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Introduction: Machine learning (ML) models have been increasingly applied to 
predict post-heart transplantation (HT) mortality, aiming to improve decision-
making and optimize outcomes. This systematic review and meta-analysis 
evaluates the performance of ML algorithms in predicting mortality and explores 
factors contributing to model accuracy.

Method: A systematic search of PubMed, Scopus, Web of Science, and Embase 
identified relevant studies, with 17 studies included in the review and 12 in the 
meta-analysis. The algorithms assessed included random forests, CatBoost, 
neural networks, and others. Model performance was evaluated using pooled 
area under the curve (AUC) values, with subgroup analyses for algorithm type, 
validation methods, and prediction timeframes. The risk of bias was assessed 
using the QUADAS-2 tool.

Results: The pooled AUC of all ML algorithms was 0.65 (95% CI: 0.64, 0.67), 
with no significant difference between machine learning and deep learning 
models (p = 0.67). Among the algorithms, CatBoost demonstrated the highest 
accuracy (AUC 0.80, 95% CI: 0.74, 0.86), while K-nearest neighbor had the 
lowest accuracy (AUC 0.53, 95% CI: 0.50, 0.55). A meta-regression indicated 
improved model performance with longer post-transplant periods (p = 0.008). 
When pooling only the best-performing models, the AUC improved to 0.73 
(95% CI: 0.68, 0.78). The risk of bias was high in eight studies, with the flow and 
timing domains most commonly contributing to bias.

Conclusion: ML models demonstrate moderate accuracy in predicting post-
HT mortality, with CatBoost achieving the best performance. While ML shows 
potential for improving predictive precision, significant heterogeneity and biases 
highlight the need for standardized methods and further external validations to 
enhance clinical applicability.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024509630, CRD42024509630
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1 Introduction

Heart transplantation (HT) is a life-saving treatment for patients 
in the last stages of heart failure, providing them with a last chance for 
survival while also improving their quality of life (Awad et al., 2022). 
It remains, however, one of the most challenging procedures in 
medicine due to the very limited availability of a suitable donor heart, 
the intricacies in matching between the donor and the recipient, and 
the significant risks following transplantation, including graft rejection 
and infection (Vaidya et  al., 2023; Khush et  al., 2019). Accurate 
assessment and decision on eligibility, optimum donor matching, and 
close postoperative monitoring to prevent graft rejection are required 
at every step in HT. These challenges are compounded because 
physiological and immune variables are very complex and vary greatly 
between individuals, thus placing an increased demand for very 
accurate predictive tools to guide clinicians at every step.

Several risk-scoring models have been developed to help 
overcome some of these challenges and guide clinicians with regard 
to transplant viability and outcomes. Commonly used ones include 
the Donor Risk Index (DRI) (Weiss et al., 2012), the risk stratification 
score (RSS) (Hong et al., 2011), and the Index for Mortality Prediction 
After Cardiac Transplantation (IMPACT) (Weiss et al., 2011). These 
regression-based models depend on different clinical and donor-
related variables to estimate patient risk and predict mortality after 
transplantation. While these models are helpful, there is an inherent 
limitation in the specificity and generalizability of many regression-
based models toward complicated and personalized transplant issues.

Only recently, artificial intelligence (AI) and machine learning 
(ML) have emerged as strong alternatives to the conventional 

risk-scoring model, offering higher predictive accuracy and 
customization (Maleki Varnosfaderani and Forouzanfar, 2024). While 
conventional models rely on pre-specified variables and linear 
relationships, AI and ML algorithms analyze vast volumes of diverse 
and complex data—identifying patterns and interactions that would 
have gone undetected with traditional approaches. Advanced methods 
include neural networks, ensemble methods, and deep learning, 
which further empower AI-driven predictive models to make more 
personalized predictions regarding real-time physiological changes, 
thus allowing dynamic decision-making across the transplant 
continuum (Ravindhran et al., 2023). These represent some of the key 
opportunities regarding risk stratification, donor–recipient matching, 
and post-transplant monitoring, all of which adapt to the unique 
profile of each patient in a manner that may potentially reduce post-
transplant mortality and improve long-term outcomes (Guijo-Rubio 
et al., 2020).

This systematic review and meta-analysis aimed to assess the 
performance of ML models for HT by focusing on AUC as an 
indication of predictive accuracy. The review aimed to underline the 
clinical potential of AI-based models in predicting transplant 
outcomes and contribute to the growing body of evidence that 
supports the use of AI in HT.

2 Materials and methods

This systematic review and meta-analysis followed the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines to identify studies that develop or validate 
artificial intelligence methods for predicting HT mortality. The 
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research protocol has been registered on PROSPERO and is accessible 
at CRD42024509630.

2.1 Search strategy

A comprehensive systematic review was conducted on 12 May 
2024, utilizing four bibliographic databases: PubMed, Embase, Scopus, 
and Web of Science. The search was conducted with MeSH terms and 
their synonyms for “heart transplant,” “Artificial Intelligence,” and 
“mortality.” The search terms were appropriately adjusted for each 
specific database. There were no limitations specified regarding the 
year of publication. To ensure a thorough and unbiased selection 
process, two authors independently assessed the retrieved articles to 
determine their inclusion. A third reviewer solved possible inter-
reviewer discrepancies and disagreements between the two 
initial reviewers.

2.2 Eligibility criteria

The eligibility criteria comprised the following aspects: Inclusion 
was limited to studies using well-established research designs, 
including prospective and retrospective cohort studies, case–control 
and experimental studies, and randomized controlled trials (RCTs). 
Narrative reviews, meta-analyses, case reports, animal studies, 
conference abstracts, editorials, and commentaries were excluded. In 
addition, studies that were not written in English were excluded.

Studies were included based on the following Population, 
Intervention, Comparison, and Outcome (PICO) criteria:

Population: The population of interest consisted of patients 
undergoing cardiac transplantation.

Intervention: The interventions assessed were predictive models 
utilizing artificial intelligence. These models could either be in the 
development stage or undergoing validation. For this study, 
we excluded studies that used linear regression (LR) models exclusively.

