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Handling missing data of using 
the XGBoost-based multiple 
imputation by chained equations 
regression method
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Xi’an, China

This study introduces an XGBoost-MICE (Multiple Imputation by Chained 
Equations) method for addressing missing data in mine ventilation parameters. 
Using historical ventilation system data from Shangwan Coal Mine, scenarios 
with different missing rates (5, 10, and 15%) and iteration numbers (30 and 50) 
were simulated to validate the accuracy and effectiveness of the approach. The 
results demonstrate that as the missing rate increased from 5 to 15%, the Mean 
Squared Error (MSE) rose from 0.0445 to 0.3254, while the Explained Variance 
decreased from 0.988309 to 0.943267. Additionally, the Mean Absolute Error 
(MAE) increased by 0.29. Iteration experiments on the “frictional resistance per 
100 meters” attribute showed convergence of MSE and MAE after six iterations. 
Overall, the XGBoost-MICE method exhibited high imputation accuracy and stable 
convergence across various missing data scenarios, providing robust technical 
support for optimizing intelligent mine ventilation systems.
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1 Introduction

The mine ventilation system is a critical component in ensuring mine safety and 
operational efficiency (Sjöström et al., 2020; Liu et al., 2021; Zhou et al., 2023). Proper design 
of ventilation parameters effectively regulates airflow within the mine, reduces harmful gas 
concentrations, ensures miners’ safety, and improves productivity. With the development of 
intelligent mine management systems, data collection and monitoring technologies have been 
widely adopted, providing a wealth of real-time data. However, due to factors such as sensor 
failures and environmental interference, the issue of missing data in mine ventilation 
parameters has become increasingly prominent (Shriwas and Pritchard, 2020; Semin et al., 
2020; Nardo and Yu, 2021). This not only affects the accuracy of data analysis and decision-
making but also limits the optimization and adaptive adjustment of intelligent 
ventilation systems.

To address this problem, numerous data processing methods have been proposed to fill 
in missing data and restore data integrity. Traditional methods for missing data imputation, 
such as mean imputation and nearest-neighbor imputation, are simple and practical but often 
perform poorly when handling complex data, particularly when the data contain multiple 
missing values and strong correlations (Pujianto et al., 2019; Lalande and Doya, 2022). In the 
context of mine ventilation parameter imputation, some researchers have focused on aspects 
like ventilation friction resistance coefficients. For example, Xu et  al. (2017) studied the 
calibration of mine ventilation network (MVN) models and proposed a nonlinear 
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optimization-based calibration method. This method not only aligns 
simulated airflow distribution results with on-site measurements but 
also minimizes errors in other parameters. Applications in real-world 
cases demonstrated that the calibrated MVN model built from 
ventilation survey results and Ventsim software produced better 
airflow simulation results, validating the effectiveness of the calibration 
method. Similarly, Bosikov et al. (2023) investigated mine ventilation 
network parameters to ensure fire safety during coal mine 
development, proposing a novel modeling approach to enhance the 
control reliability of ventilation systems. Using probability theory and 
statistical methods, they conducted a comprehensive analysis of 
pneumatic processes in coal mines and applied spline interpolation to 
process spatial data. Their research developed a universal transfer 
function expression considering delay factors, describing the dynamic 
characteristics of mine ventilation parameters under different 
operating conditions. Hao et al. (2023) explored a multi-branch joint 
regulation method for mine ventilation based on sensitivity analysis, 
proposing a solution to address the issue of unmet airflow demand in 
specific branches under demand-based ventilation. By introducing the 
concept of sensitivity rate, they quantitatively analyzed the sensitivity 
variation patterns of branch airflow to multi-branch resistance and 
derived the calculation formula for sensitivity rate matrices. The 
Lagrange interpolation method was further employed to optimize the 
relationship between airflow sensitivity and resistance. Despite their 
contributions, these traditional methods often fail to meet the 
precision requirements for mine ventilation data processing, especially 
in real-time optimization scenarios, where more efficient and accurate 
algorithms are needed to handle missing data.

In recent years, machine learning-based approaches for missing 
data processing have gained increasing attention. Alkabbani et al. 
(2022) proposed a machine learning-based method for predicting air 
quality indices (AQI), combining multivariate data imputation 
techniques. Using artificial neural networks to predict hourly 
concentrations of PM2.5 and PM10, their approach extended to other 
air pollutants (e.g., O3, SO2, NO2, CO) for AQI estimation. They 
employed the missForest imputation method based on random 
forests, which significantly outperformed linear imputation methods, 
achieving an AQI prediction accuracy of 92.41%. Raja and Thangavel 
(2020) introduced an unsupervised machine learning method for 
handling missing values, based on coarse K-means centroids, and 
compared it with other imputation methods such as K-means 
centroids and fuzzy C-means centroids. Experimental analysis across 
benchmark datasets (e.g., Dermatology, Pima, Wisconsin, Yeast) 
validated the effectiveness of their proposed method in handling 
missing values. Lyngdoh et al. (2022) applied machine learning-based 
methods to predict concrete strength, demonstrating the use of data 
imputation techniques to enhance dataset completeness and improve 
predictions of concrete compressive and tensile strength. Their 
findings indicated that datasets imputed with k-Nearest Neighbor 
(kNN, 10 neighbors configuration) yielded the best results when 
paired with the Extreme Gradient Boosting (XGBoost) algorithm.

