0, then

formally we have that there ∃xi, ∀xj, xk ∈ X such that Pi∧((φ(xi) >

φ(xj) ∨ Pj) ∨ (φ(xi) < φ(xk) ∨ Pk)).

4.2 Properties of attribution methods

Previously, we stated some well-known properties of

attribution methods. In addition, we now propose a new

concept as well as another property for attribution methods, which

will be useful for discussing differences of attribution methods

afterward.

4.2.1 Neighborhoodness
Being more of a concept rather than a property,

Neighborhoodness describes how large a region around the

input point is considered for the attribution. For example,

Neighborhoodness of perturbation-based approaches usually

depends on the perturbation’s “strength”.

4.2.2 Directedness
We say that Directedness is satisfied if the attribution for a

feature indicates how increasing that feature would change the

output. For example, attribution would be positive if increasing that

feature increases the output and negative if increasing that feature

decreases the output. This increase might be local or over a larger

interval, therefore the property does not directly depend on the

Neighborhoodness of the attribution method.

Table 1 gives an overview of the previously introduced

properties of our LP encodings and how the considered

attribution methods fall into properties such as Neighborhoodness,

Directedness, and other established properties.

4.3 Using neural networks for linear
programs

One might question the benefits of bringing NNs into the area

of mathematical optimization since learning NNs that accurately

represent the underlying problem can be challenging. On the other

hand, NNs are very powerful universal function approximators,

which, given a good choice of hyperparameters and large amounts

of data, can solve difficult high-dimensional problems. On the

other hand, they notoriously lack guarantees for making correct

predictions and can easily overfit the training data, thereby failing

to make correct predictions outside of the training regime. In

our experiments, we always train a model using a train set and

evaluate it on a separate test set, thereby ensuring that our

evaluation accurately reflects the model behavior in general and

not just on the training data. When training our models, we

discovered that overfitting is generally very small. This can be

explained by the Continuity property of our encodings, which, if

satisfied, says that the encoding of a datapoint that lies between

two other datapoints should also lie between the encoding of

TABLE 1 Properties of encodings and attribution methods.

F G B A V

Continuity × X X X X

DistinguishClass X × X × ×

DistinguishBoundary × × X X ×

BoundaryExtrema × X × X X

IG S FP L

GradientBased X X × ×

PerturbationBased × × X X

Completeness X × × ×

Randomness × × X X

Neighborhoodness
(*)

× XX X X

Directedness × X × X

On the left are properties of encodings; on the right are properties of attribution methods. F,

Feasibility; G, Gain-Penalty; B, Boundary Distance; A, Absolute Boundary Distance; V, Vertex

Distance; S, SAL; L, LIME. Regarding Neighborhoodness (*)Not binary, and thus requires

alternate interpretation. We argue that IG generally has the least Neighborhoodness because

the path from baseline to input can be very long. Saliency always considers a smaller area than

the perturbation-based approaches FP and LIME.

these other two datapoints. Thus, a function correctly representing

the underlying problem should be considerably easier to learn

than one that strongly overfits the training data. Even for the

feasibility encoding where Continuity does not hold, only the

decision boundary is not continuous. Importantly, we can also

easily obtain both the true value and the model prediction for

any input. Therefore, one can easily assess whether the model

prediction is accurate before inspecting the attributions. For our

experimental evaluation detailed in the next section, our trained

models learn the underlying encodings very well (for model errors,

see the Supplementary material).

5 Empirical illustration

We empirically analyze the encodings, properties, and

implications from the previous three sections using an illustrative

2-dimensional LP. Afterward, we show results on a large-scale LP

and present a slightly different experiment where not all constraints

are fixed (ParamLP).

5.1 Experimental setup

To compare different encodings, we consider an LP that allows

for 2d-visualization of its polytope and use a feed-forward NN to

train a model for each encoding introduced in Section 3. Another

experiment only trains a NN for the Feasibility encoding but uses

an LP with five dimensions. We then consider a very large-scale

problem generated using FRaGenLP (Sokolinsky and Sokolinskaya,

2021) to investigate whether our methods still work for large LPs.