Comparator: When applicable, comparisons were made with 
standard clinical care practices or non-AI predictive models.

Outcomes: The primary outcome of interest was the area under 
the receiver operating characteristic (AUC) for mortality prediction. 
This metric was used to evaluate the performance of AI models, 
whether they were being developed or validated.

2.3 Study selection

Two authors independently selected articles based on established 
criteria through a two-phase process following a preliminary review 
of titles and abstracts. The impartial third-party reviewer resolved the 
conflicting viewpoints of the two authors. Subsequently, eligible 
studies underwent a comprehensive full-text evaluation.

2.4 Data extraction

Two authors independently conducted data extraction, and a third 
author made the final decision in case of any possible discrepancies. 
The data were extracted into a pre-constructed Excel sheet and 

included the first author, year of publication, country, population type 
(pediatric vs. adult) and size, population age and gender, post-
transplant mortality timeframe, algorithms used, the best performing 
algorithm, AUC and standard error or 95% confidence interval (95% 
CI), mode of validation, and type of validation (internal or external).

2.5 Quality assessment

The quality assessment of the included studies was performed 
using the QUADAS-2 tool to assess the risk of bias (Whiting et al., 
2011). Each study was evaluated across four domains: patient 
selection, index test, reference standard, and flow and timing. Studies 
were classified as high risk, low risk, and unclear risk of bias.

2.6 Statistical analysis

The meta-analysis of the AUC of the included studies was 
conducted using Stata version 18 (StataCorp. 2023, Stata Statistical 
Software, College Station, TX, United States). A random-effects model 
was used due to heterogeneous machine learning algorithms. 
Internally and externally validated models were separated for the main 
meta-analysis. Heterogeneity was evaluated using the I2 statistic, with 
values greater than 50% indicating substantial heterogeneity. To 
investigate heterogeneity, sub-group analysis by the type of algorithm, 
machine learning or deep learning algorithms, and meta-regression 
by the time of mortality being predicted (i.e., 12 months, 3 months, 
and 120 months) was conducted. Subgroup differences in the 
subgroup analysis were determined using Pearson’s chi-squared test. 
Statistical significance was determined with a p-value threshold of less 
than 0.05. Sensitivity analysis was performed using the leave-one-out 
method and via the exclusion of studies with a high risk of bias. 
Publication bias was assessed using Egger’s regression test (with a 
p-value threshold of less than 0.05) if the meta-analysis included at 
least 10 studies.

3 Results

3.1 Study selection

Of the 317 articles identified during the initial search process, 204 
remained after duplicate removal; 66 of these were selected for full-
text retrieval and evaluation after title–abstract screening, and 17 
records met the predefined inclusion criteria to be considered for the 
current systematic review. From these, a further 12 publications 
contained adequate data to be included in the meta-analysis (Figure 1).

3.2 Study characteristics

Detailed characteristic information is provided in Table 1. The 
included studies were published between 2015 and 2023, with 11 
published since 2020. Most of the studies (n = 13) utilized an adult 
population (Nilsson et al., 2015; Dag et al., 2017; Medved et al., 2018; 
Yoon et al., 2018; Miller P. E. et al., 2019; Agasthi et al., 2020; Zhou 
et al., 2021; Kampaktsis et al., 2023; Kampaktsis et al., 2021; Ayers 
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et al., 2021; Raji and Safna, 2022; Lisboa et al., 2022; Shou et al., 2022), 
three studies used a pediatric population (Miller R. et al., 2019; Killian 
et al., 2023; Ashfaq et al., 2023), and one study pooled adults and 
children in their sample population (Miller et  al., 2022). The 
populations were mostly sampled from the American United Network 
for Organ Sharing (UNOS) registry (n = 14) (Dag et al., 2017; Medved 
et al., 2018; Yoon et al., 2018; Miller P. E. et al., 2019; Kampaktsis et al., 
2023; Kampaktsis et al., 2021; Ayers et al., 2021; Raji and Safna, 2022; 
Lisboa et al., 2022; Shou et al., 2022; Miller R. et al., 2019; Killian et al., 
2023; Ashfaq et al., 2023; Miller et al., 2022), while the International 
Society for Heart and Lung Transplantation (ISHLT) registry was used 
by two studies (Nilsson et al., 2015; Agasthi et al., 2020), the Scientific 
Registry of Transplant Recipients (SRTR) by one study (Lisboa et al., 
2022), the Nordic Thoracic Transplantation Database by one study 
(Nilsson et al., 2015), and local medical records were used by one 

study (Zhou et al., 2021). Population sizes ranged from 381 (Zhou 
et al., 2021) to 67,939 (Miller et al., 2022) participants. The mean or 
median ages of the participants were mostly between 50 and 56 years 
old for the adult populations and between 6 and 7 years old for the 
pediatric populations. The ratio of females in the included studies 
ranged between 20% (Nilsson et al., 2015) and 47.6% (Raji and Safna, 
2022), yet for six studies, the percentage of female participants was 
unspecified (Dag et al., 2017; Yoon et al., 2018; Miller P. E. et al., 2019; 
Agasthi et  al., 2020; Lisboa et  al., 2022; Miller R. et  al., 2019). 
Regarding post-transplant mortality, most studies investigated 1-year 
mortality (n = 15), yet the time points ranged from 3 months (Yoon 
et al., 2018; Miller et al., 2022) to 10 years (Yoon et al., 2018).

The most used algorithms were random forest (RF) (Yoon et al., 
2018; Miller P. E. et al., 2019; Zhou et al., 2021; Ayers et al., 2021; 
Miller R. et al., 2019; Killian et al., 2023; Ashfaq et al., 2023; Miller 

FIGURE 1

PRISMA flowchart.
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TABLE 1 Characteristics of the included studies.