The XGBoost (Extreme Gradient Boosting) algorithm, known 
for its powerful predictive capabilities and exceptional 
performance in handling complex data, has shown great potential 
for missing data imputation. By constructing multiple decision 
trees, XGBoost effectively models high-dimensional data, enabling 
accurate predictions of missing values. Meanwhile, Multiple 
Imputation by Chained Equations (MICE), as a classic multiple 

imputation method, has been widely used for missing data 
processing. By generating multiple imputed datasets through 
iterative processes, MICE reduces the bias of traditional single-
imputation methods and enhances the credibility of imputed 
results. Laqueur et  al. (2022) proposed a SuperMICE method, 
integrating ensemble machine learning into MICE. This method 
employed the Super Learner algorithm to predict the conditional 
means of missing values and optimized model selection by 
combining local kernel estimates of variance. Getz et al. (2023) 
compared MICE, random forests, and denoising autoencoders for 
multiple imputation performance in electronic health records 
(EHR) data. Their study found that MICE and random forests 
exhibited lower bias under completely random missing 
mechanisms, whereas denoising autoencoders had higher bias. 
Under non-random missing mechanisms, all methods showed 
increased bias proportional to the extent of missing data. These 
studies highlight that the choice of imputation models significantly 
affects MICE performance. Combining MICE with stronger 
predictive algorithms, such as XGBoost, can further improve 
imputation accuracy and reliability (Alzubi, 2023; Alzubi et al., 
2020; Khawaja et al., 2023).

This paper proposes a novel method that integrates the 
XGBoost model with MICE (XGBoost-MICE) to address missing 
data in mine ventilation parameters. The XGBoost model is 
trained on ventilation parameters to predict missing values, while 
MICE generates multiple imputed datasets to enhance the 
reliability and accuracy of the imputation results. Experimental 
results show that the XGBoost-MICE method significantly 
improves imputation accuracy compared to traditional methods. 
The innovation of this study lies in combining XGBoost with 
MICE to provide a robust solution for handling missing data in 
mine ventilation parameters, offering a new perspective and 
technical support for the intelligent management of mine 
ventilation systems.

2 XGBoost-based multiple imputation 
by chained equations regression 
method

2.1 XGBoost

XGBoost (Extreme Gradient Boosting) is an efficient ensemble 
learning method widely used in regression, classification, and ranking 
tasks. Based on the Gradient Boosting Trees (GBT) algorithm, 
XGBoost builds multiple weak learners (decision trees) and combines 
them into a strong learner to model complex data accurately. In 
missing data imputation tasks, XGBoost leverages the ensemble of 
multiple trees to predict missing values precisely, overcoming the 
limitations of traditional methods when handling complex data. The 
model is trained by minimizing a loss function and improved 
iteratively through weighted adjustments (Zhang et  al., 2023; Qiu 
et al., 2022).

The core objective of XGBoost is to incrementally optimize the 
loss function by constructing decision trees iteratively. The loss 
function includes a regularization term to control model complexity 
and avoid overfitting. Through this approach, XGBoost effectively 
captures nonlinear relationships among features, making it highly 
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suitable for predicting missing values in datasets with intricate 
dependencies. As shown in Equation (1):
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In this context, ( ),ˆi iy y  represents the loss function, which 
quantifies the error between the predicted value ˆiy  and the true value 

iy . Commonly used loss functions include Mean Squared Error (MSE) 
and logarithmic loss, among others.

The term ( )Ù kf  denotes the regularization term for controlling 
the complexity of the decision tree. This term helps prevent overfitting 
by penalizing overly complex models. A typical regularization form is 
given as shown in Equation (2):
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Here, T is the number of leaf nodes in the tree, γ is a parameter that 
penalizes the number of leaf nodes, λ is a regularization parameter, and 

kθ  represents the weights of the leaf nodes. This regularization encourages 
simpler models while maintaining prediction accuracy.

When applied to the processing of missing mine ventilation 
parameters, XGBoost can learn the relationships between 
different ventilation parameters, such as wind speed and 
pressure, from the training data and predict the missing 
parameter values based on these relationships. In this way, 
XGBoost not only efficiently handles missing data but also 
preserves the complex nonlinear relationships between variables 
during the process, ensuring high accuracy in the imputation 
results. In the task of imputing mine ventilation parameters, the 
regression model of XGBoost can be  expressed as shown in 
Equation (3) (Zhu et al., 2021):
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Where ˆiy  is the predicted value for the i-th sample, ix  is the input 
feature of the i-th sample, ( )k if x  is the output of the k-th tree model, 
and K is the number of trees. By training the XGBoost model, the 
predicted value ˆiy  for each missing sample can be obtained, and these 
predicted values can be used to fill in the missing data of the mine 
ventilation parameters.