Lastly, we present an experiment called ParamLP in which the

constraint vector b is parametric and also passed into the NN

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

along with x. For most experiments, we generate 100,000 random

instances such that the complete LP polytope (set of feasible

solutions) is covered and that about as many feasible and infeasible

instances are being generated. For integrated gradients, we use the

baseline x′ = 0 if not specified otherwise. In our experiments, FP

and LIME use perturbations by generating instances around the

input point up to a set maximum perturbation. We use a Ridge

Regressionmodel for LIME. In the Supplementary material, further

extensive information on the problem and data generation and the

experimental setup are presented.

5.2 Overview of results

In Figure 3, we show the encodings vs. attribution methods

matrix (with summed-up feature attributions; refer to the

Supplementary material for an example showing single feature

attributions on the same LP). The only encoding using the cost

vector (c = [0.5, 0.6]T) is the Gain-Penalty encoding. Here, the

optimal solution lies at the intersection of the two constraints.

We approximate the regions we generated data for with 100 × 73

pixels. Note that we ignored the vertex (0, 0) for the Vertex Distance

encoding by including our prior knowledge that it cannot be the

optimal solution. We refer to
∑n

i=1 AF(x) (i.e. the sum of the

feature attributions for x) as the attribution sum. By analyzing these

results, we aim to find out how encodings change the attributions

of the respective methods. For the larger LPs and ParamLP, we look

at how the Feasibility encoding in particular performs on higher

dimensional examples.

78%2 for the large-scale (10,000-dimensional) LP. In the

following, we focus on the most important insights derived from

our experiments. Model errors as well as additional results and

explanations can be found in the Supplementary material.

We use an example scenario for the 2-dimensional LP to

illustrate possible applications. A craftswoman is working with

wood. She can work on two projects, given by the axes in the LP.

They are continuous, as their value can be seen as the progress

made over the course of one day. Three constraints apply to her

work. Firstly, there is only a limited amount of time. For example,

the time available for one day is enough to finish one table and start

working on a second one, but only about two-thirds of a wooden

horse can be finished in that time (see the intersections of the purple

time constraint with the two axes). Secondly, she only has a finite

amount of material to work with, and the small wooden horse

requires less material than the large table (green constraint). The

third constraint depicts the storage requirements. Fortunately, the

storage is big enough for this constraint not to matter, considering

the other two constraints.

5.2.1 Integrated gradients
The attribution sum for Integrated Gradients follows from its

Completeness property:
∑n

i=1 IGi(x) = φ(x) − φ(x′). Therefore, if

Continuity, Distinguish Class, Distinguish Boundary, or Boundary

2 Only for this experiment, the baseline is 66.67% accuracy (otherwise 50%)

because the number of infeasible instances is larger.

Extrema is satisfied on φ, that same property also applies to IG.

A benefit of Completeness is that the attribution for each feature

indicates how large its contribution is relative to the change in

output compared to the baseline output. In contrast to other

methods with no such property, this makes it so that every

attribution has a tangible meaning and that the attribution for

a single instance can be understood without the need for other

instances for comparison.3

If Completeness is satisfied, the important part of any

attribution is how the contribution is divided amongst the

individual features. For example, consider the craftswoman

example with the Vertex Distance encoding in Figure 3. This

encoding might be interesting for our craftswoman if the value

(i.e., cost vector) for the table and horse is unknown and she

simply wants to utilize time and material most efficiently but at

the same time look for a configuration that could be optimal (i.e.,

a vertex). Here, the encoding scores can be seen as the amount

of wasted work, either because of a constraint violation or simply

because the assignment could be improved. The craftswoman uses

a baseline of (0, 0) describing the smallest possible effort and looks

at different points and their attributions. On the vertices, these

attributions obtain the smallest value (far from 0), as here, the

least amount of work is wasted. In addition, the attributions for

the single features give information on how much the individual

features are responsible for the change in output, i.e., the reduction

of wasted work (also see the Supplementary material). For example,

the vertices lying on the axis only get attribution on those features

that changed compared to the baseline. This would be different

if a baseline on the top right were chosen. Therefore, the main

challenge when applying IG is choosing a sensible baseline. In

our example, maybe using a vertex as the baseline could carry

more meaning, as now the attributions would be compared to

an “optimal” assignment where no work is wasted. However, the

craftswoman would still have to decide which vertex to choose, as

this also influences the resulting feature attributions.