Author, year 
of publication, 
country

Population 
(adult or 
pediatric)

Data source Population 
size

Mean 
age ± SD

Gender 
(female %)

Outcomes Algorithms; best 
performing 
model (AUC)

Mode of 
validation

Type of 
validation

Nilsson et al. (2015), 

Sweden

Adult ISHLT registry + Nordic 

Thoracic 

Transplantation 

Database

56,625 transplants Train: median 54 

Internal validation: 

median 54 External 

validation: median 

52

Train: 20% Internal 

validation: 22.3% 

External validation: 

22%

1-year mortality ANN; ANN (0.64) 5-fold cross 

validation

Internal validation + 

external validation

Dag et al. (2017), 

USA

Adult UNOS registry 15,580 NR NR 1-, 5-, and 9-year 

mortality

SVM, ANN, DT; SVM 

(0.83)

10-fold cross 

validation

Internal validation

Medved et al., 2018, 

UK

Adult UNOS registry 27,705 patients 

(train: 22,263; 

IV:5,597)

52 ± 13 24% 1-year mortality ANN; ANN (0.65) 5-fold cross 

validation

External validation

Yoon et al. (2018), 

UK

Adult UNOS registry 51,971 NR NR 3 month, 1 year, 

and 3 year, and 

10 year mortality

Trees of predictors, 

linear perceptron, 

Adaboost, Deepboost, 

Logitboost, XGB, DT, RF, 

NN; Trees of predictors 

(0.66)

5-fold cross 

validation

Internal validation

Miller P. E. et al. 

(2019) and Miller R. 

et al. (2019), USA

Pediatric UNOS registry Train: 1-year 2,545, 

3-year 1,856, 5-year 

1,285 Test: 1-year 

635, 3-year 459, 

5-year 320

NR NR 1 year, 3 year, 

and 5 year 

mortality

RF, ANN; RF (0.72) Train/ validation 

(80%/20%)

Internal validation

Miller P. E. et al. 

(2019) and Miller R. 

et al. (2019), India & 

USA

Adult UNOS registry 56,477 NR NR 1-year survival NN, DT, SVM, RF, naïve-

bayes; NN (0.66)

Train/ validation 

with bootstrapping

Internal validation

Agasthi et al. (2020), 

USA

Adult ISHLT registry 15,236 NR NR 5-year mortality GBM; GBM (0.72) 10-fold cross-

validation

Internal validation

Kampaktsis et al. 

(2021), USA

Adult UNOS registry 18,625 53 ± 13 27% 1-year mortality Adaboost, DT, SVM, 

KNN; Adaboost (0.69)

Train/ validation 

(75%/25%)

Internal validation

Ayers et al. (2021), 

USA

Adult UNOS registry 33,657 52.8 ± 12.4 25% 1-year mortality DNN, Adaboost, RF, 

Ensemble 

(DNN + Adaboost+RF+ 

logistic regression); 

Ensemble (0.76)

Train/ validation 

(80%/20%)

Internal validation

(Continued)
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TABLE 1 (Continued)

Author, year 
of publication, 
country

Population 
(adult or 
pediatric)

Data source Population 
size

Mean 
age ± SD

Gender 
(female %)

Outcomes Algorithms; best 
performing 
model (AUC)

Mode of 
validation

Type of 
validation

Zhou et al. (2021), 

China

Adult Union Hospital, Tongji 

Medical College data

381 43.78 ± 16.45 23.8% 1-year mortality SVM, RF, XGB, 

AdaBoost, GBM, ANN; 

RF (0.80)

Train/ validation 

with bootstrapping

Internal validation

Kampaktsis et al. 

(2023), USA

Adult UNOS registry 1,033 patients Median 34 38.9% 1-year and 

3-year mortality

CatBoost; CatBoost 

(0.80)

Train/ validation 

(75%/25%)

Internal validation

Miller et al. (2022), 

USA

Adult/pediatric UNOS registry 67,939 (59,590 

adult+8,349 

pediatric)

Median 54 (adult 55, 

pediatric 7)

27.4% (Adult: 25% 

pediatrics: 44.2%)

1-year and 

90 days mortality

RF, XGB; RF (0.89) 10-fold cross-

validation or rolling 

cross validation

Internal validation

Raji and Safna 

(2022), India

Adult UNOS registry 485 51.19 ± 11.03 47.6% survival 

prediction

MLP, ANN; ANN (0.95) 10-fold cross-

validation

External validation

Lisboa et al. (2022), 

UK

Adult UNOS, SRTR 42,185 Mean 52.3 24.2% 1-year mortality Partial neural network, 

GBM, ANN; ANN (0.64)

Test/ validation Internal and external 

validation

Shou et al. (2022), 

USA

Adult UNOS registry 1,584 56 26.2% 1-year mortality XGB; XGB (0.71) Train/ validation 

(70%/30%)

Internal validation

Killian et al. (2023), 

USA

Pediatric UNOS registry 8,201 Mean 6.78 ± 6.47 43.62% 1-, 3-, and 

5-years mortality

XGB, SVM, RF, SGD, 

MLP, AdaBoost, NN; RF 

(0.76)

10-fold cross 

validation

Internal validation

Ashfaq et al. (2023), 

USA

Pediatric UNOS registry 4,150 Mean 6.46 44.14% 1-year and 

3-year survival

GBM, SVM, RF, DT; RF 

(0.68)

Train/ validation 

(70%/30%)