2.2 Mice

Chain Multiple Imputation by Chained Equations (MICE) is a 
widely used statistical method for handling missing data. The 
MICE method constructs multiple regression models and uses an 
iterative approach to impute the missing values of each variable, 
generating multiple imputation results that enhance the accuracy 
and reliability of the imputation (Ni et al., 2024). This method is 
widely applied to data imputation in areas such as mine ventilation 
parameters, as mine ventilation data often exhibit multiple missing 

values and complex correlations, which MICE can 
effectively handle.

The basic concept of MICE is to iteratively impute the missing 
values of each variable. For each variable with missing values, MICE 
uses other variables as predictors to build a regression model to 
predict the missing values, and then inserts the predicted values into 
the data (Samad et al., 2022). The predictions for other missing values 
are updated based on the imputed data until convergence, as shown 
in Figure 1. Specifically, the process of MICE can be summarized in 
the following steps:

Initial imputation: For each missing value variable Yj, an 
initial imputation value Yj(0) can be  obtained using simple 
imputation methods (such as mean imputation or 
regression imputation).

Iterative imputation: In the t-th iteration, the missing value 
variable Yj is predicted using the imputed values of other variables.  
As shown in Equation (4):

 
( ) ( ) ( ) ( )( )1 2, , ,t t t t
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(4)

Where X1,X2,…,Xp are the known variables related to Yj, and fj is 
the regression model for Yj.

Repeated iteration: The missing values are updated through 
multiple iterations until the imputation results for all variables 
converge, meaning no significant changes occur (Alruhaymi and Kim, 
2021). The estimates after combining multiple imputation results can 
be calculated using the following Equation (5):
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Where ( )ˆ iθ  is the model parameter estimated based on the i-th 
imputation result.

For the imputation of missing mine ventilation parameters, the 
MICE method treats the missing ventilation parameters as target 
variables, using other known ventilation data (such as wind speed, 
pressure, temperature, etc.) as predictor variables to construct a 
regression model for imputation. Each regression model can 
be expressed as shown in Equation (6):

 ( )1 2, , ,j pY f X X X= … +∈
 (6)

Where jY  is the missing value of the j-th mine ventilation 
parameter, 1 2, , , pX X X…  are the known ventilation parameters 
related to it, and ϵ is the error term.

2.3 Chain multiple imputation regression 
based on the XGBoost model

In the process of handling missing mine ventilation parameter 
data, the Chain Multiple Imputation Regression method based on the 
XGBoost model (XGBoost-MICE) efficiently fills in missing values, 
ensuring the completeness and accuracy of ventilation system data 
(Giuliani et al., 2021). This method generates multiple imputation 
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results through an iterative process and uses the XGBoost model to 
predict each missing value. The process is shown in Figure 2. The 
specific steps are as follows:

2.3.1 Step 1: Initialize random imputation and 
obtain complete dataset

First, for the mine ventilation parameter dataset with missing 
values, we generate the initial complete dataset, Rnd_Dataset, through 
random imputation. For each missing value, some data points from 
the known values of the current attribute are randomly selected to fill 
in the missing value. The generated Rnd_Dataset will be used in the 
subsequent imputation process.

2.3.2 Step 2: XGBoost-based prediction and 
imputation (iterative process)

Next, for the initial complete dataset Rnd_Dataset, we begin the 
multiple iterations (with the number of iterations set to n). In each 
iteration, for each missing value attribute (such as ventilation wind 
speed, temperature, pressure, etc.), the XGBoost model is used to 
make predictions. The specific operation is as follows:

As shown in Figure  3, for each missing value attribute (for 
example, A1,A2,…), other known attributes are used as the feature 
matrix. For instance, the prediction of the missing value of A1 may 
depend on the known values of A2 and A3.

 • The XGBoost model is trained on these feature matrices to 
predict the missing attribute’s value. The basic form of the 
XGBoost model is following Equation (7):
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(7)

Once the predicted result E[A1∣A2,A3] is obtained, imputation is 
performed based on the matching relationship between the predicted 
values and the known data in the original dataset. During the 
imputation process, original data values that are close to the predicted 
values for the missing value are selected for imputation. For example, 
if the predicted values for A1 are 0.60 and 1.20, the known data will 

FIGURE 1

The incomplete data and imputation process based on the chain multiple imputation regression method.
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be searched to find samples that are close to these values, and the 
missing A1 attribute will be imputed based on these sample values.

To further refine the imputation, the parameter mean_match_
candidate is set to limit the number of candidate data points used for 
imputation. For instance, if mean_match_candidates = 5, the 5 
closest values to the missing value prediction are selected, and their 
mean is calculated to serve as the final imputed result.

For each missing value attribute, the above steps are repeated until 
all missing values for the attribute are filled, resulting in a 
complete dataset.

2.3.3 Step 3: Repeat the iterative process until 
stopping conditions are met

Once the imputation after the first iteration is completed, the 
imputed complete dataset is used again to perform Step 2. Through 

multiple iterations, missing values are further imputed and optimized 
until the maximum number of iterations n is reached. Each iteration 
generates a more accurate dataset, progressively eliminating the 
impact of missing data.

