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Introduction: Teacher performance evaluation is essential for improving 
instructional quality and guiding professional development, yet traditional 
observation-based methods can be subjective, labor-intensive, and inconsistently 
reliable. This study proposes an AI-powered framework to objectively assess 
classroom interactions.
Methods: We developed and evaluated a computer-vision framework 
using three state-of-the-art object detectors—YOLOv8, Faster R-CNN, and 
RetinaNet—to identify eleven classroom interaction categories. A labeled 
dataset of 7,259 images collected from real classroom settings was annotated 
and used for training and evaluation. Performance was assessed using mean 
Average Precision (mAP).
Results: YOLOv8 achieved the best performance among the evaluated models, 
with an mAP of 85.8%, indicating strong accuracy in detecting diverse classroom 
interactions. Faster R-CNN and RetinaNet performed competitively but were 
outperformed by YOLOv8.
Discussion/Conclusion: The results demonstrate that modern deep learning–
based detection can provide more objective and reliable insights into teacher–
student interactions than traditional approaches. The proposed framework 
supports evidence-based evaluation and has the potential to enhance feedback 
and outcomes in educational practice.].
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1 Introduction

In the educational process, teacher performance evaluation is crucial for improving 
instructional quality, ensuring accountability, and supporting professional development. 
Traditional methods, such as classroom observations and test-based metrics, are limited by 
subjectivity, evaluator bias, and insufficient feedback (Fernández and Martinez, 2022). These 
conventional approaches often fail to capture the full complexity of teaching practices and 
student needs, making them inconsistent and lacking in actionable insight for teachers. As a 
result, they hinder opportunities for continuous improvement and professional growth.
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Teacher evaluations also contribute to educational equity by 
holding all educators to consistent standards, which is especially 
important in addressing achievement gaps among diverse student 
populations. Through targeted professional development, instructors 
can improve their instructional strategies and enhance student 
outcomes (Fan, 2024). A robust evaluation system further supports 
accountability within educational institutions by informing personnel 
decisions such as promotion and tenure. By integrating both formative 
and summative assessment methods, such systems provide a more 
comprehensive evaluation of teaching effectiveness, fostering an 
environment of continuous growth and excellence (Close et al., 2020).

During the evaluation process, it is essential to consider the 
teacher’s Key Performance Indicators (T-KPIs) according to the 
adopted educational system. T-KPIs play a vital role in assessing 
educators, ensuring that students receive a high-quality education and 
contributing to overall improvements in educational standards 
(Kardianto et al., 2022; Taylor and Tyler, 2012; de Almeida, 2017; 
Pelayo et al., 2022). Several studies have examined the application of 
T-KPIs in various countries, including Saudi Arabia (Hakim, 2015), 
Indonesia (Setyaningsih and Suchyadi, 2021), Australia (Stacey et al., 
2020), China (Ding et al., 2021), India (Patel, 2018), and others (Guo 
et al., 2021). T-KPI forms provide evaluators with immediate and 
specific feedback, helping to identify both teachers’ strengths and 
areas for improvement. However, these forms alone often fail to 
deliver timely, objective, and comprehensive insights into classroom 
dynamics. Nevertheless, when used alongside other evaluation 
methods, T-KPIs contribute to a more holistic understanding of 
teacher performance (Amzat, 2017).

Traditional methods for evaluating teacher performance—such as 
classroom observations, test-based metrics, and manual KPI forms—
have notable limitations. These include subjectivity, evaluator bias, 
limited feedback, and the inability to capture real-time or nuanced 
classroom dynamics. Evaluations often rely on standardized test 
scores, which fail to reflect the complexity of teaching practices and 
students’ diverse needs. Additionally, such methods are typically time-
consuming, inconsistent, and offer limited actionable insight for 
teachers, thereby hindering professional growth and 
continuous improvement.

In the literature, teacher evaluation in the classroom revolves 
around three phases: observation of the teaching process using T-KPI 
forms (cards), manual analysis of the video recordings, and automated 
and intelligent analysis of the videos using Artificial Intelligence (AI) 
(Williams and Hebert, 2020). Observations in the classroom provide 
immediate, contextual feedback and insight into classroom dynamics. 
Nevertheless, these methods may be  time-consuming, introduce 
observer bias, and be challenging to scale up (Gitomer et al., 2014). 
Manual video analysis has been explored as a richer alternative, yet it 
too is constrained by time demands, the need for trained observers, 
and privacy concerns. These constraints make it difficult to scale 
evaluations reliably or provide timely feedback. As a result, there is 
growing interest in leveraging AI-driven approaches to overcome 
these challenges through objective, scalable, and data-rich evaluations 
(Heard and Peltier, 2021).

Traditional methods for evaluating teacher performance have 
significant shortcomings that undermine their effectiveness and 
fairness. According to Steinberg and Kraft (2017), these conventional 
evaluation methods rely heavily on subjective observations and 
infrequent assessments, leading to inconsistent and unreliable 

evaluations that may not accurately reflect a teacher’s day-to-day 
performance or growth. Consequently, teachers may experience 
significant stress that led to performance anxiety and may further 
distort the evaluation results. Similarly, Wei et al. (2023) emphasizes 
that traditional methods are commonly based on standardized test 
scores, which fail to capture both the multifaceted nature of teaching 
and the diverse needs of students. These methods frequently ignore 
important aspects of teaching, such as the development of critical 
thinking and socio-emotional skills, which standardized tests cannot 
measure. Furthermore, traditional evaluations typically offer limited 
feedback, providing little actionable insight for teachers to improve 
their practice. This lack of constructive feedback impedes professional 
and continuous development. Moreover, traditional teacher 
evaluations rarely offer actionable insights for teachers. Overall, these 
studies highlight the need for holistic and continuous evaluation 
approaches that accurately improve teachers’ professional development 
and reflect their contribution to student learning.

The emergence of AI technology presents a transformative 
approach to evaluating educational performance, offering new 
opportunities to improve teacher evaluation. AI enables the analysis 
of large volumes of data from various sources—such as classroom 
interactions, student performance metrics, and instructional 
materials—facilitating a more comprehensive understanding of 
teaching effectiveness. By identifying patterns in teaching methods 
and engagement levels, AI algorithms can more accurately and 
objectively assess educators’ strengths and areas for growth. Moreover, 
AI-driven evaluations offer the advantage of immediate feedback, 
allowing teachers to adjust their practices to better meet students’ 
needs (Owoc et al., 2021). Ongoing research suggests that integrating 
AI into teacher evaluations can enhance both their quality and 
fairness, positioning this integration as a promising research area 
(Ding et al., 2024). However, concerns such as privacy, algorithmic 
bias, and the interpretability of AI-generated assessments must 
be addressed. To overcome the limitations of traditional evaluation 
methods, researchers have introduced increasingly accurate, data-
driven, and scalable AI techniques. Steinberg and Kraft highlight the 
use of AI in analyzing classroom interactions, offering real-time 
feedback and pinpointing areas for improvement (Steinberg and Kraft, 
2017). Heard et  al. explore video-based evaluations that support 
teacher self-reflection and peer review, improving the reliability of 
observations (Heard and Peltier, 2021). Similarly, Kane et al. (2020) 
emphasizes the value of continuous data analytics in tracking student 
progress and evaluating teacher effectiveness in a dynamic and 
responsive manner. These technologies help reduce biases inherent in 
manual evaluations and generate actionable insights for personalized 
professional development. Collectively, these advances reflect a shift 
toward a more supportive and nuanced evaluation framework aligned 
with modern educational goals. In addition to automating routine 
tasks such as grading, AI systems can provide real-time feedback, 
further enhancing teaching effectiveness and productivity (Guo et al., 
2021; Lee et al., 2024).