Internal validation

AUC: Area Under Receiver Operating Characteristics Curve, ISHLT: International Society for Heart and Lung Transplantation, UNOS: United Network for Organ Sharing, SRTR: Scientific Registry of Transplant Recipients, ANN: Artificial Neural Network, SVM: 
Support Vector Machine, DT: Decision Trees, RF: Random Forest, NN: Neural Network, GBM: Gradient Boosting Machine, KNN: K-Nearest Neighbor, DNN: Deep Neural Network, XGB: Extreme Gradient Boosting, SGD: Stochastic Gradient Descent, and MLP: 
Multi-Layer Perceptron.
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et al., 2022), artificial neural network (ANN) (Nilsson et al., 2015; Dag 
et al., 2017; Medved et al., 2018; Zhou et al., 2021; Raji and Safna, 
2022; Lisboa et  al., 2022; Miller R. et  al., 2019), support vector 
machine (SVM) (Dag et al., 2017; Miller P. E. et al., 2019; Zhou et al., 
2021; Kampaktsis et al., 2021; Killian et al., 2023; Ashfaq et al., 2023), 
decision tree (DT) (Dag et al., 2017; Yoon et al., 2018; Miller P. E. et al., 
2019; Kampaktsis et al., 2021; Ashfaq et al., 2023), adaptive boosting 
(AdaBoost) (Yoon et al., 2018; Zhou et al., 2021; Kampaktsis et al., 
2021; Ayers et al., 2021; Killian et al., 2023), extreme gradient boosting 
(XGB) (Yoon et al., 2018; Zhou et al., 2021; Shou et al., 2022; Killian 
et al., 2023; Miller et al., 2022), gradient boosting machine (GBM) 
(Agasthi et al., 2020; Zhou et al., 2021; Lisboa et al., 2022; Ashfaq et al., 
2023), and neural network (NN) (Yoon et al., 2018; Miller P. E. et al., 
2019; Killian et al., 2023), in descending order. Other used algorithms 
included multi-layer perceptrons (MLP) (Raji and Safna, 2022; Killian 
et al., 2023), K-nearest neighbor (KNN) (Kampaktsis et al., 2021), 
deep neural networks (DNNs) (Ayers et  al., 2021), categorical 
boosting (CatBoost) (Kampaktsis et al., 2023), partial neural networks 
(Lisboa et al., 2022), stochastic gradient descent (SGD) (Killian et al., 
2023), linear perceptrons (Yoon et  al., 2018), deep boosting 
(DeepBoost) (Yoon et al., 2018), naïve Bayesian (Miller P. E. et al., 
2019), logistic boosting (LogitBoost) (Yoon et  al., 2018), trees of 
predictors (Yoon et  al., 2018), and an ensemble model of 
DNN + AdaBoost + RF + LR (Ayers et al., 2021). Modes of validation 
were commonly train/validation splits (n = 9), followed by K-fold 
cross-validations (n = 8). External validation was only performed in 
four studies (Nilsson et al., 2015; Medved et al., 2018; Raji and Safna, 
2022; Lisboa et al., 2022).

3.3 Performance of the models

After combining the data from 12 (Nilsson et al., 2015; Dag et al., 
2017; Medved et al., 2018; Yoon et al., 2018; Agasthi et al., 2020; Zhou 
et al., 2021; Kampaktsis et al., 2023; Kampaktsis et al., 2021; Ayers 
et al., 2021; Lisboa et al., 2022; Shou et al., 2022; Miller et al., 2022) 
studies in a meta-analysis, the overall AUC of all AI algorithms was 
0.65 (95% CI: 0.64, 0.67), with externally validated models having an 
AUC of 0.64 (95% CI: 0.62, 0.65) and internally validated ones having 
an AUC of 0.65 (95% CI: 0.64, 0.67) and no significant subgroup 
difference (p-value = 0.10; Supplementary Figure S1). There was 
significant heterogeneity (I2 = 100.00%), which was investigated by a 
meta-regression of the time of mortality being predicted and subgroup 
analysis of the type of algorithm utilized. Meta-regression showed the 
longer the time since transplant is, the better the models perform 
(coefficient = 0.0005436, p-value = 0.008, R2 = 6.9%). Subgroup 
analysis also showed significant between-group differences for the 
type of algorithm (p-value<0.01) yet no difference between machine 
learning and deep learning algorithms (p-value = 0.67; Figure  2). 
Among the algorithms, K-nearest neighbors had the lowest AUC 
(0.53, 95% CI: 0.50, 0.55), whereas CatBoost had the highest AUC 
(0.80, 95% CI: 0.74, 0.86). Sensitivity analysis using the leave-one-out 
method indicates that our findings are stable (Supplementary  
Figure S2), yet publication bias was evident in the funnel plot 
(Figure 3; Egger’s p-value = 0.020). Further sensitivity analysis via 
exclusion of studies with a high risk of bias resulted in a similar pooled 
AUC of 0.62 (95% CI: 0.61, 0.64; data not shown).

When pooling only the best-performing algorithms from each 
study, a pooled AUC of 0.73 (95% CI: 0.68, 0.78) was achieved with 
significant heterogeneity (I2 = 99.9%; Figure 4). From these, the most 
accurate model was developed by Miller et al. (2022), who used an RF 
model and achieved an AUC of 0.89 (95% CI: 0.89, 0.90), and the least 
accurate was developed by Nilsson et al. (2015), who used an ANN 
model and achieved an AUC of 0.64 (95% CI: 0.62, 0.66). Table 1 
shows the detailed AUC values of the best-performing models from 
each of the 17 included studies, with models not included in the meta-
analyses having AUC values ranging from 0.66 (Miller P. E. et al., 
2019) to 0.95 (Raji and Safna, 2022). These five studies utilized RF 
(Miller R. et al., 2019; Killian et al., 2023; Ashfaq et al., 2023), NN 
(Miller P. E. et  al., 2019), and ANN (Raji and Safna, 2022) and 
achieved slightly higher AUCs than those included in the 
meta-analyses.

3.4 Risk of bias assessment

We utilized the QUADAS-2 tool to evaluate the risk of bias for all 
17 studies in our review. Out of these studies, eight studies (Dag et al., 
2017; Miller P. E. et al., 2019; Agasthi et al., 2020; Zhou et al., 2021; 
Kampaktsis et al., 2023; Kampaktsis et al., 2021; Ayers et al., 2021; 
Shou et al., 2022) were found to have a high risk of bias, while four 
(Yoon et al., 2018; Raji and Safna, 2022; Killian et al., 2023; Ashfaq 
et al., 2023) had an unclear risk of bias, primarily due to ambiguous 
analysis methods. The remaining five studies (Nilsson et al., 2015; 
Medved et al., 2018; Lisboa et al., 2022; Miller R. et al., 2019; Miller 
et al., 2022) were all assessed to be at a low risk of bias. Among the 
studies included in the meta-analysis, four had a low risk of bias 
(Nilsson et al., 2015; Medved et al., 2018; Lisboa et al., 2022; Miller 
et al., 2022), seven had a high risk of bias (Dag et al., 2017; Agasthi 
et al., 2020; Zhou et al., 2021; Kampaktsis et al., 2023; Kampaktsis 
et al., 2021; Ayers et al., 2021; Shou et al., 2022), and one study had an 
unclear risk of bias (Yoon et al., 2018). Figure 5 provides a summary 
of the risk of bias in the studies based on the four domains of 
QUADAS-2 tool. The most common cause of bias was in the flow and 
timing domains.