2.3.4 Step 4: Generate multiple complete 
datasets and perform final analysis

By executing Steps 1 through 3, we  can generate m different 
complete datasets. Each dataset is derived from different initial 
imputation values and iteration processes, providing a certain level of 
diversity. Finally, these m complete datasets are analyzed to produce 
the final imputation results. To combine the multiple imputation 
results, the following formula is used for aggregation, as shown in 
Equation (8):

FIGURE 2

Chain equation multiple imputation method based on XGBoost (Giuliani et al., 2021).

FIGURE 3

Prediction mean matching process based on XGBoost. (a) Transform data features; (b) Predict similar data; (c) Data imputation.
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The step-by-step implementation of the XGBoost-MICE method 
is detailed in Table  1, outlining each function’s role in the 
imputation workflow.

3 Mine ventilation parameter missing 
data imputation experiment

The dataset consists of historical ventilation data from the 
Shangwan Coal Mine, including various ventilation parameters such 
as airflow, wind speed, temperature, and pressure, measured at different 
points in time across multiple mine tunnels. The dataset comprises 312 
samples, each representing a set of ventilation measurements collected 
from one of the mine tunnels at a specific time.

3.1 Mine ventilation parameter missing data 
imputation process

The process of imputing missing mine ventilation parameter data 
using the XGBoost-based Chain Multiple Imputation Regression 
method (XGBoost-MICE) consists of three stages (Pan et al., 2022):

3.1.1 Step 1: XGBoost-MICE function to impute 
missing data

In this stage, the with() function is used to process the imputed 
mine ventilation parameter data. The with() function accepts the 
imputed datasets and applies statistical methods or machine learning 
models to analyze or refine them. The function generates output, 
which is used for further evaluation or integration into the next step 
of the imputation process.

3.1.2 Step 2: Data analysis
Once the data has been imputed, the pool() function is used. The 

pool() function takes in multiple imputed datasets, each generated 
from different initial imputations and iterations. These multiple 
datasets are then combined to form a single dataset, ensuring that the 
final imputed dataset reflects the diversity and reliability of the 
imputation process.

3.1.3 Step 3: Results integration
In the final stage, the pool function integrates the multiple 

analysis results from Step  2 according to an optimal principle, 
obtaining the final imputed results for the mine ventilation parameters 
with missing data. By combining the analysis results of multiple 
imputed datasets, the accuracy and reliability of the imputed results 
can be  further improved. The final integrated results will more 
accurately reflect the parameter relationships within the mine 
ventilation system, providing precise data support for intelligent 
management systems.

The mine ventilation parameter missing data imputation process 
is shown in Figure 4. This process, through multiple imputations and 
data analyses, ensures that the final dataset is more complete and can 
provide accurate data support for the optimization and adjustment of 
the mine ventilation system.

3.2 Evaluation metrics

For linear regression and other regression models, evaluation of 
continuous, well-fitting data cannot be done using evaluation metrics 
for discrete binary classifiers. Therefore, metrics such as Mean Squared 
Error (MSE), Mean Absolute Error (MAE), Explained Variance, and 
Coefficient of Determination (R2) are introduced to measure the 
performance of the model (Asselman et al., 2023; Li, 2022; Osman 
et al., 2021). These metrics can be directly computed using functions 
from the sklearn library in Python.

 (1) Mean Squared Error (MSE): This metric calculates the mean of 
the squared differences between the fitted data and the original 
data at the corresponding sample points. It is used to assess 
how well the fitted data matches the original true values. A 
smaller MSE value indicates a better fit. The formula for 
calculating MSE is following Equation (9):

 
( )2

1

1 ˆ
N

i i
i

MSE y y
N =

= −∑
 

(9)
.

In the formula, N is the number of samples; iii represents each 
data sample; iy  is the original true value; and ˆiy  is the predicted value.

TABLE 1 XGBoost-MICE imputation process.

Step Procedure Function used

Step 1 Initialize dataset with missing values 

and simulate missing data for 

controlled experiments.

missing_data_generate()

Step 2 Perform initial random imputation to 

fill missing values as placeholders.

–

Step 3 Iterate through each variable with 

missing values, treating it as the 

dependent variable and using other 

variables as predictors.

mice()

Step 4 Train an XGBoost model on the 

available data to predict missing values 

for the target variable.

XGBoost()

Step 5 Replace missing values with 

predictions from XGBoost while 

maintaining dataset structure.

–

Step 6 Repeat the imputation process for all 

missing variables iteratively until 

convergence is achieved.

mice()

Step 7 Generate multiple complete datasets 

with different imputation iterations.

with()

Step 8 Pool the multiple imputed datasets and 

aggregate the final imputation results.

pool()

Step 9 Validate the imputed dataset using 

statistical metrics such as MSE, MAE, 

and R2.

–

Step 10 Output the final complete dataset for 

further analysis or modeling.