Overall, applying IG on LP encodings can result in useful and

understandable attributions, but those must always be interpreted

with respect to the respective baseline. In addition, choosing an

appropriate baseline is often not obvious.

5.2.2 Saliency
Since Salience simply calculates the local gradient, its general

behavior is easily explained. In accordance with satisfying

Directedness, attribution for a feature is positive if the feature

impact on the respective point is positive, negative if it is

negative, and 0 otherwise. Notably, this also means that there

is no attribution on local extrema (see encodings satisfying

Boundary Extrema in Figure 3). Since Saliency has a very small

Neighborhoodness, attribution usually requires some additional

information to be useful. For example, attributions on and around

a local maximum have different values, ranging from positive

attribution, where the value increases toward the maximum, to 0

exactly on the maximum, and to negative attribution afterward. All

3 Arguably, even IG can not explain instances individually, as every

explanation requires a baseline reference.

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

FIGURE 3

Overview-matrix of LP encodings and attribution methods. All plots show a single LP with two features, one horizontal and one vertical, where the
gray lines indicate the constraints for that LP. This matrix of plots shows the summed-up attribution of both features (attribution sum). The encodings
(orange, rows) are plotted against the di�erent attribution methods (blue, columns). For FP and LIME, p indicates the maximum possible perturbation
in any direction. The (rounded) numbers for the constraints of that LP are shown on the bottom right. The icons show an example application for this
LP. A craftswoman could either work on a table or a wooden horse, but there are two relevant constraints that limit the amount of time and wood
available. The amount of storage is a third constraint, which is irrelevant given the other two (best viewed in color).

those attributions are “correct”, but if you were to consider only one

of those points and have no knowledge about the maximum there,

you might draw false conclusions about the feature impact in that

area. In this example, prior knowledge about that local maximum

or at least considering multiple other points reduces that risk.

For example, consider the Gain-Penalty encoding for our

craftswoman scenario. Up until the boundary, putting in more

work increases the gain (value earned), but right after either the

material or the time runs out, investing more is harmful. In

addition, the single feature attributions also give information on

how much a feature is worth increasing. Remember that such

information can be far less obvious when working with higher

dimensional LPs where constraints can be positive and negative, so

when increasing a feature can also help satisfy a constraint.

One interaction worth discussing is how Saliency behaves on

points where the encoding function is not differentiable. We can

see this for the Absolute Boundary Distance encoding in Figure 3.

Due to the absolute value function, points on the boundary are

not differentiable. Still, the NN approximates this function in a

differentiable way. Not only does this result in a 0 attribution

(gradient) exactly on the boundary, but there is also a small area

around the boundary where the gradient quickly, but not instantly,

changes from 0 to the true gradient of the area around. Other non-

differentiable points appear whenever an encoding does not satisfy

Continuity. For the Feasibility encoding, this results in an extreme

attribution very close to the boundary, where the NN approximates

this discontinuity with a very steep function.

To sum up, attribution here reflects very local changes w.r.t.

an increase of input features. Approximations of non-differentiable

points by the NN influence Saliency attributions near those points.

5.2.3 Feature permutation
Due to its perturbations, FP focuses on the output changes

around the input point. Since it does not satisfy Directedness,

attribution in areas with a steadily changing output in one direction

can average to 0, as the positive change in one and the negative

change in the opposite direction cancel each other out. If these

two changes are equal, the remaining attribution results from the

Randomness in the perturbation process.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

Even though Directedness is not satisfied, there is a difference

between negative and positive attribution, but it has to be

understood differently. Because FP considers the area around

it without consideration of direction, local minima (maxima)

can be observed to have negative (positive) attribution because

permuting features of instances around it increases (decreases)

their function output.4 For example, suppose the craftswoman

wants to assign to her apprentice how much he should work

on the two tasks. She expects him not to listen perfectly and

that he might work a bit more or less on either task. This is

generally fine with her, but she does not want him to work in

such a way that either takes too much time or wood. In other

words, she expects some perturbations but does not want constraint

violations. Using the Absolute Boundary Distance encoding, she

can look at the attribution for an assignment that, on its own, is

feasible, and if the chosen parameters filter out noise sufficiently,

check whether the attribution is negative. Negative attribution is

given if a random perturbation of the input plan, on average,

decreases the distance to the boundary. In terms of the example,

the apprentice would either use too few resources or require

too many. On average, this is only bad if an assignment is

close to the boundary, as here, the additional resources are

not available, and the results of both kinds of perturbations

are undesirable.