4 Discussion

Risk prediction is a crucial aspect of cardiovascular surgeries, 
especially in HT. Given the limited supply of donor organs, decisions 
about transplant eligibility and organ allocation are largely influenced 
by the predicted post-transplant risk of complications and mortality. 
Accurately assessing recipients’ mortality risk is crucial for optimizing 
organ allocation and ensuring the best donor-recipient matches. To 
this end, many models have been developed to predict mortality 
following HT in the literature. Although traditional regression-based 
models have been relatively successful in predicting mortality, ML 
models have shown great promise in surpassing them as they are 
better equipped to capture more complex non-linear interactions 
between characteristics. To better understand and compare these 
models, this systematic review and meta-analysis aimed to gauge the 
accuracy of ML models in predicting mortality following 
HT. We found that the overall predictive ability of the ML models was 
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0.65, and the meta-analysis of the best-performing algorithms from 
each study yielded a pooled AUC of 0.73. On average, CatBoost 
performed the best with an AUC of 0.80, whereas KNN performed the 
worst with an AUC of 0.53. Both traditional machine learning and 
deep learning algorithms performed similarly, and models performed 
better when a longer time had passed since the HT. Table 2 delineates 
the general advantages and disadvantages of the most widely used ML 
models in this study (Hornyák and Iantovics, 2023; Fort, 2018; Lantz, 
2019; Sarker, 2021; Dangeti, 2017; Akinsola, 2017).

Although our pooled analysis revealed relatively low 
discrimination power among ML models, it is essential to 
contextualize their performance by comparing them with other 
established prediction models in the literature. The Donor Risk Index 

(DRI), the risk stratification score (RSS), and the Index for Mortality 
Prediction after Cardiac Transplantation (IMPACT) are three of the 
most prominent models that have been developed using logistic 
regression. Nilsson et  al. compared the International Heart 
Transplantation Survival Algorithm (IHTSA) model to DRI, RSS, and 
IMPACT and found that IHTSA outperformed all three models in 
predicting 1-year mortality (Nilsson et al., 2015). Similarly, Medved 
et al. also found that the IHTSA showed superior discriminatory 
power to predict 1-year mortality and long-term survival after heart 
transplantation than the IMPACT (Medved et al., 2018). Additionally, 
an abstract by Yagi et al. externally validating both the IHTSA and 
the IMPACT found that the C-index for survival using the IMPACT 
score and 5-year mortality rate based on the IHTSA model were 

FIGURE 2

Subgroup analysis by the type of algorithm and machine learning vs. deep learning algorithms.
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0.689 and 0.720, respectively, denoting superiority of IHTSA (Yagi 
et al., 2020).

A range of variables were identified as significant contributors to 
mortality among the included studies, which can be grouped into 
categories such as recipient factors, donor factors, and transplant-
related and post-operative factors.

Recipient characteristics, including functional status, age, specific 
diagnoses, and pediatric considerations, emerged as key predictors of 
mortality. Ashfaq et al. identified recipient functional status at listing 

as one of the most important predictors of 1-year mortality (Ashfaq 
et al., 2023). Similarly, Shou et al. reported that recipient functional 
status, age, and pulmonary capillary wedge pressure were the most 
predictive variables in their GBM model (Shou et al., 2022). Nilsson 
et  al. highlighted recipient age and creatinine levels as critical 
predictors in the International Heart Transplantation Survival 
Algorithm (IHTSA) (Nilsson et al., 2015). Miller et al. also reported 
that bilirubin and creatinine levels at transplant were important 
predictors of mortality across LR, RF, and XGB models (Miller et al., 

FIGURE 3

Funnel plot.

FIGURE 4

Meta-analysis of the area under the receiver operating characteristic curve for the best-performing models of each included study.
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2022). Agasthi et al. and Lisboa et al. also found age to be an important 
recipient factor (Agasthi et al., 2020). Specific diagnoses also played 
an important role, as Miller et al.’s RF model found that congenital 
heart defect at listing was the most predictive variable for pediatric 
mortality at 1, 3, and 5 years. Additionally, cardiomyopathy and 
ECMO at transplant were predictive of 1-year mortality, with 
cardiomyopathy and bilirubin levels predictive of 3-year mortality 
(Miller R. et al., 2019). Kampaktsis et al.’s CatBoost model identified 
recipient age and eGFR as key predictors of 1-year mortality 
(Kampaktsis et al., 2023). Dag et al. emphasized the importance of 
recipient socioeconomic status, diagnosis for heart transplant at 
candidacy, and functional status at listing and transplant in predicting 
long-term mortality at 1, 5, and 9 years (Dag et al., 2017).

Donor characteristics were shown to significantly influence 
outcomes. Lisboa et  al.’s partial response network–Lasso model 
identified donor age and ischemic time as highly predictive of 1-year 

mortality (Lisboa et al., 2022). Nilsson et al. similarly found donor age 
to be an important factor in their analysis (Nilsson et al., 2015). Miller 
et  al.’s RF model additionally highlighted donor cytomegalovirus 
status and donor B1 antigen levels as predictors of 5-year mortality in 
pediatric patients (Miller R. et al., 2019).

Variables related to the transplant process, such as ventilator use, 
ischemic time, and graft status, were prominent in several models. 
Ashfaq et al. highlighted ventilator use at transplant as an important 
predictor of 1-year mortality (Ashfaq et al., 2023). Lisboa et al. and 
Agasthi et al. both identified ischemic time as a significant factor in 
1- and 5-year mortality, respectively (Agasthi et al., 2020; Lisboa et al., 
2022). Killian et al.’s RF model also found graft status and days in 
status 1A to be highly predictive of 1-, 3-, and 5-year mortality (Killian 
et al., 2023). Post-operative factors also contributed to the prognosis. 
Kampaktsis et al. emphasized post-operative hemodialysis as a top 
predictor of mortality in their CatBoost model (Kampaktsis et al., 

FIGURE 5

Risk of bias using the QUADAS-2 tool.
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2023). Agasthi et al. also identified hospital length of stay as a predictor 
(Agasthi et al., 2020).