T-KPI analysis is essential for enhancing educational outcomes, 
ensuring accountability, supporting professional development, and 
enabling evidence-based decision-making (Guo et  al., 2021; Ali, 
2024). Five commonly used T-KPIs include: (a) student achievement, 
(b) instructional quality, (c) professional development and growth, (d) 
collaboration and communication, and (e) classroom environment. 
AI-based systems offer objective and reliable evaluations of these 
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indicators, helping identify areas for improvement and raising the 
overall quality of education (Guo et al., 2021).

Several AI technologies are currently being explored to 
support teacher performance evaluation through comprehensive 
and data-driven insights. These technologies are typically classified 
by domains and methods. Domains such as Computer Vision 
(CV), image processing, and the Internet of Things (IoT) enable 
the collection and analysis of visual and sensory data, allowing 
real-time monitoring of classroom interactions. Meanwhile, 
methods like Machine Learning (ML) and Deep Learning (DL) 
play a pivotal role in interpreting this data, enabling pattern 
recognition, predictive modeling, and automated evaluations. 
When applied effectively, these approaches provide deeper insights 
into teaching practices, student engagement, and classroom 
dynamics, contributing to more informed decisions and improved 
educational outcomes (Guo et al., 2021; Ahmed et al., 2022; Tuli 
et al., 2019).

Computer Vision (CV) offers a valuable means of assessing 
teacher performance by tracking movements, gestures, facial 
expressions, and interactions within the classroom. Through object 
detection and video analysis, it is possible to monitor behaviors such 
as teacher positioning, student engagement, use of visual aids, and 
overall participation patterns—providing objective insights into 
teaching style and classroom dynamics. This automated approach 
enables consistent, scalable analysis, supporting more comprehensive 
and timely teacher evaluations (Vijayakumar and 
Vairavasundaram, 2024).

Beyond computer vision (CV), emerging technologies such as the 
Internet of Things (IoT), Machine Learning (ML), and Deep Learning 
(DL) significantly expand the scope of teacher performance 
evaluation. IoT devices—such as smart cameras, microphones, and 
wearable sensors—can provide contextual data by monitoring 
environmental factors like classroom noise levels and student 
movement. ML models help uncover patterns and correlations in 
classroom behavior, while DL techniques can extract subtle cues from 
video and audio recordings, such as detecting emotional tone or 
identifying specific teaching strategies. Together, these technologies 
enable more nuanced, real-time, and scalable evaluations, surpassing 
the limitations of traditional observational methods (Kaur and Singh, 
2023). However, traditional approaches to monitoring in-classroom 
interactions remain limited in their ability to track critical metrics, 
such as textbook usage, types of student participation, and teacher-
student dynamics. As a result, teachers may struggle to manage 
classroom interactions effectively, leading to suboptimal 
instructional outcomes.

The primary objective of this study is to automate the evaluation 
of teacher performance by detecting in-classroom interactions using 
AI-driven models. This initiative builds upon previous research 
(Almubarak et  al., 2024), which proposed the foundations of a 
comprehensive teacher evaluation framework. By constructing a 
labeled dataset of classroom interactions and comparing multiple 
object detection models, this work aims to demonstrate the feasibility 
and effectiveness of automated, data-driven performance assessments.

This study introduces a computer vision and deep learning-based 
evaluation system using object detection algorithms (YOLO, Faster 
R-CNN, RetinaNet). It addresses the following research questions:

RQ1. Can the proposed model detect student participation reliably?

RQ2. Can the proposed model identify textbook usage accurately?

RQ3. Can the proposed model track student and teacher 
activity effectively?

Regarding the research hypothesis, we predicted that the proposed 
model could accurately and reliably detect classroom interactions and 
evaluate teacher performance regarding student engagement and 
activities. The research questions will be  answered during the 
following sections, and the hypothesis will be tested.

While this study addresses the long-standing limitations of 
traditional evaluation practices, the technical limitations of the 
proposed AI-based detection model identified through 
experimentation—are discussed in detail in the Discussion section.

This study makes several key contributions to the field of 
AI-driven teacher performance evaluation. First, a labeled image 
dataset has been created to capture various teacher and student 
interactions and behaviors within a classroom environment. The 
dataset includes detailed annotations for activities such as **Closed-
Book, Electronic-Book, No-Book, Opened-Book, Raising-Hand, 
Student-Answers, Student-Reads, Student-Writes, Teacher-Explains, 
Teacher-Follows-up-Students, and Worksheet**, providing a 
comprehensive representation of classroom dynamics. Second, the 
performance of this dataset has been evaluated using multiple object 
detection algorithms, enabling a comparative assessment of their 
accuracy, robustness, and suitability for recognizing these specific 
behaviors and interactions.

While the object detection networks employed (YOLOv8, Faster 
R-CNN, RetinaNet) are well-established, the novelty of this study lies 
in their adaptation to the educational domain—specifically for 
detecting pedagogically meaningful interactions aligned with teacher 
performance indicators (T-KPIs) in real classroom settings.

Lastly, the study explores the practical applications of the system 
in real-world classroom settings, discussing its potential benefits for 
automated teacher assessments, identifying classroom engagement 
patterns, and supporting data-driven educational improvements. 
Additionally, the study highlights existing limitations and provides 
recommendations for future enhancements based on 
experimental findings.

The major contributions of this study are:

	•	 The development of a labeled image dataset capturing various 
teacher-student interactions.

	•	 The evaluation of the dataset using various object detection 
algorithms to assess their performance in recognizing 
these behaviors.

	•	 The discussion of system applications, limitations, and 
recommendations for future enhancements.

	•	 The adaptation of general-purpose object detection networks to 
the educational domain, using expert-driven labels and real 
classroom footage to detect pedagogically meaningful 
interactions—establishing a foundation for automated teacher 
performance scoring.

The rest of this article is organized as follows. Section 2 reviews 
the related works. Section 3 introduces the research materials and 
methods. The results, discussion, and conclusion are illustrated in 
Sections 4, 5, and 6, respectively.
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2 Literature review

Researchers are exploring ways to apply AI to improve education 
quality, enrich the learning process, enhance collaboration, tailoring, 
and motivation, and improve education’s collaboration, tailoring, and 
motivation. AI has also been applied to grading, learning analytics, 
and other aspects of education (Roll and Wylie, 2016). By utilizing AI, 
teachers’ evaluations may become more efficient, objective, and 
reliable, increasing the quality of the evaluation. An organization’s 
human resources (HR) plays an important role in mobilizing and 
coordinating additional resources to achieve its objectives. Effective 
management of HR within organizations and businesses is essential 
for developing reliable human resources. Performance evaluations 
provide a means of managing employee performance. Efficacy, quality, 
quantity, and effectiveness of an employee determine their 
performance and contribute to the organization’s success. However, it 
is important to keep in mind that the ability of teachers to achieve 
predetermined goals is a factor that can be considered part of the 
teachers’ performance (Budhwar et al., 2022; Putra et al., 2022).

The primary evaluation criteria shared among all educational 
systems worldwide include teacher competence, student interaction, 
relationships, personal characteristics, and content quality. There are, 
however, some differences in practical implementation and local 
application (Flores and Derrington, 2018). This is primarily because 
each country has different policies, procedures, and societal objectives.

