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Introduction: Rectal cancer often originates from polyps. Early detection and timely 
removal of polyps are crucial for preventing colorectal cancer and inhibiting its 
progression to malignancy. While polyp segmentation algorithms are essential for 
aiding polyp removal, they face significant challenges due to the diverse shapes, 
unclear boundaries, and varying sizes of polyps. Additionally, capturing long-
range dependencies remains difficult, with many existing algorithms struggling 
to converge effectively, limiting their practical application.

Methods: To address these challenges, we propose a novel Dual Encoder Multi-Scale Feature 
Fusion Network, termed VMDU-Net. This architecture employs two parallel encoders: 
one incorporates Vision Mamba modules, and the other integrates a custom-designed 
Cross-Shape Transformer. To enhance semantic understanding of polyp morphology 
and boundaries, we design a Mamba-Transformer-Merge (MTM) module that performs 
attention-weighted fusion across spatial and channel dimensions. Furthermore, Depthwise 
Separable Convolutions are introduced to facilitate multi-scale feature extraction and 
improve convergence efficiency by leveraging the inductive bias of convolution.

Results: Extensive experiments were conducted on five widely-used polyp 
segmentation datasets. The results show that VMDU-Net significantly outperforms 
existing state-of-the-art methods, especially in terms of segmentation accuracy 
and boundary detail preservation. Notably, the model achieved a Dice score of 
0.934 on the Kvasir-SEG dataset and 0.951 on the CVC-ClinicDB dataset.

Discussion: The proposed VMDU-Net effectively addresses key challenges in polyp 
segmentation by leveraging complementary strengths of Transformer-based and 
Mamba-based modules. Its strong performance across multiple datasets highlights 
its potential for practical clinical application in early colorectal cancer prevention.

Code availability: The source code is publicly available at: https://github.com/
sulayman-lee0212/VMDUNet/tree/4a8b95804178511fa5798af4a7d98fd6e6b1ebf7.
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1 Introduction

In terms of incidence rates, colorectal cancer (CRC) is the third most common malignant 
tumor in the world (Gupta and Mishra, 2024). Therefore, preventing CRC through regular 
screening and the removal of precancerous lesions, such as colorectal adenomas, has become 
a crucial focus for public health systems worldwide. Colonoscopy, as a widely-used screening 
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method for CRC, allows for the identification of the location and 
surface characteristics of colorectal polyps, enables physicians to 
remove polyps before their development into cancer, and thus achieves 
a preventive effect. As shown by studies in Haggar and Boushey 
(2009), early screening can reduce CRC incidence by up to 30%. 
Therefore, accurate polyp segmentation is essential for improving 
screening efficiency and reducing missed diagnoses. However, the task 
brings multiple challenges. First, polyps exhibit significant 
morphological diversity and vary in size, color, and texture. Second, 
in colonoscopy images, the boundaries between polyps and 
surrounding tissues are often blurred and lack distinct contrast, 
increasing the segmentation difficulty. These factors make automated 
segmentation prone to errors or omissions, limiting the effectiveness 
of current polyp segmentation algorithms. To realize the early 
detection and prevention of CRC, it is of critical clinical importance 
to develop an automated segmentation method capable of accurately 
and efficiently detecting polyps (Jia et al., 2019) (see Figure 1).

Typically, traditional polyp segmentation techniques rely on 
surface features such as shape, texture, and simple clustering for initial 
image segmentation (Sasmal et al., 2022). However, compared to deep 
learning algorithms, these methods often struggle to achieve high 
segmentation accuracy. With the rapid development of deep learning, 
convolutional neural networks (CNNs) have become powerful tools 
that can represent more complex features and significantly improve 
the performance of colorectal polyp segmentation. Ronneberger et al. 
(2015) proposed U-Net, which consists of a downsampling (encoder) 
part and an upsampling (decoder) part, and forms a “U”-shaped 
structure. The encoder is in charge of feature extraction, while the 
decoder generates high-resolution segmentation maps. Zhou et al. 
(2018) introduced U-Net++, an improved version of U-Net for 
enhancing the accuracy of medical image segmentation. U-Net++ 
incorporates nested skip connections and deep supervision 
mechanisms, which improve information flow between different 
feature levels and optimize the fusion of multi-resolution features. 
Given that U-Net++ architecture excels in handling fine details and 
blurred boundaries, it is widely applicable to complex image 