The degree of perturbation can be seen as a trade-off between

precise, local results on the one hand and robust and emphasized

attribution for larger areas on the other hand. All in all, attributions

given by Feature Permutation consider any direction equally,

resulting in a focus on local minima and maxima of the encoded

function.

5.2.4 LIME
In Figure 3, we can now observe how LIME with smaller

perturbation (Neighborhoodness) looks increasingly similar to

Saliency. This is just as true for the attributions of the features alone

which indicate how a feature impacts the output with respect to

an increase of that feature (Directedness). Unlike with Saliency,

however, we can choose how large of an area around the input

point should be considered by LIME. So, while small perturbations

behave like Saliency, larger perturbations can help focus on the

more overarching characteristics and make the procedure more

robust against local errors and bad approximations of the NN. On

the other hand, small, local perturbations allow for a more precise

attribution of the respective points. Based on our experiments, the

nature of LPs, and our noiseless data generation, we argue that

the usual downsides of very local perturbations might not be as

significant.

Again, consider the example where the craftswoman wants to

find out how working on either task is bad for the constraints of

time andmaterial. Using the Boundary Distance encoding, it can be

seen that an increase of work on either task is harmful with respect

to the constraints, it costs material and time. However, there are

4 An increase in output leads to a negative attribution because the feature

importance is calculated as the original output minus the new output (see

https://captum.ai/api/feature_permutation.html).

some task assignments on the right side (working on the table a lot)

where this impact is even stronger (i.e., larger, dark red values). This

makes sense, as for many other assignments, the time constraint

is the more restrictive one but, as can be confirmed by inspecting

the precise values of the constraint matrix A, the second constraint

(material) is violatedmore quickly when working on tables than the

time constraint.

On discontinuities, LIME, because of its Neighborhoodness,

can have very large attributions. The attribution, i.e., the slope

of the linear model, is steeper the smaller the perturbations.

Overall, LIME attributions show the same characteristics as those

generated by Saliency. However, LIME allows for changing the

Neighborhoodness, making it possible to consider either very local

changes or a larger area.

5.2.5 Higher dimensional LP
We now consider the Feasibility encoding on a larger LP

consisting of five feature dimensions and three constraints.

Figure 4 shows one infeasible and one feasible instance with the

corresponding constraints and constraint violations. Attributions

are shown for all four attribution methods, with an individual color

scale for each method and input. As before, red indicates negative,

white zero, and blue positive attribution. The left instance in

Figure 4 is infeasible as it violates the third constraint (1.51 � 1.44).

All attribution methods here focus on the last three features, which

have the highest impact on the violation of that third constraint.

For the feasible instance (right), the second feature has the least

attribution. Here, both the second and the third constraints are

somewhat close to violation, and while the last three features are

important for the last constraint, the first feature is important

for the second constraint. The Saliency (S) attributions and one

IG attribution are marked with dotted lines indicating small

attribution values (under 0.01). This results from the same type of

behavior previously mentioned in Section 5.2.2. The discontinuous

decision boundary is approximated by the NN in a continuous

manner, resulting in instances close to the boundary to have outputs

close to, but not exactly 0 or 1. This effect can even be useful, as the

ratio of the feature attributions still contains information (without

it, these attributions would all be 0).

5.2.6 Large-scale LP
This large-scale experiment considers the Feasibility encoding

for an LP with 10,000 features and 30 constraints. The model

improves greatly upon the baseline of always predicting the most

likely class, but many predictions are still false. The following

figures show the 5 constraints with the largest violations (or closest

to being violated) and the 5 features with the largest absolute

attributions. IG uses the zero vector as its baseline. We did not find

the results for FP or LIME very useful or interesting, and we leave

the application of those on such large-scale LPs for future work.