CV, DL, ML, IoT, and other advanced tools may be applied to 
monitor, analyze, and enhance classroom dynamics using AI. Using 
AI technologies in classroom settings can significantly enhance 
student engagement and learning by allowing more profound insights 
into student interactions. However, it should be  approached with 
caution, as there are privacy and ethical implications (Guo et  al., 
2021). In 2023, Li et al. developed an AI-based system to monitor, 
recognize, and analyze student behavior in real time by detecting 
interactions and capturing student participation, which enables 
educators to accommodate their teaching methods. The study 
included a multimodal dataset from real classrooms, such as video, 
audio, and sensor readings. The detected features were gestures, facial 
expressions, body poses, physiological metrics, participation, and 
speech patterns. A Convolutional Neural Network (CNN) was used 
to extract visual features, while recurrent neural networks (RNNs) or 
long short-term memory networks (LSTMs) were applied to capture 
temporal behavior patterns, and a Natural Language Processing (NLP) 
algorithm analyzed classroom conversations. For simple behavior 
detections, such as hand-raising and speaking, the accuracy was over 
90%, while for more complex behaviors, the accuracy was between 75 
and 85% (Li Y. et al., 2023).

Moreover, Li et al. examined the integration of AI and embedded 
devices in smart classrooms. Providing teachers with real-time 
feedback on student engagement and behavior helped enhance 
educational outcomes by enabling them to adjust their teaching 
strategies accordingly. Data collected by embedded devices includes 
information on visual, audio, and environmental characteristics. The 
studied extracted features include speech patterns, facial expressions, 
environmental factors, and body movements. The study employed 
several algorithms, such as CNNs, NLP, RNNs, and LSTMs. It 
illustrated the effectiveness of AI-based systems in accurately 
identifying student behaviors while providing teachers with immediate 

feedback. The results showed that the classroom teaching effect 
increased by 9.44% (Li L. et al., 2023).

A YOLOv8-based real-time monitoring system was developed by 
Chen et  al. in 2023 to detect student behavior in the classroom. 
Students’ engagement, participation, and attentiveness are tracked and 
analyzed for educators to gain insights that will enable them to adapt 
their teaching methods as appropriate. The dataset employed includes 
video recordings from real classrooms. The extracted features included 
raising hands, standing, sitting, and interacting with learning 
materials. Results indicate that mean Average precision calculated at 
an intersection over union (IoU) threshold of 0.5 (mAP@0.5) has 
increased by 4.2 and 2.1%, respectively, indicating an improvement in 
object detection accuracy (Chen et al., 2023).

Moreover, using DL techniques, in 2023, Trabelsi et al. (2023) 
developed a system to monitor students’ attention levels in real-time. 
Students’ attention is intended to be maintained and improved by 
providing teachers with insights into their behavior, enabling them to 
adapt their teaching methods accordingly. The datasets include video 
recordings taken from real classrooms. Several features that indicate 
a student’s level of attention were extracted: facial expressions, head 
movements, eye gaze, posture, and eye movements. The study utilizes 
different models of the YOLOv5 algorithm, and the results 
demonstrate promising performance with 76% average accuracy 
(Trabelsi et al., 2023).

A recent study introduced by Ouyang et al. (2023) examined the 
use of AI-driven performance prediction combined with learning 
analytics in online engineering education to enhance student 
outcomes by enabling teachers to deliver more targeted assistance to 
students who are at risk. The dataset included personal information, 
logs of interactions, grades for assignments, quiz scores, and 
participation in discussion forums. The extracted features encompass 
student participation metrics, student performance indicators, and 
involvement in activities. This study combined an AI performance 
prediction model with learning analytics approaches to improve the 
learning effects in a collaborative learning context. The quasi-
experiment demonstrated that the integrated approach increased 
student participation, boosted collaborative learning performance, 
and increased student satisfaction with learning (Ouyang et al., 2023).

In 2022, Bai et al. developed an intelligent system for evaluating 
the behavior of teacher-student interactions in the classroom based on 
the YOLO algorithm for recognizing and detecting objects. The 
dataset comprises video recordings from the smart classroom, with 
extracted features including student faces, the blackboard, head-up, 
and head-down positions. Teacher-student classroom behavior is 
recognized with an average accuracy of more than 90% for multiple 
classroom behaviors (Bai et al., 2022). The study by Khan et al. in 2021 
investigated the development of an AI-driven system for monitoring 
student performance in real-time and devising preventive measures 
to improve academic outcomes. Students’ academic records for a 
course taught at Buruimi University College in the Sultanate of Oman 
were included in the dataset. They included ten features: gender, 
attendance, major, year, session, grades, CGPA, sponsorship, etc. The 
dataset was used to train several machine-learning algorithms: 
k-nearest Neighbors (k-NN), Decision tree, Multilayer Perceptron 
(MLP), Artificial Neural Networks (ANN), and Naïve Bayes. As a 
result, the decision tree came out on top with an accuracy rate of over 
86% (Khan et al., 2021).
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A sophisticated evaluation framework has been developed by Guo 
et al. (2021) to assess teaching effectiveness in the classroom using AI 
techniques that combine statistical modeling with ensemble learning 
to provide detailed insights into teaching quality and student 
engagement. The dataset includes the recording of the classroom, 
teaching observations, interaction records, student feedback surveys, 
and academic performance metrics. An analysis of the data includes 
learning practices, levels of student engagement, performance data, 
and feedback from surveys and observations. Statistical techniques 
were utilized, including multiple linear regression and factor analysis, 
and ensemble learning techniques such as Random Forests (RF) and 
Gradient Boosting Machines (GBMs) to enhance the evaluation’s 
quality. The results demonstrate that the student’s concentration and 
participation achieved an accuracy of 8.318 and 9.375, while teachers’ 
media usage and teachers’ type had an accuracy of 0.905 and 0.815. It 
is estimated that ensemble learning can evaluate teachers’ style with 
an accuracy of 0.73, higher than the statistical modeling module with 
an accuracy of 0.69 (Guo et al., 2021).

The literature review confirms that AI-based systems can 
accurately detect classroom behaviors and interactions. This is 
accomplished by exploiting several AI techniques, such as ML 
algorithms, CV, and NLP. This work aims to introduce a model for 
detecting student-teacher interactions, interpret it for easy 
understanding, and provide comprehensive recommendations to 
ensure the effectiveness of the system’s implementation.

Regarding CV, there are numerous classic methods for object 
detection. As a milestone in developing DL-based object detection, 
Girshick et al. (2014). proposed the R-CNN. A region candidate box 
was selected instead of a sliding window to traverse over a picture, 
which might contain the objects to be detected. Five convolutional 
layers and two fully connected layers were included in the R-CNN 
architecture. Further improvements to the R-CNN were achieved by 
SPP-Net (He et al., 2015), Fast R-CNN (Girshick, 2015), Faster R-CNN 
(Ren et al., 2016), R-FCN (Dai et al., 2016), and Mask R-CNN (He 
et  al., 2017). According to Redmon (2016) the YOLO algorithm 
differentiates between object detection algorithms: one-stage such as 
YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon and 
Farhadi, 2018), SSD (Liu et al., 2016), and RetinaNet and two-stage 
algorithms such as Faster R-CNN (Kaur and Singh, 2023). The 
primary contrast is that YOLO discarded the candidate box extraction 
branch. A branchless convolutional network was used in the YOLO 
algorithm to extract features, simulate candidate frames, and classify 
them, thereby simplifying the network structure, resulting in a 
detection speed almost ten times faster than Faster R-CNN (Yang 
et al., 2020).