–
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 (2) Explained Variance (Explained Variance, Evar): This 
metric measures how closely the spread of the differences 
between all predicted values and the samples matches the 
spread of the samples themselves. The value of Evar ranges 
from 0 to 1, with a higher value indicating that the spread 
of the predicted values is closer to the spread of the 
samples, and a lower value indicating poorer performance. 
The formula for calculating explained variance is following 
Equation (10):
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In the formula, iy  is the mean of the original values; iz  represents 
the difference between the sample values and the predicted values; and 

iz  is the mean of the sample values.

 (3) Coefficient of Determination (R2): The R2 metric measures how 
well the model fits the data by representing the proportion of 
variance in the dependent variable that is predictable from the 
independent variables. The formula for calculating R2 is 
following Equation (11):
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.

 (4) Mean Absolute Error (MAE): This metric calculates the average 
of the absolute errors between the predicted values and the true 
values. It is used to assess how close the predicted results are to 

the true data values. A smaller MAE value indicates a better fit. 
The formula for calculating MAE is following Equation (12):

 1

1 ˆ
N

MA i i
i

E y y
N =

= −∑
 

(12)
.

3.3 Shawan coal mine ventilation 
imputation experiment

3.3.1 Mine ventilation parameter dataset
Due to the complex and variable underground environment, 

obtaining complete and accurate sample data from only a few 
measurements is challenging. Therefore, the historical 
measurement data from the Shawan Coal Mine’s ventilation 
system is used to address the missing mine ventilation parameters. 
Based on the preliminary formation of the mine ventilation 
system, a fixed portion of the airflow is adjusted and allocated 
through repeated tuning until a complete dataset of mine 
ventilation parameters, consistent with the on-site conditions, is 
obtained. This dataset includes various ventilation parameters, 
such as wind speed, air volume, temperature, pressure, etc., and is 
recorded in an Excel spreadsheet, as shown in Table 2. By handling 
the missing values in this data and applying the Chain Multiple 
Imputation by Chained Equations method based on the XGBoost 
model (XGBoost-MICE), a complete dataset of mine ventilation 
parameters was obtained.

By conducting on-site measurements of the Shawan Coal Mine’s 
ventilation system and collecting relevant data, a ventilation 
simulation model for the mine was constructed using these 
measurements. Through airflow distribution and adjustment, a 
complete dataset of mine ventilation parameters was ultimately 
obtained. Next, the XGBoost-MICE method was applied to impute the 
missing values in this dataset, generating multiple imputed datasets to 

FIGURE 4

Mine ventilation parameter missing data imputation process.
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ensure the accuracy and reliability of the imputation results. Finally, 
the imputed datasets were compared with the original dataset to verify 
the feasibility and accuracy of the imputation method.

3.3.2 Imputation experiment and result analysis
To validate the feasibility and accuracy of the model in imputing 

missing mine ventilation parameter data, a custom function was used 

TABLE 2 Mine ventilation parameter dataset.

Tunnel ID Cross-sectional 
area (m2)

Section air flow 
(m3/s)

Section wind 
speed (m/s)

Actual resistance 
difference (Pa)

Friction wind resistance 
per 100 meters (N·s2·m−8)

1 13.74 33.53 9.66 94 0.015508

2 11.35 67.46 7.34 238 0.008113

3 13.61 71.88 6.24 97 0.013640

4 14.77 18.68 5.66 243 0.009396

5 10.68 63.22 10.05 145 0.009295

6 7.93 33.87 4.01 169 0.008389

7 8.90 55.47 9.89 151 0.008728

8 11.16 32.21 4.86 208 0.010526

9 13.17 21.80 3.91 23 0.011498

10 8.86 48.32 6.80 56 0.009646

21 9.97 21.39 2.58 76 0.012893

22 8.23 35.52 7.83 243 0.009236

23 13.23 52.73 4.21 58 0.013176

24 14.55 42.15 8.67 271 0.007781

25 10.34 57.28 9.04 102 0.010145

26 12.47 28.69 3.65 134 0.011735

27 14.06 44.13 5.77 153 0.014112

28 10.78 19.55 6.92 125 0.012834

29 9.15 23.68 4.76 220 0.008954

30 11.86 62.24 10.12 87 0.015108

31 14.09 15.74 6.30 94 0.013294

32 7.91 33.65 9.81 212 0.010827

33 9.35 46.29 5.49 159 0.008819

34 11.41 64.56 7.94 143 0.011946

35 12.90 38.74 6.11 69 0.012564

36 10.28 48.94 4.82 241 0.009306

37 13.45 54.88 8.34 173 0.014715

38 14.71 30.42 7.43 136 0.009954

39 12.30 26.37 3.89 108 0.012384

40 9.60 50.87 6.99 193 0.010847

…

304 13.54 36.12 9.24 91 0.014093

305 11.28 27.34 4.98 114 0.009817

306 9.44 41.09 7.56 168 0.008904

307 7.88 14.54 5.24 203 0.010193

308 14.02 32.68 9.64 185 0.012783

309 10.72 24.72 6.18 131 0.011524

310 8.52 55.10 8.43 126 0.009422

311 11.97 38.26 10.04 157 0.012214

312 13.82 19.58 3.97 217 0.014716

313 9.50 29.73 5.89 178 0.008712
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to randomly introduce missing values into the original complete 
dataset, simulating the random missing characteristics of actual mine 
ventilation parameter data. By adjusting the parameters in the custom 
function, different missing attributes, missing proportions, and 
iteration counts were set, and three sets of experiments were designed. 
In the experiments, attributes such as “cross-sectional area” and 
“section air volume” were designated as the missing columns. The 
results showed that when the number of iterations reached 30, the 
model had essentially converged. To avoid the impact of iteration 
counts on the experimental results, the iteration count was fixed at 30 
for both Experiment 1 and Experiment 2, while the effect of iteration 
count on the results was separately explored in Experiment 3.