5.2.7 Integrated gradients
Since the LP used for this experiment has both positive and

negative values in A, we can observe how features that help

satisfy constraints have a high positive attribution (blue) if they

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://captum.ai/api/feature_permutation.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

FIGURE 4

5-dimensional feasibility experiment. Here, an infeasible instance on the left and a feasible instance on the right are shown. In A and b, green
indicates the element size. Constraint violations are marked purple in Ax. Attributions go from red (negative) to blue (positive). Attributions with
dashed borders have very small absolute attribution values (< 0.01). All values are rounded.

correspond to large negative elements in A while those values that

correspond to large positive elements in A have a high negative

attribution (red). Furthermore, features for infeasible instances are

strongly influenced by those rows in A, which are responsible for

constraint violations, even if the prediction of the model is rather

bad as shown in Figure 5. Note that, with the baseline being the

zero vector, larger features tend to be assigned larger attributions,

even if smaller features have the same relative impact. For example,

if, compared to the baseline, one feature has double the impact per

change by 1 compared to a second feature, the second feature still

has a higher overall attribution if its value is twice as far away from

the baseline. In some other instances, attributions do not seem to

make as much sense. We assume the reason for this to be the errors

in the model performance, although sometimes attributions seem

useful despite poor model predictions.

5.2.8 Saliency
Knowing that Saliency should, in theory, not have any

attribution in the Feasibility encoding, it should still not be

surprising that some attribution can be observed. Since themodel is

not perfect and learns a continuous function where a discontinuity

should be, some attribution can be observed for many instances.

The selected features presented in Figure 6 tend to correspond to

columns that fit the type of attribution given. For high negative

attributions (red), the columns tend to contain positive elements

in A, and for high positive attributions (blue), the columns tend

to contain negative elements in b. In other words, the attributions

still show how the features impact the output, giving some useful

information.

5.2.9 ParamLP
In this experiment, the NN gets both x and b as inputs and

learns the Feasibility encoding using these inputs. For IG, we use

the zero vector as a baseline for x and 0.1 as a baseline for b such

that the baseline is an easily determined feasible instance (using b =

0, the baseline would lie exactly at the decision boundary, possibly

making attributions involving gradients less reliable). Following

the same visualization procedure as for the higher dimensional

experiments, we present the results of this ParamLP experiment

in Figure 7. For x, the attributions for the infeasible sample again

follow the same patterns as before. As for both the feasible and the

infeasible sample, the second constraint is the one with the largest

constraint violation (or closest to being violated), the attribution

in x is mostly influenced by the second row in A. Here, the

second and third elements have much larger values than the others;

hence, the corresponding second and third elements in x obtain

high attributions. Unsurprisingly, attributions on b for the top,

infeasible instance clearly show that the violated constraint is the

most important with respect to the model output (feasibility). For

the feasible instance, the second constraint also gets most of the

attribution since it is closest to being violated. In addition, the

third constraint now has higher attribution values since it is also

relatively close to Ax, which is not the case for the first constraint,

where the attribution is closer to 0. Seeing how we can easily add

inputs other than x into the NN to obtain other attributions, even

on parameters of the LP itself, reaffirms the value of using XAI and

NNs to help explain LPs and shows the versatility and potential of

such an approach.

5.3 Relationships between attribution
methods

Having examined the general behavior of the four attribution

methods considered in this paper, we now go into detail about how

they relate to each other. First, we argue that IG differs significantly

from the other methods. While the “information” that IG uses

to calculate its attribution consists of the path between baseline

and input, all other three methods base their attribution on the

area around the input. Looking at our results in Figure 3, we can

see that especially Saliency and LIME show noticeable similarities,

particularly if smaller perturbations are used for LIME.

5.3.1 Similarity of saliency and LIME
The high-level description of how LIME functions is arguably

similar to the underlying functioning of Saliency. Could this

intuitive similarity on a high level hint toward more, possibly an

equivalence under certain circumstances?

Conjecture 1. For a perturbation −→ zero, the attributions of

LIME−→ Saliency.

Both approaches calculate a value for a specific point with respect

to how the output values around this point change, in other words,

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

FIGURE 5

Large-scale Experiment, Integrated Gradients. Because of the large dimensionality of the LP, only selected columns and rows are shown. Ax was
calculated using the full LP, before selecting the depicted rows. The values in Ax are in the order of 104. The colors in A serve as an additional
indicator of the elements (negative values are dark pink/purple, positive values are green). The predictions for the instances on the left and right are
0.82 and 0.53, respectively.

FIGURE 6

Large-scale experiment, saliency. Details as in Figure 5. The predictions for the instances on the left and right are 0.74 and 0.53, respectively.