Table  1 summarizes the related works regarding objectives, 
studied features, and algorithms used, allowing us to compare them 
with the proposed work. As shown in the following table, all works 
focus on monitoring, tracking, recognizing, and analyzing the 
behaviors and activities of students in the classroom. It should 
be noted that similar to ours, some studies focus on the interaction 
between students and teachers, such as (Bai et al., 2022; Guo et al., 
2021). Additionally, our study’s purpose is to detect interactions in the 
classroom and thus reflect the result on one aspect of evaluating 
teacher performance. Most other studies focused on assessing teaching 
effectiveness through metrics such as student behavior, participation, 
attention, and engagement to enhance students’ outcomes and the 
quality of the teaching process. Furthermore, unlike the rest of the 

studies, the proposed study and (Ouyang et al., 2023; Bai et al., 2022; 
Guo et  al., 2021) did not focus on real-time interactions, as their 
systems rely on real-time feedback to adjust teaching methods.

Even though most studies have used video recordings of 
classrooms to extract the features, some have also included audio 
recordings, sensor readings, and academic data (mainly textual). 
Approximately thirty features were studied; however, in this work, 
we only highlight four main elements and eleven sub-elements that 
can be used to evaluate teacher performance related to classroom 
interactions. Regarding AI-based techniques utilized in the previous 
works, they varied between NLP (Li Y. et al., 2023; Li L. et al., 2023; 
Guo et al., 2021), CV (Li Y. et al., 2023; Li L. et al., 2023; Chen et al., 
2023; Trabelsi et al., 2023; Ouyang et al., 2023), statistical analysis 
(Ouyang et al., 2023; Guo et al., 2021), and ensemble DL (Guo et al., 
2021). Our proposed research focuses on CV, particularly object 
detection. We utilize three leading object detection algorithms known 
for their accuracy and speed.

Compared to prior research, which often concentrated on student-
focused metrics such as participation, attention, or academic 
outcomes, our study uniquely emphasizes teacher evaluation through 
observed student-teacher interactions. Unlike studies that broadly 
monitor behavior or rely on multimodal data, our work offers a 
focused application of object detection techniques using a custom-
labeled dataset representing eleven specific interaction categories. 
While several existing systems have employed CNNs or YOLO-based 
approaches for behavior tracking, our contribution lies in the 
integration of multiple state-of-the-art object detection models—
YOLOv8, Faster R-CNN, and RetinaNet—within a unified framework. 
This comparative setup not only benchmarks model performance in 
detecting educational interactions but also advances the field by 
aligning detection output with teacher performance evaluation 
metrics. This focused framework addresses the gap in research that 
connects object detection outputs to real pedagogical 
evaluation criteria.

3 Materials and methods

This study aims to address the challenges associated with 
traditional teacher performance evaluation by focusing on one of the 
Teacher Key Performance Indicator (T-KPI) elements identified in 
(Almubarak et al., 2024) namely, the teacher’s proficiency in presenting 
lessons and managing the classroom. To that end, we  propose a 
Computer Vision (CV) and Deep Learning (DL)-based system that 
detects teacher–student interactions in the classroom. The system 
leverages object detection algorithms, including YOLO (You Only 
Look Once), Faster R-CNN (Faster Region-based Convolutional 
Neural Network), and RetinaNet. The methodology section outlines 
the classification levels for four key types of interactions: textbook 
usage, student participation, student activities, and teacher activities.

The analytic evaluation index introduced by (Almubarak et al., 
2024) and adopted here contains three main evaluation elements: Job 
Performance, Personal Traits, and Relationships. A total of nineteen 
sub-evaluation elements is under the main elements: Job Performance 
includes 12, Personality Traits contains 4, and Relationships addresses 
three sub-elements, respectively as shown in Figure 1. Further, the 
main and sub-element analysis resulted in ninety-nine detailed 
elements https://tinyurl.com/236h7xve. Each detailed element 
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represents an indicator that can be  utilized to evaluate each 
sub-element. However, we  are specifically addressing the tenth 
sub-element, which relates to the teacher’s proficiency in presenting 
lessons and managing the classroom, as the element under study. The 
evaluation involves three elements of the educational process: the 
student, the teacher, and the educational environment, making it 
highly complex. In addition, three AI techniques may be utilized: IoT, 
CV, and speech processing. This evaluation focuses on three detailed 
elements: (a) teaching methods, (b) classroom interactions, and (c) 
seating arrangement based on educational principles. Among these, 
classroom interactions were identified as the most crucial, as the other 
elements rely on their effectiveness. Furthermore, it provides a 
valuable indication of the quality of the introduced content and the 
level of student engagement.

We have employed three widely used object detection 
algorithms to develop DL models, YOLOv8, Faster R-CNN, and 
RetinaNet, to enhance accuracy, robustness, and generalization and 

reduce bias and variance. A real-time object detection model 
designed for real-time performance, YOLOv8 is the latest in the 
YOLO series (Terven et al., 2023). In this approach, the image is 
processed in only one forward pass, making it suitable for 
applications requiring speed. In addition, YOLOv8 introduces 
architectural improvements such as an optimized backbone for 
better feature extraction and a neck (using Feature Pyramid 
Networks or Path Aggregation Networks) to enhance object 
detection at various scales. An anchor-free detection head simplifies 
the detection process by directly predicting bounding box 
coordinates, object classes, and confidence scores from the model. 
A non-maximum suppression (NMS) technique is used to refine the 
final predictions by eliminate redundant findings.

Faster R-CNN is built on the R-CNN family and is a two-stage 
model for object detection (Ren et al., 2016). Due to its high level 
of accuracy, it is perfect for scenarios in which precision is of high 
importance. Faster R-CNN uses a backbone like ResNet or VGG 

TABLE 1  Related works summary.

N Authors Objective
Targeted 
object/s

Real-
time

Studied features Dataset
Utilized 
algorithms

Results 
(Accuracy)

1
Li Y. et al. 

(2023)

Adjusting 

teaching 

methods

Students Yes

Gestures, facial expressions, 

body pose, physiological 

metrics, participation, and 

speech patterns

Video, audio, and 

sensor readings

CNN, RNNs, 

LSTMs, and NLP

For Simple 

Behaviors: >90%

for complex 

Behaviors: 75–85%

2
Li L. et al. 

(2023)

Adjusting 

teaching 

strategies

Student Yes

Speech patterns, facial 

expressions, environmental 

factors, and body 

movements.

Visual, audio, and 

environmental 

characteristics

CNNs, NLP, RNNs, 

and LSTMs

Teaching effect 

increased by 9.44%

3
Chen et al. 

(2023)

Adapting 

teaching 

methods

Student Yes

Raising hands, standing, 

sitting, and interacting with 

learning materials

Video recordings 

from real 

classrooms

YOLOv8 76.3%

4
Trabelsi 

et al. (2023)

Adapting 

teaching 

methods

Student Yes

Facial expressions, head 

movements, eye gaze, 

posture, and eye movements

Video recordings 

from real 

classrooms

YOLOv5 76%

5
Ouyang 

et al. (2023)

Enhancing 

student 

outcomes

Student No

Personal information, 

interaction logs, scores, and 

participation in discussion 

forums.