In Experiment 1, the custom function missing_data_generate() 
was used to set the missing_columns parameter, selecting “cross-
sectional area” and “section air volume” as the missing columns for 
imputation testing. Specifically, the following models were used: • 
Model 1: The missing column is “cross-sectional area,” with a missing 
data ratio of 5% and 30 iterations. • Model 2: The missing column is 

“section air volume,” with a missing data ratio of 5% and 30 iterations. 
The comparison of the imputed datasets for Models 1 and 2, before 
and after merging the analysis, is shown in Figure 5.

In Experiment 2, the custom function missing_data_generate() 
was used to set the missing data proportion through the missing_rate 
parameter. Taking “cross-sectional area” and “section air volume” as 
examples, missing rates of 10 and 15% were set. The results can 
be compared with those from Experiment 1. Specifically: • Model 3: 
The missing column is “cross-sectional area,” with a missing rate of 
10%, and the number of iterations is set to 30. • Model 4: The missing 
column is still “cross-sectional area,” but the missing rate is increased 
to 15%, with the number of iterations remaining at 30. • Model 5: The 
missing column is “section air volume,” with a missing rate of 10%, 
and the number of iterations is set to 30. • Model 6: The missing 
column is “section air volume,” with a missing rate of 15%, and the 
number of iterations is set to 30. The comparison of the imputed data 
for Models 3 to 6, before and after merging the analysis, is shown in 
Figure 6.

FIGURE 5

Imputation effects before and after data merging for models 1 and 2. (a) Model 1 data before merging; (b) Model 1 data after merging; (c) Model 2 data 
before merging; (d) Model 2 data after merging.
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In Experiment 3, the number of iterations during the imputation 
process was set using the iteration parameter of the imputation 
function mice(). In this case, “friction wind resistance per 100 meters” 

was chosen as an example, and the final iteration count was set to 50. 
A program was written to record the changes in the mean value of the 
data after each iteration. The specific model settings are as follows: • 

FIGURE 6 (CONTINUED)
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Model 7: The missing column is “friction wind resistance per 100 
meters,” with a missing rate of 10% and 30 iterations. • Model 8: The 
missing column is still “friction wind resistance per 100 meters,” with 
a missing rate of 10%, but the iteration count is increased to 50.

By outputting the mean of the data after each iteration, the 
convergence of the mean values is shown in Figure 7. To further verify 
the stability of the imputation results, datasets = 6 was set, meaning 
six complete datasets were generated simultaneously during the 
imputation process. The comparison of the mean value changes across 
each complete dataset shows that when the iteration count reached 6, 
the data mean had already converged. After further increasing the 
number of iterations, the data mean tended to stabilize. This leads to 
the conclusion that an appropriate number of iterations ensures the 
accuracy of the imputation results, while excessive iterations have little 
impact on the convergence of the mean.

According to the three sets of experiments, the evaluation 
standards for the mine ventilation parameter missing data completion 
model for Shawan Coal Mine are shown in Figure 8.

Through the analysis of the imputation results and evaluation 
metrics for Models 1 to 6, it was found that when the missing rate of 
the “cross-sectional area” data increased from 5 to 15%, the Mean 
Squared Error (MSE) rose from 0.0445 to 0.3254, an increase of 
0.2614, indicating a significant impact of the higher missing rate on 
imputation accuracy. Meanwhile, the Explained Variance decreased 
from 0.988309 to 0.943267 (a decrease of 0.045), and the Coefficient 
of Determination (R2) dropped from 0.990019 to 0.955951 (a decrease 
of 0.035), suggesting that the model’s explanatory power and fit 
declined as the missing rate increased. Additionally, the Mean 
Absolute Error (MAE) increased from 0.180 to 0.470, an increase of 
0.29, further indicating that a higher missing rate significantly 
increases the imputation bias.

Similarly, when the missing rate of the “section air volume” data 
increased from 5 to 15%, the MSE increased significantly from 1.0121 

to 1.5924, an increase of 1.267. The Explained Variance only decreased 
from 0.985740 to 0.985635 (a decrease of 0.00741), and R2 decreased 
from 0.985721 to 0.982897 (a decrease of 0.0108). This indicates that 
while the high missing rate has a major impact on the MSE and MAE, 
its effect on the Explained Variance and R2 is minimal. At the same 
time, the MAE increased from 0.780 to 1.120, an increase of 0.64, 
further showing that a higher missing rate significantly affects 
imputation errors.