Our study has several limitations. First, the cumulative AUC 
calculated (AUC = 0.65) implies that current AI models offer only a 
limited degree of clinical applicability, as it is generally agreed upon 
that in diagnostic value studies, AUC values above 0.90 indicate 
excellent performance, whereas AUC values below 0.80, even if 
statistically significant, imply a very limited clinical utility (White 
et  al., 2023). Be  that as it may, CatBoost has shown promise by 
achieving an AUC of 0.80, and future research is warranted to 
optimize this model. Second, a high degree of heterogeneity was 
observed when pooling the performance of the models. Our analysis 
was successful in attributing this heterogeneity to the type of the 
model and the time that has passed since the heart transplant. Other 
factors, such as population characteristics and type of disease, could 
have also contributed to this heterogeneity, as some of the studies used 
both adult and pediatric patients undergoing a range of procedures for 
their training. We could not perform subgroup analyses by population 
type, as the meta-analysis included only one pediatric study. Similarly, 
subgroup analysis by data source was unfeasible, as only one study in 
the meta-analysis did not rely on registries. In addition, feature 
selection, hyperparameter settings, and data preprocessing methods 
could have contributed to the heterogeneity, as a wide array of 
methods were used to construct the included models. For instance, in 
the case of feature selection, Ashfaq et al. (2023) used features that 
were selected by medical professionals, while Kampaktsis et al. (2021) 
used an ML feature selection method to do so. Furthermore, the 
models may have differed widely with respect to their hyperparameters, 
such as the number of trees in tree-based models, the number of layers 
and nodes used by NNs, or the number of cross-validation folds. In 
the case of data preprocessing, some simply excluded variables with 
too many missing values, whereas others used imputation to estimate 
the missing values without excluding them. Unfortunately, these 
aspects were not reported uniformly across different studies and, in 
some cases, were missing entirely from the reports. As a result, 
we  were unable to explore them in subgroup analyses or meta-
regressions. We suggest that future studies follow guidelines such as 
TRIPOD+AI (Collins et al., 2024) in order to enable future meta-
analyses to assess the effect of these aspects of the models on their 

performance. Finally, most of the included studies were judged to 
be of low quality according to the QUADAS-2 tool. We recommend 
that future research be conducted in accordance with reporting and 
quality checklists in the literature to ensure the quality of analyses in 
future meta-analyses.

5 Conclusion

In conclusion, this systematic review and meta-analysis 
evaluated ML models for predicting mortality after heart 
transplantation (HT), yielding a pooled AUC of 0.73, with 
CatBoost performing best (AUC of 0.80). ML models 
demonstrated the potential to outperform traditional regression-
based scores such as DRI, RSS, and IMPACT in capturing 
complex, non-linear interactions. However, high heterogeneity 
and variable study quality limit the reliability of pooled results. 
Key predictors of mortality include recipient diagnosis and 
functional status, age, and donor characteristics. Future studies 
should focus on improving methodological consistency and 
directly comparing ML approaches to traditional models to 
optimize clinical decision-making in HT.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

IM: Data curation, Formal analysis, Resources, Writing – original 
draft. SeF: Data curation, Formal analysis, Resources, Writing  – 
original draft. AK: Data curation, Formal analysis, Resources, 
Writing – original draft. SJ: Data curation, Formal analysis, Writing – 
original draft. ShF: Formal analysis, Writing – review & editing. MAl: 
Writing – review & editing. AF: Writing – review & editing. BH: 

TABLE 2 The advantages and disadvantages of the most widely used models in our study.

ML method Advantages Disadvantages

Decision tree-based models

 - Handles complex data.

 - Easy to interpret (DT).

 - Robust to overfitting (RF).

 - Prone to overfitting (DT).

 - Computationally expensive (RF).

 - Less interpretable (RF).

Support vector machines

 - Effective in high-dimensional spaces.

 - Works well with smaller datasets.

 - Robust to overfitting with proper tuning.

 - Computationally slow with large datasets.

 - Sensitive to kernel choice.

 - Limited probabilistic output.

Adaptive boosting
 - Combines weak-learning algorithms to increase the accuracy

 - Handles non-linear data well.

 - Sensitive to noisy data.

 - Computationally demanding.

 - Needs careful tuning.

Gradient boosting

 - Efficient and scalable.

 - Handles missing data.

 - Built-in regularization to prevent overfitting.

 - Requires careful hyperparameter tuning.

 - Computationally expensive for large datasets.

Neural networks
 - Powerful in capturing deep patterns.

 - Scalable for large datasets.

 - Requires significant computational resources.

 - Hard to interpret and tune.

https://doi.org/10.3389/frai.2025.1551959
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Mohammadi et al. 10.3389/frai.2025.1551959

Frontiers in Artificial Intelligence 12 frontiersin.org

Writing – review & editing, Supervision. MAk: Supervision, Writing – 
review & editing, Conceptualization, Project administration.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any 
product that may be  evaluated in this article, or claim that may 
be  made by its manufacturer, is not guaranteed or endorsed by 
the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frai.2025.1551959/
full#supplementary-material

SUPPLEMENTARY FIGURE S1

Forest plot of the area under the receiver operating characteristic curve of 
the included studies stratified by internal or external validation.

SUPPLEMENTARY FIGURE S2

Sensitivity analysis using the leave-one-out method.

References
Agasthi, P., Buras, M. R., Smith, S. D., Golafshar, M. A., Mookadam, F., Anand, S., et al. 