Students’ 

performance 

metrics (Text 

Records)

AI performance 

prediction model

No detection 

results

6
Bai et al. 

(2022)

Improving 

teaching 

quality

Student and 

Teacher
No

Face students, face 

blackboard, head up, and 

head down

Video recordings 

from real 

classrooms

YOLO 90%

7
Khan et al. 

(2021)

Improving 

academic 

outcomes

Student Yes

Gen, attendance, major, 

year, session, grades, CGPA, 

sponsorship

Student’s 

academic records

(Text Records)

k-NN, Decision 

tree, MLP, ANN 

and Naïve Bayes

86%

8
Guo et al. 

(2021)

Evaluating 

teaching 

effectiveness

Student and 

Teacher
No

Students’ concentration, 

students’ participation, 

teachers’ type, teachers’ 

style, and teachers’ media 

usage.

Classroom 

recording, 

interaction 

records, feedback 

surveys, and 

academic metrics

Statistical 

techniques and 

ensemble learning 

techniques

81%

9
Proposed 

work

Evaluate 

teachers’ 

performance

Student and 

Teacher
No

Using the textbook, 

students’ participation, 

teacher’s activities, and 

students’ activities

Video recordings 

from real 

classrooms

Yolov8, Detectron2: 

Faster R-CNN, and 

RetinaNet

YOLOv8x: 85.8%

Faster R-CNN: 

72.7%

RetinaNet: 70.6%
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to extract features. Region Proposal Networks (RPN) are the first 
stage of the process. RPNs are crucial innovations used to predict 
regions likely to contain objects, thereby improving the efficiency 
and speed with which the regions are proposed. The RPN outputs 
object scores and bounding boxes using a sliding window 
approach on feature maps. The second stage consists of applying 
ROI Pooling to pool regions into a fixed size, followed by 
applying fully connected layers to classify objects and carry out 
bounding box regression. Even though it is slower than single-
stage detectors like YOLO, this multi-step approach ensures 
accurate object detection.

RetinaNet addresses class imbalances between small objects 
and the background during object detection (Tan et  al., 2021). 
Feature Pyramid Networks (FPNs) are integrated with ResNet 
backbones for feature extraction to improve the capability of the 
system to detect objects at various scales. Through FPN, RetinaNet 
can detect objects of varying sizes because feature maps are merged 
from different layers within the network. Among RetinaNet’s 
noteworthy innovations is its focal loss function, which reduces the 
impact of easy-to-detect background objects and increases the 
concentration of difficult-to-detect targets. The implementation of 
this algorithm dramatically improves the performance on datasets 
with class imbalances, where certain classes (especially background 
classes) dominate the rest of the dataset. RetinaNet uses anchor 
boxes like other object detectors but incorporates focal loss to better 
handle imbalances between foreground and background objects. 
Object classes are predicted, and bounding boxes are refined using 
the classification and regression heads applied to the FPN.

RetinaNet was designed to balance the high speed of one-stage 
detectors such as YOLO and the accuracy of two-stage detectors such 
as Faster R-CNNs, making it suitable for tasks that require both 
efficiency and quality detection. YOLOv8 excels in tasks requiring fast 
reaction times, Faster R-CNN in tasks demanding high precision, and 

RetinaNet balances speed and accuracy while addressing class 
imbalance (Tan et al., 2021).

Beyond object detection, the models in this study also perform 
classification across eleven distinct behavioral categories that capture 
key classroom interactions linked to teacher performance. These 
classification outcomes are not viewed as the final product, but rather 
as foundational inputs for a follow-up study currently in progress. In 
the next phase, a detailed analysis of category-wise performance will 
be conducted to identify behaviors with low representation or those 
that are semantically overlapping. Insights from this analysis will 
guide the refinement of class definitions—through either the removal 
of low-impact categories or the merging of similar ones—to develop 
a more streamlined, high-accuracy scoring framework for teacher 
performance evaluation.

3.1 Proposed teacher performance 
evaluation framework

The proposed system’s methodology, depicted in Figure 2, outlines 
a comprehensive teacher performance evaluation framework 
composed of four interconnected modules. The Data Acquisition 
Module initiates the pipeline by capturing in-classroom video 
recordings using fixed-position high-resolution cameras, forming the 
raw input for the system. These videos are then processed by the 
Pre-Processing Module, which includes sequential stages: video 
segmentation (converting videos into individual frames), cleaning 
(removing noisy or irrelevant frames), annotation (labeling 
interactions using Roboflow), image augmentation (enhancing 
diversity through rotation, saturation, and noise), and finally, dataset 
splitting into training, validation, and test sets.

This processed dataset is passed to the Detection Models 
Development Module, where two state-of-the-art 

FIGURE 1

Analyzing the KPIs of teacher performance evaluation in Saudi Arabia.
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frameworks—YOLOv8 and Detectron2—are applied using multiple 
variants (e.g., YOLOv8x, RetinaNet, Faster R-CNN). These models are 
trained to detect and classify eleven fine-grained classroom interaction 
behaviors across four main interaction categories. Finally, the Models 
Evaluation Module interprets the trained models’ performance using 
several evaluation metrics (e.g., mAP, Precision, Recall, IoU), 
highlighting their accuracy, robustness, and readiness for deployment. 
Each module produces intermediate results—such as the number of 
segmented frames, the reduced dataset size after cleaning, and 
per-class detection accuracy—which are used to assess and refine the 
system’s overall effectiveness.

3.1.1 Data acquisition module
The study’s data collection environment included the primary and 

intermediate levels of QURTUBAH Private Schools affiliated with the 
Jeddah Education Department. A high-resolution camera was 
mounted to capture classroom interactions, but multiple cameras may 
be required to cover a larger classroom. The videos captured for classes 
of different subjects introduced by different teachers amounted to 
about eighteen videos. The subjects included science, mathematics, 
English, Arabic, and social studies.

Measures have been taken to protect the privacy rights of 
students and teachers. Initially, to ensure the legality of the data 
collection process, we  obtained official approval from the 
Ministry of Education in the Kingdom of Saudi  Arabia, the 
Education Department in Jeddah, and the owner and principal of 
QURTUBAH Private Schools. Secondly, informed consent was 
obtained from participants by the school administration, which 
was accomplished by explaining clearly the purpose, the 
methodology, and data access permission. Moreover, our research 
team strictly adheres to all relevant privacy and data protection 

laws, including Saudi Arabia’s regulations. By implementing these 
measures, we  sought to safeguard the privacy rights of our 
participants and ensure that our research was ethical and 
responsible. Responsible.

3.1.2 Pre-processing module
This module has five phases: video segmentation, image 

normalization, annotation, augmentation, and dataset splitting. The 
collected videos were processed using Roboflow (Roboflow, 2024), 
a powerful CV tool for better data collection, preprocessing, and 
model training techniques. The videos were segmented into frames 
at a rate of one frame every 3 s. This rate was chosen after testing 
multiple intervals (five, six, eight, and 10 s), as higher intervals 
risked missing brief but critical classroom behaviors such as raising 
hands (participation). The segmentation process produced 7,008 
frames, which were cleaned by excluding those with high noise that 
obscured the studied features. This cleaning step ensured that only 
high-quality frames were passed to the annotation and training 
pipeline, strengthening the reliability of model learning. Roboflow 
also assigned multiple labels for each image during the image 
annotation process to support effective object detection 
model training.