FIGURE 7

ParamLP experiment. Details as in Figure 5, with b now also being given into the NN as a parametric input. The predictions for the instances on the
top and bottom are 0.00 and 0.98, respectively.

they both satisfy Directedness. So, if we perturb instances for LIME

in such a way that they are infinitely close to the original input but

not on the input itself (in which case there would be no attribution),

then LIME approaches Saliency in the limit. We support this

conjecture empirically (Figure 8). From that perspective, the

main difference between LIME and Saliency is that the former

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

FIGURE 8

“LIME ≡ saliency”. With increasingly smaller perturbations, LIME comes visibly closer to Saliency. The decrease in attribution scores for smaller
perturbations is due to the regularizer of the Ridge Regression model.

FIGURE 9

FP→LIME. If we make it so that FP distinguishes between forward and backward perturbations and scale attributions according to their distance from
the input point, we can get results similar or even identical to LIME.

allows for considering a larger area (perturbation function as

a hyperparameter). However, even though the computation is

different, we know from our experiments that FP and LIME use

the same perturbations. So, if both those methods use the same

“information” to calculate attributions, how can FP look different?

5.3.2 How feature permutation di�ers from
saliency and LIME

Just like Saliency and LIME, FP uses nearby regions to

determine attributions. Since these methods base their attribution

on similar information, could we again postulate a result on

the triangular relationship? We conjecture on the approaches’

similarity:

Conjecture 2. The main difference between Saliency and LIME on

the one hand and FP on the other hand is Directedness. If you were

to “insert” Directedness into FP, you would get an approach that

behaves almost identically to LIME and, thereby, also to Saliency

(for small perturbations).

Usually, FP does not consider “how”, i.e., in which direction

a change happened, but only that it happened. For example,

on a maximum, both Saliency and LIME (with small enough

perturbations) would return little or no attribution because an

increase leading up to the maximum is canceled out by a decrease

going away from it.5 However, FP only considers that there is an

average decrease in any direction if a feature is changed, so if

that decrease is large, then that feature must be important. Using

FP is not necessarily worse, and one might very well argue that

it should be preferred in this example. But if FP would consider

that decreasing the feature decreases the output and increasing the

feature also decreases the output, it could use this information

of direction (Directedness) to also return an attribution akin to

Saliency and LIME.

An example of the FP relation to LIME can be seen in Figure 9.

This is a simplified example with only four perturbations, each of

which only changes a single feature by 0.1. For this case, we even

reach identical attributions, and while this is not generally true, the

difference between LIME and FP after this transformation is also

barely visible in most other cases. Also, note that we used Linear

5 In both cases, the increase first and decrease later is w.r.t. an increase of

the feature value, i.e., Directedness.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

Regression instead of Ridge Regression to show equalitymore easily

after the transformation.

6 Conclusion

We investigated the question of whether, and if so, how

common attribution methods from XAI literature could be applied

to settings beyond neural networks. Specifically, we looked at

linear programs where we introduced various sensible neural

encodings to represent the original LP. Various experiments

were conducted to illustrate how several attribution methods

could be applied and why the results are useful, even for very

large and difficult linear programs. We show that LIME and

Saliency have very similar results if small perturbations are

used for LIME. By introducing the property of Directedness,

we also found out how a perturbation-based Feature Attribution

approach can be transformed to behave very similarly to LIME

and, hence (for small perturbations), also to Saliency. We

believe that the discriminative properties (Table 1) can guide

the development of transparent and understandable attribution

methods while also paving the road formore general applications in

machine learning.

For future work, we can consider explaining special types

of LPs as those used for quantifying uncertainty, such as

in MAP inference (Weiss et al., 2007). The application to

mixed-integer LPs or integer LPs such as Shortest Path or

Linear Assignment might prove valuable. In addition, further

investigating the scaling behavior of explanations generated

for LPs or the cognitive aspects of whether and how LP

attributions could be more “human understandable” seems

critical.

Data availability statement

The datasets used in this study are fully synthetic and can

be generated using the provided code. The repository can be

accessed online via the following link: https://github.com/olfub/

XLP.