(2020). Machine learning helps predict long-term mortality and graft failure in patients 
undergoing heart transplant. Gen. Thorac. Cardiovasc. Surg. 68, 1369–1376. doi: 
10.1007/s11748-020-01375-6

Akinsola, J. E. T. (2017). Supervised machine learning algorithms: classification and 
comparison. Int. J. Comput. Trends Technol. 48, 128–138. doi: 
10.14445/22312803/IJCTT-V48P126

Ashfaq, A., Gray, G. M., Carapelluci, J., Amankwah, E. K., Rehman, M., Puchalski, M., 
et al. (2023). Survival analysis for pediatric heart transplant patients using a novel 
machine learning algorithm: a UNOS analysis. J. Heart Lung Transplant. 42, 1341–1348. 
doi: 10.1016/j.healun.2023.06.006

Awad, M. A., Shah, A., and Griffith, B. P. (2022). Current status and outcomes in heart 
transplantation: a narrative review. Rev. Cardiovasc. Med. 23:11. doi: 10.31083/j.rcm2301011

Ayers, B., Sandholm, T., Gosev, I., Prasad, S., and Kilic, A. (2021). Using machine 
learning to improve survival prediction after heart transplantation. J. Card. Surg. 36, 
4113–4120. doi: 10.1111/jocs.15917

Collins, G. S., Moons, K. G. M., Dhiman, P., Riley, R. D., Beam, A. L., Van Calster, B., 
et al. (2024). TRIPOD+AI statement: updated guidance for reporting clinical prediction 
models that use regression or machine learning methods. BMJ 385:e078378. doi: 
10.1136/bmj-2023-078378

Dag, A., Oztekin, A., Yucel, A., Bulur, S., and Megahed, F. M. (2017). Predicting heart 
transplantation outcomes through data analytics. Decis. Support. Syst. 94, 42–52. doi: 
10.1016/j.dss.2016.10.005

Dangeti, P. (2017). Statistics for machine learning. Birmingham: Packt Publishing Ltd.

Fort, E. L. (2018). A comparative study of machine learning algorithms. 
Hamilton: McMaster University.

Guijo-Rubio, D., Gutiérrez, P. A., and Hervás-Martínez, C. (2020). Machine learning 
methods in organ transplantation. Curr. Opin. Organ Transplant. 25, 399–405. doi: 
10.1097/MOT.0000000000000774

Hong, K. N., Iribarne, A., Worku, B., Takayama, H., Gelijns, A. C., Naka, Y., et al. 
(2011). Who is the high-risk recipient? Predicting mortality after heart transplant using 
pretransplant donor and recipient risk factors. Ann. Thorac. Surg. 92, 520–527. doi: 
10.1016/j.athoracsur.2011.02.086

Hornyák, O., and Iantovics, L. B. (2023). AdaBoost algorithm could Lead to weak 
results for data with certain characteristics. Mathematics 11, 1801. doi: 
10.3390/math11081801

Kampaktsis, P. N., Siouras, A., Doulamis, I. P., Moustakidis, S., Emfietzoglou, M., Van 
den Eynde, J., et al. (2023). Machine learning-based prediction of mortality after heart 
transplantation in adults with congenital heart disease: a UNOS database analysis. Clin. 
Transpl. 37:e14845. doi: 10.1111/ctr.14845

Kampaktsis, P. N., Tzani, A., Doulamis, I. P., Moustakidis, S., Drosou, A., Diakos, N., 
et al. (2021). State-of-the-art machine learning algorithms for the prediction of outcomes 

after contemporary heart transplantation: results from the UNOS database. Clin. 
Transpl. 35:e14388. doi: 10.1111/ctr.14388

Khush, K. K., Cherikh, W. S., Chambers, D. C., Harhay, M. O., Hayes, D., Hsich, E., 
et al. (2019). The International thoracic organ transplant registry of the International 
Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation 
report—2019; focus theme: donor and recipient size match. J. Heart Lung Transplant. 
38, 1056–1066. doi: 10.1016/j.healun.2019.08.004

Killian, M. O., Tian, S., Xing, A., Hughes, D., Gupta, D., Wang, X., et al. (2023). 
Prediction of outcomes after heart transplantation in pediatric patients using National 
Registry Data: evaluation of machine learning approaches. JMIR Cardio. 7:e45352. doi: 
10.2196/45352

Lantz, B. (2019). Machine learning with R: Expert techniques for predictive modeling. 
Birmingham: Packt publishing Ltd.

Lisboa, P. J., Jayabalan, M., Ortega-Martorell, S., Olier, I., Medved, D., and 
Nilsson, J. (2022). Enhanced survival prediction using explainable artificial 
intelligence in heart transplantation. Sci. Rep. 12:19525. doi: 
10.1038/s41598-022-23817-2

Maleki Varnosfaderani, S., and Forouzanfar, M. (2024). The role of AI in hospitals and 
clinics: transforming healthcare in the 21st century. Bioengineering 11:337. doi: 
10.3390/bioengineering11040337

Medved, D., Ohlsson, M., Höglund, P., Andersson, B., Nugues, P., and Nilsson, J. 
(2018). Improving prediction of heart transplantation outcome using deep learning 
techniques. Sci. Rep. 8:3613. doi: 10.1038/s41598-018-21417-7

Miller, P. E., Pawar, S., Vaccaro, B., McCullough, M., Rao, P., Ghosh, R., et al. (2019). 
Predictive abilities of machine learning techniques may be  limited by dataset 
characteristics: insights from the UNOS database. J. Card. Fail. 25, 479–483. doi: 
10.1016/j.cardfail.2019.01.018

Miller, R. J., Sabovčik, F., Cauwenberghs, N., Vens, C., Khush, K. K., Heidenreich, P. A., 
et al. (2022). Temporal shift and predictive performance of machine learning for heart 
transplant outcomes. J. Heart Lung Transplant. 41, 928–936. doi: 
10.1016/j.healun.2022.03.019

Miller, R., Tumin, D., Cooper, J., Hayes, D. Jr., and Tobias, J. D. (2019). Prediction of 
mortality following pediatric heart transplant using machine learning algorithms. 
Pediatr. Transplant. 23:e13360. doi: 10.1111/petr.13360