Following annotation, the dataset was automatically oriented and 
resized to 224 × 224 pixels. An image augmentation process was then 
applied to improve model performance and generalization. 
Specifically, the images underwent 15-degree rotation, a 25% increase 
in saturation, and 1.02% added noise, expanding the dataset to 7,259 
images. Finally, the dataset was split into 70% for training, 15% for 
validation, and 15% for testing, resulting in 6,369 training images, 452 
validation images, and 450 test images. Moreover, the final dataset 
includes a total of 31,265 labels.

FIGURE 2

The general framework of the proposed system.

https://doi.org/10.3389/frai.2025.1553051
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Almubarak et al.� 10.3389/frai.2025.1553051

Frontiers in Artificial Intelligence 09 frontiersin.org

3.1.3 Classification of the studied features
Automatic detection of classroom interactions allows school 

principals to assess one aspect of a teacher’s proficiency in presenting 
lessons and managing the classroom from the 19 elements of the teacher 
performance assessment. This enables the identification of the strengths 
and weaknesses of a teacher’s competence. This study addresses four 
main, and eleven sub-features of activities associated with in-classroom 
interactions to train our models, as illustrated in Figure 3. These features 
include using a Textbook, Participating, Teacher’s Activities, and 
Students’ Activities. These eleven subcategories were used to label and 
classify classroom interactions in the dataset, forming the basis for 
model training and later evaluation. Five textbook usage levels were 
considered: Open Book, Closed Book, Electronic Book, No Book, and 
Worksheet. Regarding students’ participation, we considered two levels: 
Raising Hands and Answering. As for activities, we considered four 
levels two for both teachers and students: Teacher Follows up Students, 
Teacher Explains, Student Reads, and Student Writes.

To determine the indicators of the states (levels) of interaction 
within the classroom, we studied each category separately based on our 
previous in-depth analysis of the T-KPIs (Almubarak et al., 2024), as 
illustrated in Table 2. It also shows the count of each label in the dataset. 
For instance, the label ‘Closed Book’ appeared in 1210 images and 2,147 
times. Moreover, some of the image samples are shown in Figure 4. 

Moreover, Figure 5 illustrates the data augmentation flow, demonstrating 
the transformation of raw images into augmented versions. This visual 
representation highlights the various applied augmentation techniques, 
to enhance the diversity and robustness of the training dataset.

3.1.4 Models development module
Our proposed models are trained, validated, and tested by using 

Google Colab (Bisong, 2019), a hosted Jupyter Notebook service 
(Kluyver et al., 2016) that provides access to cloud-based computing 
resources, including GPUs and TPUs. We have employed three widely 
used object detection algorithms to apply the DL models: YOLOv8, 
Fast-er-RCNN, and RetinaNet. The source code of our proporsed 
models is available on Gitbub https://github.com/ArwaASM/
In-classroom-Interaction-Detection

Regarding YOLOv8, five further versions are available, ranging 
from nanoscale to extra-large models. When selecting these models, 
evaluating the tradeoff between accuracy required and inference time 
is necessary. For in-classroom interaction behavior detection, we do 
not target real-time applications; thus, the accuracy is more 
significant than speed in this case. We utilized the large and extra-
large versions of YOLOv8. The models were trained for 120 epochs 
with a batch size of 16 and an image size of 800, subject to GPU 
memory constraints. The learning rate used during model training 

FIGURE 3

Classification of in-classroom interactions.
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was 0.01, with an SGD momentum of 0.937 and an optimizer weight 
decay of 0.0005. All other training parameters used the YOLOv8 
network’s default values.

To implement Faster R-CNN and RetinaNet, the Detectron2 
framework (Wu et al., 2019), a CV model zoo written by the FAIR 
Facebook AI Research group, was used. It includes all the models 
that were available in the original Detectron, such as Faster 
R-CNN, Mask R-CNN, RetinaNet, and DensePose (Güler et al., 
2018), as well as some newer models, including Cascade R-CNN, 
Panoptic FPN (Kirillov et al., 2019), and TensorMask (Chen et al., 
2019). Moreover, as shown in Figure 6 the backbone, the neck, 
the region proposal network (RPN), and the head represent the 
primary components of Detectron2. The backbone uses various 
architectures, such as ResNet (He et  al., 2016), ResNeXt, and 
MobileNet, to extract features from the input image. A large-scale 
image dataset, such as ImageNet, is often used to train these 
architectures. Several convolutional layers are organized 
hierarchically as the backbone of the network. By increasing the 
number of channels, these layers gradually reduce the spatial 
dimension of the feature maps. FPN is implemented as the neck 
component to refine the feature maps acquired from the 
backbone. FPN can detect objects of various sizes and scales by 
combining features from different scales into a multiscale feature 
pyramid (Ju and Cai, 2023).

Nevertheless, some DL-based object detectors, such as YOLO, do 
not contain this part and are called single-shot detectors. RPN generates 
approximately 1,000 box proposals with confidence scores after 
analyzing multi-scale features. Objects of interest within this image are 
represented by these potential bounding boxes. Additionally, 
Detectron2 employs a box head for cropping and wrapping feature 

maps into multiple fixed-size elements. Then, NMS filters out around 
100 boxes.

From Detectron2, we have selected two main models: Faster 
R-CNN, which belongs to two-shot detectors, and RetinaNet, 
which belongs to single-shot detectors (Lin et  al., 2017). To 
develop Faster R-CNN and RetinaNet algorithms, we adopted 
five models which are: Faster_R-CNN_X_101_32x8d_FPN_3x, 
Faster_R-CNN_R_101_FPN_3x, Faster_R-CNN_R_50_FPN_3x, 
RetinaNet_R_50_FPN_3x, and Reti-naNet_R_101_FPN_3x. The 
backbones of the chosen models were ResNet and Res-NeXt, with 
50 and 101 layers. To refine the feature maps generated from the 
backbones, we  used FPN neck. All these models have been 
trained for 3x the standard iterations, respectively. The training 
was set up to be trained for 100 epochs (39,850 iterations), with 
a batch size of 16, an image size of 800, and a 0.01 learning rate. 
All other training parameters were set to the default values of the 
Detectron2 framework.

3.1.5 Model evaluation module
In this study, we utilized our in-classroom interaction dataset 

to train and evaluate the efficiency of interaction detection 
models. Object detection and localization accuracy must 
be measured systematically and objectively. The outputs of the 
object detection and classification stages are reported in Table 4 
and Figures  7–11, where each model’s per-class accuracy, 
precision, and robustness are analyzed to assess their suitability 
for automated evaluation Thus, to assess the performance of the 
proposed model, we  highlight several evaluation metrics that 
Yolo and Detectron2 generated. These metrics include mean 
average precision (mAP), Precision, Recall, Average Precision 

TABLE 2  Dataset description.

Classes (Labels) Indicators Number of instances

Using_Textbooks

Closed book
Closed book in the student’s hand

Closed book on the table
2,147

Opened book
Opened book in the student’s hand

Opened book on the table
4,547

Electronic book
Tablets on the table

Tablets in the student’s hand
124

No book A table without a textbook or e-book 2,206

Worksheet
Worksheet in the student’s hand

Worksheet on the table
781

Participation

Raising hand Student raising hand standing or sitting 1,450

Student answers
Student standing in the classroom

Student writing on the board
417

Teacher’s activities

Teacher explains Teacher standing in front of the blackboard 455

Teacher follows up students

A teacher walks among the students

A teacher leans forward to read and follow what the 

students are writing

73

Student’s activities

Student reads
Student’s eye direction to the book

Student’s holding of the book
435

Student writes
Student holding pen

Student writing on book or worksheet
323
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(AP), F1 Score, Box Loss, Distance-Focal Loss 1 (DF1 Loss), 
Intersection over Union (IoU), and Classification Loss (Cls Loss).