The iteration count test for the “friction wind resistance per 100 
meters” attribute showed that when the number of iterations was 30, 
the MSE, Explained Variance, and R2 had already stabilized, indicating 
that the imputation results had reached a good convergence state. 
Increasing the number of iterations to 50 did not lead to significant 
changes, further confirming the model’s convergence and stability 

FIGURE 6

Imputation effects before and after merging datasets for models 3, 4, 5 and 6. (a) Model 3 data before merging; (b) Model 3 data after merging; (c) 
Model 4 data before merging; (d) Model 4 data after merging; (e) Model 5 data before merging; (f) Model 5 data after merging; (g) Model 6 data before 
merging; (h) Model 6 data after merging.

FIGURE 7

Mean convergence illustration.
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within a reasonable number of iterations. This suggests that, in 
practical applications, setting a reasonable number of iterations can 
ensure the accuracy of the imputation results while improving 
computational efficiency.

A comprehensive analysis shows that the imputation method 
proposed in this study demonstrates high accuracy and reliability 
across different missing attributes and missing rates. Under low 
missing rates, the model’s imputation errors are small. As the missing 
rate increases, the imputation error and bias of the predicted data 
increase, but the overall performance remains relatively stable. 
Meanwhile, with a reasonable number of iterations, the imputation 
method exhibits good convergence and adaptability, providing reliable 
technical support for the imputation and analysis of mine 
ventilation data.

4 Discussion

4.1 Limitations and future research 
directions

The results of this study highlight the need to comprehensively 
consider missing rates, data characteristics, and algorithm performance 
when imputing missing data in mine ventilation parameters. Our 
experiments revealed that the model performed optimally under low 
missing rates (5%), with minimal MSE and MAE values. However, as 
the missing rate increased, imputation accuracy notably declined. For 
instance, in the “cross-sectional area” scenario, MSE increased by 0.2614 
and MAE by 0.29, showing a significant impact of higher missing rates 
on imputation results. Experiments with different attributes 
demonstrated that the model retained stability even under high missing 
rates, particularly for the “airflow volume” attribute, where the 
R-squared dropped by only 0.0108, indicating the model’s adaptability 

to complex attributes. Additionally, iteration experiments validated that 
a moderate number of iterations (e.g., six) ensured accurate imputation 
while improving computational efficiency. But we recognize that it is 
important to acknowledge its limitations for a more balanced 
perspective. One limitation is its performance under extremely high 
missing rates (greater than 15%), where imputation accuracy may 
decline significantly. While our experiments have demonstrated the 
method’s effectiveness up to 15% missing data, further testing is needed 
to assess its robustness in scenarios with higher missing rates. 
Additionally, the method’s applicability to non-linear or non-stationary 
data is another area that warrants further investigation. The current 
study primarily focused on data with relatively stable relationships 
among parameters, and future work should explore how the model 
adapts to data exhibiting non-stationary behavior or extreme volatility. 
Another limitation is the computational intensity of XGBoost, which 
may pose challenges in large-scale or real-time applications. The study 
did not address these concerns in detail, but future research should 
investigate strategies to improve computational efficiency, such as 
parallel processing or optimized implementations, without 
compromising the imputation accuracy. These aspects will help 
determine the practical feasibility of deploying XGBoost-MICE in real-
world, large-scale applications.

This study demonstrates the effectiveness of the XGBoost-MICE 
method, but we acknowledge that a clearer comparison with existing 
imputation techniques would provide more context for its advantages. 
Compared to traditional imputation methods like mean imputation 
and k-Nearest Neighbors (k-NN), which are simple and widely used, 
XGBoost-MICE offers several key improvements. While mean 
imputation fills missing values based on the average of known data, 
and k-NN estimates missing values based on the closest available data 
points, these methods can struggle when dealing with complex 
datasets with non-linear relationships. In contrast, XGBoost-MICE 
integrates the powerful predictive capabilities of XGBoost, which 

FIGURE 8

Model evaluation standard illustration.
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captures complex, non-linear dependencies in the data, with the 
iterative and multiple imputations process of MICE, which reduces 
bias and enhances the reliability of imputed results. This hybrid 
approach enables more accurate and robust imputation, especially in 
datasets with intricate patterns of missingness.

However, it is important to note that XGBoost is computationally 
intensive, which raises concerns regarding its runtime, memory usage, 
and feasibility for large-scale or real-time applications. The study did 
not address these aspects in detail. Future studies should examine 
these factors more thoroughly, considering how the model’s 
performance can be optimized for real-time or large-scale applications. 
Furthermore, research into parallel processing or more efficient 
implementation techniques could be explored to reduce computational 
costs without sacrificing imputation accuracy.