Nilsson, J., Ohlsson, M., Höglund, P., Ekmehag, B., Koul, B., and Andersson, B. 
(2015). The International heart transplant survival algorithm (IHTSA): a new model to 
improve organ sharing and survival. PLoS One 10:e0118644. doi: 
10.1371/journal.pone.0118644

Raji, C., and Safna, A. (2022). Computational methods for predicting the outcome of 
thoracic transplantation. J. Big Data 9:58. doi: 10.1186/s40537-022-00609-z

Ravindhran, B., Chandak, P., Schafer, N., Kundalia, K., Hwang, W., Antoniadis, S., 
et al. (2023). Machine learning models in predicting graft survival in kidney 
transplantation: meta-analysis. BJS Open 7. doi: 10.1093/bjsopen/zrad011

https://doi.org/10.3389/frai.2025.1551959
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/frai.2025.1551959/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2025.1551959/full#supplementary-material
https://doi.org/10.1007/s11748-020-01375-6
https://doi.org/10.14445/22312803/IJCTT-V48P126
https://doi.org/10.1016/j.healun.2023.06.006
https://doi.org/10.31083/j.rcm2301011
https://doi.org/10.1111/jocs.15917
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1016/j.dss.2016.10.005
https://doi.org/10.1097/MOT.0000000000000774
https://doi.org/10.1016/j.athoracsur.2011.02.086
https://doi.org/10.3390/math11081801
https://doi.org/10.1111/ctr.14845
https://doi.org/10.1111/ctr.14388
https://doi.org/10.1016/j.healun.2019.08.004
https://doi.org/10.2196/45352
https://doi.org/10.1038/s41598-022-23817-2
https://doi.org/10.3390/bioengineering11040337
https://doi.org/10.1038/s41598-018-21417-7
https://doi.org/10.1016/j.cardfail.2019.01.018
https://doi.org/10.1016/j.healun.2022.03.019
https://doi.org/10.1111/petr.13360
https://doi.org/10.1371/journal.pone.0118644
https://doi.org/10.1186/s40537-022-00609-z
https://doi.org/10.1093/bjsopen/zrad011


Mohammadi et al. 10.3389/frai.2025.1551959

Frontiers in Artificial Intelligence 13 frontiersin.org

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and 
research directions. SN Comput Sci. 2:160. doi: 10.1007/s42979-021-00592-x

Shou, B. L., Chatterjee, D., Russel, J. W., Zhou, A. L., Florissi, I. S., Lewis, T., et al. 
(2022). Pre-operative machine learning for heart transplant patients bridged with 
temporary mechanical circulatory support. J. Cardiov. Dev. Dis. 9:311. doi: 
10.3390/jcdd9090311

Vaidya, A. S., Lee, E. S., Kawaguchi, E. S., DePasquale, E. C., Pandya, K. A., 
Fong, M. W., et al. (2023). Effect of the UNOS policy change on rates of rejection, 
infection, and hospital readmission following heart transplantation. J. Heart Lung 
Transplant. 42, 1415–1424. doi: 10.1016/j.healun.2023.05.008

Weiss, E. S., Allen, J. G., Arnaoutakis, G. J., George, T. J., Russell, S. D., Shah, A. S., 
et al. (2011). Creation of a quantitative recipient risk index for mortality prediction after 
cardiac transplantation (IMPACT). Ann. Thorac. Surg. 92, 914–921; discussion 21-2. doi: 
10.1016/j.athoracsur.2011.04.030

Weiss, E. S., Allen, J. G., Kilic, A., Russell, S. D., Baumgartner, W. A., Conte, J. V., et al. 
(2012). Development of a quantitative donor risk index to predict short-term mortality 
in orthotopic heart transplantation. J. Heart Lung Transplant. 31, 266–273. doi: 
10.1016/j.healun.2011.10.004

White, N., Parsons, R., Collins, G., and Barnett, A. (2023). Evidence of questionable 
research practices in clinical prediction models. BMC Med. 21:339. doi: 
10.1186/s12916-023-03048-6

Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., 
Reitsma, J. B., et al. (2011). QUADAS-2: a revised tool for the quality assessment 
of diagnostic accuracy studies. Ann. Intern. Med. 155, 529–536. doi: 
10.7326/0003-4819-155-8-201110180-00009

Yagi, N., Watanabe, T., Yoshitake, K., Sujino, Y., Anegawa, E., Mochizuki, H., 
et al. (2020). External validation of current international short- and long-term 
prognostic models for survival in heart transplant recipients using marginal donor 
hearts at single JAPANESE center. Transplantation 104, S584. doi: 
10.1097/01.tp.0000701720.71022.04

Yoon, J., Zame, W. R., Banerjee, A., Cadeiras, M., Alaa, A. M., and van der Schaar, M. 
(2018). Personalized survival predictions via trees of predictors: an application to cardiac 
transplantation. PLoS One 13:e0194985. doi: 10.1371/journal.pone.0194985

Zhou, Y., Chen, S., Rao, Z., Yang, D., Liu, X., Dong, N., et al. (2021). Prediction of 
1-year mortality after heart transplantation using machine learning approaches: a single-
center study from China. Int. J. Cardiol. 339, 21–27. doi: 10.1016/j.ijcard.2021.07.024

https://doi.org/10.3389/frai.2025.1551959
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.3390/jcdd9090311
https://doi.org/10.1016/j.healun.2023.05.008
https://doi.org/10.1016/j.athoracsur.2011.04.030
https://doi.org/10.1016/j.healun.2011.10.004
https://doi.org/10.1186/s12916-023-03048-6
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1097/01.tp.0000701720.71022.04
https://doi.org/10.1371/journal.pone.0194985
https://doi.org/10.1016/j.ijcard.2021.07.024

	Mortality prediction of heart transplantation using machine learning models: a systematic review and meta-analysis
	1 Introduction
	2 Materials and methods
	2.1 Search strategy
	2.2 Eligibility criteria
	2.3 Study selection
	2.4 Data extraction
	2.5 Quality assessment
	2.6 Statistical analysis

	3 Results
	3.1 Study selection
	3.2 Study characteristics
	3.3 Performance of the models
	3.4 Risk of bias assessment

	4 Discussion
	5 Conclusion

	References