Precision (P) indicates the percentage of correctly predicted 
objects (true positives) out of all predicted objects (accuracy), as 
shown in Equation (1).

	

TPP =
TP + FP 	

(1)

Where TP represents the True Positive (the number of target 
frames correctly predicted to be in the positive category) and FP is the 

False Positive (the number of target frames incorrectly predicted to 
be in the positive category).

Recall (R) measures the percentage of actual objects the model 
successfully detects, showing its ability to find all relevant objects, as 
shown in Equation (2).

	

TPR =
TP + FN 	

(2)

Where FN represents the false negatives (the number of target 
frames in the positive category but incorrectly predicted to be in the 
negative category).

FIGURE 4

Example of data transformation from raw to augmented images (a) Raw Image, (b) Image with Annotation, (c) Augmented Image_Saturation, 
(d) Augmented Image_Rotation, (e) Augmented Image_Noise.
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FIGURE 5

Sample images for in-classroom interactions dataset.

FIGURE 6

Detectron2 architecture. Input Image: The original raw image provided to the model. Stem: The initial convolutional layers that prepare the image 
features. Backbone Network (res1–res4): A sequence of layers that extract hierarchical feature maps from the input image. H/W (Height/Width) 
annotations: Indicate the spatial resolution reduction at each stage. Feature Pyramid Network (FPN): Combines multi-scale feature maps (P2–P6) for 
detecting objects of different sizes. Plus signs (+): Represent the merging of feature maps from different layers. Upsampler: Increases the resolution of 
feature maps before merging. Region Proposal Network (RPN): Generates candidate bounding boxes (box proposals) from feature maps. Solid arrows: 
Show the flow of data through the network components. ROI Pooler: Extracts fixed-size feature representations from box proposals. Box Head: 
Predicts object class labels and refines bounding boxes. Mask Head: Predicts segmentation masks for each detected object. Class, BBox, Mask blocks: 
Represent the output layers for class prediction, bounding box regression, and mask generation, respectively. Output Image: The final image displaying 
detected objects with bounding boxes, class labels, and instance masks.

https://doi.org/10.3389/frai.2025.1553051
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Almubarak et al.� 10.3389/frai.2025.1553051

Frontiers in Artificial Intelligence 13 frontiersin.org

Averaging precision (AP) across recall levels summarizes the 
precision-recall curve, as shown in Equation 3. It provides a per-class 
measure of detection performance. Additionally, detectron2 presents 

other AP metrics, such as AP75, APl, APm, and APs. In AP75, 
precision is measured at different recall values, and TP is determined 
when the IoU overlap is greater than 75%. The accuracy of APl is 

FIGURE 7

Models’ consumed time (a) Models’ training time (Hours) and (b) Models’ testing time (millisecond).

FIGURE 8

Models’ total losses.

TABLE 3  AP and AR values of the Detectron2 models.

Detectron2 
models

AP at 
IoU = 50–95

AP50 AP75 APs APm APl AR ARs ARm ARl

Faster R-CNN_R_50 48.8 72.2 53 46.4 49.1 53.5 55.9 55.2 55.4 59.6

Faster R-CNN_R_101 49.1 71.398 53.793 48.647 48.796 52.828 56.2 55.8 55.8 58.9

Faster R-CNN_X_101 49.7 72.4 55.3 42.2 49 37.6 55.7 55.1 55.1 39.4

RetinaNet_R_50 48.5 70.5 52.9 48.63 48 55.11 54.4 55.6 53.7 57.6

RetinaNet_R_101 48.65 70.58 53.74 50.47 47.35 55.10 54.6 54.7 53.2 61.3
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calculated at different recall values for objects with a large area (area 
> 952). In contrast, APm computes the precision at various recall 
scores for medium-sized objects (322 > area > 962). For small size 
objects, APs calculate precision based on a different recall value 
(area x 322).

	 ∫
1

0
AP = PRdr

	
(3)

mAP measures the average AP scores across all object classes shown 
in Equation 4, mAP gives an overall evaluation of the model. For object 

FIGURE 9 (Continued)

https://doi.org/10.3389/frai.2025.1553051
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Almubarak et al.� 10.3389/frai.2025.1553051

Frontiers in Artificial Intelligence 15 frontiersin.org

detection models, two threshold values are commonly used: the mAP50 
(the mean of AP based on confidence scores between 0 and 0.50) and the 
mAP50-90 (the mean of AP based on confidence scores between 0.50 and 
0.95) (Dang et al., 2023).

	 =
= ∑ 1
1 n

iimAP AP
n 	

(4)

IoU indicates the overlap between the predicted and ground 
truth bounding boxes, divided by the sum of the unions as  

shown in Equation 5; a higher IoU means better bounding 
box accuracy.

	

Area of  Overlap
IoU =

Area of  Union 	
(5)

Box Loss (Localization Loss) measures the difference between the 
predicted bounding box coordinates and the ground truth box. Loss 
functions such as Smooth L1 or IoU-based losses are used to optimize 
localization accuracy, as shown in Equation 6.

	 ( ),1 box boxBox Loss = Smooth L pred gt
	 (6)

DF1 Loss is a distance-based loss that emphasizes harder-to-detect 
objects by applying higher penalties to samples challenging to classify or 
localize. This loss is beneficial for boundary-sensitive detections. Cls Loss 
(Classification Loss) evaluates how accurately the model predicts the object 
classes within the bounding boxes. Cross-entropy or focal loss is typically 
used to minimize the difference between predicted and true classes.

4 Results

Our seven models were trained on the custom dataset. These 
models included Faster R-CNN_R_50, Faster R-CNN_R_101, Faster 
R-CNN_X_101, RetinaNet_R_50, RetinaNet_R_101, Yolov8l, and 
Yolov8x. To assess the performance of the trained models, 452 images 
were used as a test dataset. Figures 7, 8 depict the time consumed for 
models’ training and testing and the losses incurred during the 
training process.

FIGURE 9

Models’ confusion matrices (a) YOLOv8x, (b) YOLOv8l, (c) Faster 
R-CNN_R_50, (d) Faster R-CNN_R_101, (e) Faster R-CNN_X_101, (f) 
RetinaNet_50, and (g) RetinaNet_101.

FIGURE 10

Models’ AP scores across the eleven classes.
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Furthermore, Figure 9 illustrates the confusion matrices describing 
the predictive accuracy of the proposed models across eleven classes of 
in-classroom behaviors, along with relationships between the 
predictions and their accuracy. This figure illustrates the true labels, 
predicted categories, and the correct detection rates as diagonal 
elements. Further different levels of variation in the precision and recall 
scores of Detectron2 models are presented in Table 3. These metrics 
reflect the models’ capabilities at various IoU thresholds, reflecting 
their ability to localize interactions accurately. Additionally, the models’ 
AP scores across all eleven classes are displayed in Figure 10.

5 Discussion

The results presented in Table 4 and Figures 7–11 illustrate distinct 
performance patterns among the object detection models, particularly 

between the YOLOv8 variants and the Detectron2-based models. While 
YOLOv8x demonstrated superior accuracy and speed, the discussion here 
focuses not just on these quantitative differences but also on their 
implications for practical classroom applications and future system 
improvements. The consistent performance of YOLOv8 models suggests 
a meaningful advancement in balancing precision with efficiency for real-
time detection. The architectural improvements in YOLOv8x—such as 
enhanced feature maps and streamlined inference—may support broader 
scalability, especially in school environments with limited computing 
resources. This positions YOLOv8-based frameworks as promising 
candidates for near real-time feedback systems in teacher evaluations, a 
use case often constrained by computational latency.