While various missing data imputation methods, such as 
XGBoost and MICE, have been widely used to handle missing 
values, each has limitations. XGBoost, as a powerful ensemble 
learning model, can effectively predict missing values by capturing 
complex relationships in the data. However, it may not fully account 
for the variability in imputation results caused by the randomness 
of missing data. In contrast, MICE, a classic multiple imputation 
method, generates multiple imputed datasets through iterative 
regression models, which reduces bias but lacks the predictive 
power needed for handling complex datasets (Shah et al., 2014; 
Mera-Gaona et al., 2021; Zhang, 2016). The integration of XGBoost 
with MICE in the proposed method enhances both the accuracy 
and stability of imputation results, as it combines the strong 
predictive capabilities of XGBoost with the reliability of multiple 
imputations from MICE. This hybrid approach not only improves 
imputation accuracy for mine ventilation parameters but also 
provides a robust solution for data completeness in real-world 
scenarios, especially in settings with varying missing rates and 
complex correlations.

In real-world scenarios, the method can be  integrated into 
mine ventilation control systems to optimize airflow distribution 
and ensure safety. For example, by imputing missing ventilation 

parameters, the method can provide accurate data for predictive 
modeling, enabling operators to adjust ventilation systems in real-
time based on the predicted air quality and ventilation 
requirements. This approach can significantly reduce the reliance 
on manual adjustments and enhance the overall efficiency of the 
ventilation system. In addition, the XGBoost-MICE method could 
be deployed in conjunction with IoT (Internet of Things) sensors 
in mining operations. These sensors continuously monitor 
ventilation parameters such as airflow, temperature, and pressure, 
providing real-time data to the system. When data is missing due 
to sensor malfunctions or communication failures, the XGBoost-
MICE method can impute the missing values, ensuring 
uninterrupted operation of the ventilation system. The integration 
of this method into smart mining systems would improve decision-
making, reduce downtime, and contribute to safer working 
environments by maintaining optimal ventilation conditions.

4.2 Comparison with k-nearest neighbors 
(k-NN) model

The effectiveness of the XGBoost-MICE method in imputing 
missing mine ventilation parameters can be assessed by comparing it 
with the k-Nearest Neighbors (k-NN) model, a widely used imputation 
technique. The k-NN algorithm estimates missing values by 
identifying k similar data points based on a distance metric, commonly 
Euclidean distance, and computing the mean or weighted mean of 
their corresponding values. While k-NN performs well in datasets 
where similar patterns exist locally, it exhibits several limitations in 
handling complex and high-dimensional data.

The computational complexity of k-NN increases with the dataset 
size because it requires distance calculations for every missing data 
point against all available data. As the number of dimensions increases, 
the curse of dimensionality leads to degraded performance, reducing 
the reliability of imputations. k-NN is highly sensitive to the chosen 
number of neighbors, as smaller k values may introduce high variance 

FIGURE 9

Comparison of imputation accuracy between k-NN and XGBoost-MICE under different missing rates.
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while larger k values may smooth out meaningful variations. 
Moreover, k-NN assumes that missing values can be inferred based on 
the proximity of known samples, which may not hold in datasets 
where missingness is not random or exhibits strong correlations 
between attributes.

In contrast, XGBoost-MICE applies a tree-based ensemble 
learning method to model complex relationships within the data. 
XGBoost captures non-linear dependencies and interactions between 
variables, offering greater accuracy in high-dimensional datasets. 
Unlike k-NN, which relies solely on local similarity, XGBoost learns 
predictive patterns from the entire dataset, leading to more stable and 
consistent imputations. The iterative nature of MICE further refines 
the imputation results, reducing bias and ensuring that variability in 
missing data is adequately accounted for.

Figure 9 presents a comparative analysis of imputation accuracy 
between k-NN and XGBoost-MICE under different missing rates. 
When the missing rate is below 10%, k-NN produces reasonable 
imputations with a mean squared error (MSE) comparable to 
XGBoost-MICE. As the missing rate increases beyond 10%, k-NN’s 
performance declines significantly, while XGBoost-MICE maintains 
higher accuracy. The reduction in explained variance and coefficient 
of determination (R2) is more pronounced in k-NN, indicating that its 
imputation quality deteriorates under higher missing rates.

The time complexity of both methods is also evaluated. Figure 10 
illustrates the computation time required for different dataset sizes. 
k-NN requires exponentially longer processing time as the dataset grows, 
while XGBoost-MICE maintains a more efficient scaling pattern.

5 Conclusion

This study proposed an XGBoost-MICE (Multiple Imputation by 
Chained Equations) regression method to address missing data in mine 
ventilation parameters, demonstrating its effectiveness and stability 
through experimental validation. Results revealed that the method 
achieved high imputation accuracy under low missing rates (5%), with 
minimal Mean Square Error (MSE) and Mean Absolute Error (MAE). As 
missing rates increased, the accuracy of imputation decreased, but the 

model retained overall stability. For complex attributes such as “cross-
sectional area,” the impact of higher missing rates on R-squared and 
Explained Variance was minimal, indicating the algorithm’s adaptability 
to complex data. Iteration experiments confirmed the convergence and 
efficiency of the method, showing that reasonable iteration numbers 
significantly improve imputation reliability. In conclusion, the proposed 
method offers a novel technical approach for addressing missing data 
issues in mine ventilation systems and provides robust support for 
intelligent optimization and safe production in mines.
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for different dataset sizes.
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