Author contributions

FB: Writing – original draft, Writing – review & editing. MZ:

Writing – original draft, Writing – review & editing. KK: Writing –

original draft, Writing – review & editing. DD: Writing – original

draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by the ICT-48 Network of AI Research Excellence Center

“TAILOR” (EU Horizon 2020, GA No 952215) and by the Federal

Ministry of Education and Research (BMBF; project “PlexPlain”,

FKZ 01IS19081). The work was partly funded by the Hessian

Ministry of Higher Education Research, Science and the Arts

(HMWK) via the DEPTH group CAUSE of the Hessian Center

for AI (hessian.ai). It benefited from the Hessian research priority

programme LOEWE within the project WhiteBox, the HMWK

cluster project “The Third Wave of AI.” and the Collaboration

Lab “AI in Construction” (AICO) of the TU Darmstadt and

HOCHTIEF. The Eindhoven University of Technology authors

received support from their Department of Mathematics and

Computer Science and the Eindhoven Artificial Intelligence

Systems Institute.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2025.

1549085/full#supplementary-material

References

Abhishek, K., and Kamath, D. (2022). Attribution-based xAI methods in computer
vision: a review. arXiv [preprint] arXiv:2211.14736. doi: 10.48550/arXiv.2211.14736

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. (2019). “Gradient-based
attribution methods,” in Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning (Cham: Springer).

Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. (2008). Linear Programming and
Network Flows. Hoboken NJ: John Wiley Sons.

Breiman, L. (2001). “Random forests,” inMachine Learning (Cham: Springer).

Dhamdhere, K., Sundararajan,M., and Yan, Q. (2019). “How important is a neuron,”
in International Conference on Learning Representations (ICLR).

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. (2020).
“MIPaaL: Mixed integer program as a layer,” in Proceedings of the
AAAI Conference on Artificial Intelligence (Washington, DC: AAAI
Press), 34.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://github.com/olfub/XLP
https://github.com/olfub/XLP
https://www.frontiersin.org/articles/10.3389/frai.2025.1549085/full#supplementary-material
https://doi.org/10.48550/arXiv.2211.14736
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Busch et al. 10.3389/frai.2025.1549085

Garaix, T., Gondran, M., Lacomme, P., Mura, E., and Tchernev, N. (2018).
“Workforce scheduling linear programming formulation,” in IFAC-PapersOnLine
(London: Elsevier).

Gunning, D., and Aha, D. (2019). Darpa’s Explainable Artificial Intelligence (xAI)
Program. Norwich: AI Magazine.

Hesse, R., Schaub-Meyer, S., and Roth, S. (2021). “Fast axiomatic attribution for
neural networks,” in Advances in Neural Information Processing Systems (NeurIPS), 34.

Hoffman, A., Mannos, M., Sokolowsky, D., and Wiegmann, N. (1953).
Computational experience in solving linear programs. J. Soc. Indust. Appl. Mathem.
1, 17–33. doi: 10.1137/0101002

Jaumard, B., Semet, F., and Vovor, T. (1998). A generalized linear
programming model for nurse scheduling. Eur. J. Operat. Res. 107, 1–18.
doi: 10.1016/S0377-2217(97)00330-5

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., et al.
(2020). Captum: A Unified and Generic Model Interpretability Library for PyTorch.

Krizhevsky, A., Sutskever, I., andHinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems (NeurIPS).

Li, Q., Ding, T., Yang, L., Ouyang, M., Shi, Q., and Sun, R. (2024). “On the power
of small-size graph neural networks for linear programming,” in The Thirty-Eighth
Annual Conference on Neural Information Processing Systems (NeurIPS).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., et al. (2013). Playing atari with deep reinforcement learning. arXiv [preprint]
arXiv:1312.5602. doi: 10.48550/arXiv.1312.5602

Murty, K. G., Kabadi, S. N., and Chandrasekaran, R. (2000). Infeasibility analysis for
linear systems, a survey. Arab. J. Sci. Eng. 2000:25.

Paulus, A., Rolínek, M., Musil, V., Amos, B., and Martius, G. (2021). “Comboptnet:
Fit the right np-hard problem by learning integer programming constraints,” in
International Conference on Machine Learning (New York: PMLR).

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “"why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (San Diego: ACM).