On the other hand, the more complex architecture of Faster 
R-CNN led to increased training and inference times Figure 7, 
which, although tolerable in research settings, may hinder 
deployment in resource-constrained educational institutions. 

FIGURE 11 (Continued)
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These observations highlight a trade-off: higher detection 
precision from multi-stage detectors may not always justify the 
increased computational demand when scaled to multiple 
classrooms or extended recording sessions. Performance across 
categories also provides insight into model strengths and 
weaknesses. The high accuracy observed in categories such as 
No_Book, Opened_Book, and Teacher_Explains confirms the 
models’ effectiveness in recognizing distinct visual patterns. 
However, the consistent underperformance in detecting Student_
Reads and Student_Writes suggests that the current models 
struggle with subtle, low-motion, or overlapping interactions. 
These are precisely the types of interactions that are most 
pedagogically meaningful, indicating engagement, attention, and 

FIGURE 11

(a) Random sample from the testing dataset (b) YOLOv8l (c) YOLOv8sx (d) Faster R-CNN_50 (e) Faster R-CNN_101 (f) Faster R-CNN_x_101 (g) 
RetinaNet_50 (h) RetinaNet_101.

TABLE 4  Models’ accuracy.

Models Training 
accuracy

Testing accuracy

Accuracy mAP50 mAP50-95

YOLOv8l 85.3% 84.5% 58.9%

YOLOv8x 84.5% 85.8% 62.8%

Faster R-CNN_R_50 98.69% 72.7% 48.8%

Faster R-CNN_R_101 98.82% 71.4% 49.1%

Faster R-CNN_X_101 99.1% 72.4% 49.7%

RetinaNet_R_50 90.3% 70.5% 48.5%

RetinaNet_R_101 90.00% 70.6% 48.7%
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comprehension—and thus their omission limits the models’ 
evaluative depth.

Critically, the failure of Detectron2 models to identify the 
Worksheet class as shown in Figure 10 raises concerns about how 
class imbalance and visual similarity affect learning dynamics. This 
reflects a broader issue in educational datasets: nuanced behaviors 
often occur less frequently, yet they carry disproportionate value in 
performance assessment. Future work should therefore not only 
address dataset balancing but also prioritize the modeling of 
underrepresented behaviors that are pedagogically significant. 
Comparative analysis with existing literature reinforces these 
insights. While Bai et al. (2022) reported slightly higher accuracy 
(90%), their work addressed fewer interaction types. Our model 
evaluated eleven distinct classroom behaviors, five of which achieved 
over 90% accuracy—without ensemble methods—suggesting greater 
behavioral coverage. In contrast, Guo et al. (2021) achieved only 
81% accuracy across a narrower range of actions. This indicates that 
our approach offers broader utility despite small trade-offs in 
maximum accuracy. These findings align with the emerging 
consensus that interpretability and context-specific applicability may 
matter more than marginal performance gains in educational AI 
applications. Importantly, the training process revealed early signs 
of overfitting in the Faster R-CNN models, with high training 
accuracy not translating to equal inference performance. This 
necessitated additional post-processing strategies such as 
Non-Maximum Suppression (NMS) and confidence thresholding. 
The observation underscores a need for models with better 
generalization, particularly in real-world, non-curated classroom 
environments where visual noise and occlusions are commonplace.

The limitations observed extend beyond detection scores. 
Misclassification of visually similar categories (e.g., Closed_Book vs. 
Worksheet), as well as confusion between teacher and student actions, 
reflect a broader challenge: context-blind models struggle to reason 
about role-based or behaviorally complex interactions. These findings 
emphasize the need for spatiotemporal modeling and multimodal 
integration—combining vision with audio or textual data—to 
disambiguate similar-looking behaviors that differ by context. 
Looking forward, expanding the dataset to include more diverse 
classroom layouts, student demographics, and interaction types will 
be essential. Moreover, incorporating weakly supervised learning 
could reduce the annotation burden, especially for rare behaviors. 
Given the promising performance of YOLOv8, we plan to explore its 
newer variants (e.g., YOLOv9, YOLOv10, YOLOv11) to evaluate 
potential gains in both speed and interpretability. To support holistic 
performance evaluation, future work will also explore complementary 
technologies. These include gesture recognition [e.g., GestureTeach 
(Liu et al., 2024)], pose estimation, and attention-aware models like 
MSSTANet (Xiao et al., 2024) and EAPT (Lin et al., 2021), which can 
capture the temporal progression of interactions and better reflect 
classroom dynamics. Integrating IoT-based audio and environmental 
sensors could further enhance model reasoning, creating 
opportunities for cross-modal validation and more accurate teacher 
performance analytics.

In addition to detection, our models generate class-wise 
predictions for eleven distinct behaviors, effectively serving a dual role 
as a classification layer for teacher-student interactions. While not the 
final objective of this study, these classification outputs form a critical 
bridge to a future phase of research currently underway. The upcoming 

study will analyze category-wise performance to refine the interaction 
taxonomy—merging semantically similar classes, removing ambiguous 
ones, and assigning weighted pedagogical importance based on expert 
input. These refinements aim to support a robust scoring framework 
that transforms detected behaviors into quantitative indicators of 
teacher performance. This multi-stage approach will evolve the system 
from descriptive analytics to prescriptive decision-support, ultimately 
aligning AI outputs with established educational evaluation standards.

In summary, while this study demonstrates that current object 
detection models—particularly YOLOv8—can serve as foundational 
tools for automated classroom analysis, critical limitations remain. 
The novelty of this work lies not in the models themselves, but in their 
tailored application to the educational domain, using a uniquely 
annotated classroom dataset  aligned with teacher performance 
indicators (T-KPIs). Addressing the remaining challenges will require 
not only model-level innovation but also a rethinking of how complex, 
subtle, and high-value teacher-student interactions are defined, 
detected, and interpreted in context.

6 Conclusion

Overall, T-KPI analysis plays an important role in improving 
educational outcomes, accountability, professional growth, and 
evidence-based decision-making. AI-based systems can provide 
objective and reliable evaluations, helping to identify areas that need 
improvement and enhance the quality of education offered to students. 
CV systems allow computers to interpret and understand visual 
information from their surroundings like humans do. By tracking 
movements, gestures, and interactions between teachers and students 
within a classroom, CV makes it possible to evaluate teacher 
performance systematically. This study examined three well-known 
object detection algorithms to assess their ability to detect 
in-classroom interactions accurately. It was demonstrated that by 
carefully annotating the dataset, it is possible to correctly detect 
these interactions.

There were eleven classes (labels) annotated to train the 
model, with YOLOv8x, a single-shot detector, showing the 
greatest performance, with a mAP value of 85.8%. RetinaNet_50 
and RetinaNet_101, both single-shot detectors, delivered the 
poorest performances, with mAP values of 70.5 and 70.6%, 
respectively. Two heavyweight models from the YOLO family 
were chosen: YOLOv8x and YOLOv8l, which are extremely fast 
and can effectively detect objects of different scales. For 
Detectron2, we  applied two algorithms, Faster R-CNN and 
RetinaNet, and adopted five models from these algorithms. For 
further improvement of the YOLOv8 models, it is recommended 
to include images from all classes, particularly from classes with 
smaller sample sizes.
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