Saltelli, A., and Annoni, P. (2010). How to avoid a perfunctory sensitivity
analysis. Environm. Model. Softw. 25, 1508–1517. doi: 10.1016/j.envsoft.2010.
04.012

Schaber, K., Steinke, F., and Hamacher, T. (2012). Transmission grid extensions for
the integration of variable renewable energies in europe: Who benefits where? Energy
Policy 43:40. doi: 10.1016/j.enpol.2011.12.040

Schwalbe, G., and Finzel, B. (2023). A comprehensive taxonomy for
explainable artificial intelligence: a systematic survey of surveys on methods

and concepts. Data Mining Knowl. Discov. 2023, 1–59. doi: 10.1007/s10618-022-
00867-8

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra,
D. (2017). “Grad-CAM: Visual explanations from deep networks via gradient-based
localization,” in Proceedings of the IEEE International Conference on Computer Vision
(Venice: IEEE).

Shrikumar, A., Su, J., and Kundaje, A. (2018). Computationally efficient
measures of internal neuron importance. arXiv [preprint] arXiv:1807.09946.
doi: 10.48550/arXiv.1807.09946

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). “Deep inside convolutional
networks: Visualising image classification models and saliency maps,” in
Workshop at International Conference on Learning Representations (Princeton
NJ: Citeseer).

Sokolinsky, L. B., and Sokolinskaya, I. M. (2021). “FRaGenLP: A
generator of random linear programming problems for cluster computing
systems,” in International Conference on Parallel Computational Technologies
(Cham: Springer).

Stammer, W., Schramowski, P., and Kersting, K. (2021). “Right for the right
concept: Revising neuro-symbolic concepts by interacting with their explanations,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Nashville, TN: IEEE).

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution
for deep networks,” in International Conference on Machine Learning
(New York: PMLR).

Teso, S., and Kersting, K. (2019). “Explanatory interactive machine learning,” in
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (Washington,
DC: AAAI Press).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems (NeurIPS).

Ward, J. E., and Wendell, R. E. (1990). Approaches to sensitivity
analysis in linear programming. Ann. Operations Res. 27, 3–38. doi: 10.1007/
BF02055188

Weiss, Y., Yanover, C., andMeltzer, T. (2007). “Map estimation, linear programming
and belief propagation with convex free energies,” in Uncertainty in Artificial
Intelligence (UAI).

Wu, D., and Lisser, A. (2023). A deep learning approach for
solving linear programming problems. Neurocomputing 520, 15–24.
doi: 10.1016/j.neucom.2022.11.053

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding convolutional
networks,” in European Conference on Computer Vision.

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1549085
https://doi.org/10.1137/0101002
https://doi.org/10.1016/S0377-2217(97)00330-5
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1016/j.enpol.2011.12.040
https://doi.org/10.1007/s10618-022-00867-8
https://doi.org/10.48550/arXiv.1807.09946
https://doi.org/10.1007/BF02055188
https://doi.org/10.1016/j.neucom.2022.11.053
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Elucidating linear programs by neural encodings
	1 Introduction
	2 Background and related work
	2.1 Optimization using linear programs
	2.2 Attribution methods from XAI
	2.2.1 Integrated gradients
	2.2.2 Saliency
	2.2.3 Feature permutation
	2.2.4 LIME
	2.2.5 General properties of attribution methods

	3 Encoding priors for linear programs
	3.1 Feasibility encoding
	3.2 Gain-penalty encoding
	3.3 Boundary distance encoding
	3.4 Vertex distance encoding

	4 Properties of LP encodings and attribution methods
	4.1 Properties of linear program encodings
	4.1.1 Continuity
	4.1.2 Distinguish class/distinguish boundary
	4.1.3 Boundary extrema

	4.2 Properties of attribution methods
	4.2.1 Neighborhoodness
	4.2.2 Directedness

	4.3 Using neural networks for linear programs

	5 Empirical illustration
	5.1 Experimental setup
	5.2 Overview of results
	5.2.1 Integrated gradients
	5.2.2 Saliency
	5.2.3 Feature permutation
	5.2.4 LIME
	5.2.5 Higher dimensional LP
	5.2.6 Large-scale LP
	5.2.7 Integrated gradients
	5.2.8 Saliency
	5.2.9 ParamLP

	5.3 Relationships between attribution methods
	5.3.1 Similarity of saliency and LIME
	5.3.2 How feature permutation differs from saliency and LIME

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