segmentation tasks. Diakogiannis et al. (2020) proposed ResUNet, 
which combines residual connections with multi-scale feature 
extraction to mitigate the vanishing gradient problem and enhance 
the learning capability of model. Other CNN-based networks 
designed for medical image segmentation include nn-Unet (Isensee 
et al., 2018), Attention-Unet (Oktay et al., 2018), and ResUnet++ (Jha 
et al., 2019). Although CNNs excel at capturing local features due to 
their reliance on local receptive fields, this local focus limits their 
ability to model long-range dependencies. Convolution operations 
primarily focus on neighboring pixels, so that it is difficult for CNNs 
to effectively capture contextual information far from the target 
regions in the image. This lack of long-range dependency modeling 
hinders the network’s ability to fully understand global information, 
which can negatively affect segmentation or classification outcomes in 
polyp segmentation tasks.

Since the introduction of Transformer technology (Vaswani, 
2017) into computer vision, it has effectively overcome the limitations 
of convolutional neural networks (CNNs) in capturing long-range 
dependencies. Vision Transformer (ViT) (Alexey, 2020) and Swin 
Transformer (Liu et al., 2021), widely used as backbone networks in 
vision tasks, offer a solid framework for modeling such dependencies. 
ViT relies on self-attention mechanisms, while Swin Transformer 
employs windowed self-attention and shifted windows to achieve 
similar results. Furthermore, Li et al. (2022) introduced the Contextual 
Transformer, which improves upon self-attention by incorporating 
neighborhood contextual information. However, traditional self-
attention remains constrained by patch size, limiting token 
information to local regions and reducing the ability to capture global 
dependencies. In tasks like large polyp segmentation, a stronger global 
perception capability is necessary, as relying solely on patches as 
tokens is insufficient.

Currently, Transformer models are extensively used in medical 
image segmentation. Chen et al. (2021) proposed TransUnet, which 
merges the strengths of Transformer and U-Net, where the 
Transformer extracts global context and U-Net preserves local 
details, ensuring precise localization. Similarly, Cao et  al. (2022) 

FIGURE 1

(a) The original polyp images exhibit varying sizes, blurred boundaries, and weak contrast between the lesion and the background. (b) Ground truth 
map for polyp segmentation.
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introduced Swin-Unet, which uses a hierarchical Swin Transformer 
encoder to extract contextual information via moving windows, 
coupled with a symmetric Swin Transformer decoder that restores 
spatial resolution using patch expansion layers. Moreover, Lin et al. 
(2022) developed Ds-TransUnet, which integrates the Swin 
Transformer into both the encoder and decoder of U-Net. 
Ds-TransUnet leverages a dual-scale encoding mechanism and an 
interaction fusion module, alongside the Transformer Interaction 
Fusion (TIF) module, to effectively combine multi-scale information 
through self-attention, facilitating non-local dependency modeling. 
Other Transformer-based medical segmentation algorithms include 
Transfuse (Zhang et  al., 2021), UCTransNet (Wang et  al., 2022), 
MT-UNet (Wang et al., 2022), and CoTr (Xie et al., 2021). However, 
due to the self-attention mechanism’s high computational complexity, 
Transformer models often struggle with convergence during training, 
particularly for long-sequence inputs, which hinders gradient 
propagation. Additionally, they lack an inherent inductive bias for 
local structures and require extensive data and training to learn 
effective features. These challenges result in slow and unstable 
convergence, especially in data-limited or resource-
constrained environments.

Recently, State Space Model (SSM) methods, like Mamba (Gu and 
Dao, 2023), have demonstrated lower computational complexity in 
modeling long-range dependencies, allowing for faster convergence 
and offering a solution to the complexity issues associated with 
Transformer models. These methods have also been successfully 
applied to computer vision tasks. Zhu et al. (2024) introduced Vision 
Mamba, applying the Mamba model to image classification, while Ma 
et al. (2024) proposed U-Mamba, combining Mamba with U-Net for 
medical image segmentation. Liu et  al. (2024) developed Swin-
UMamba, blending the sliding window technique with the Mamba 
model to enhance segmentation accuracy. Xing et al. (2024) designed 
SegMamba, a 3D medical image segmentation model based on SSM, 
which excels in capturing long-range dependencies in volumetric 
data, offering greater efficiency than Transformers for high-resolution 
images. Although Mamba-based models reduce the computational 
burden of long-range dependency modeling, Transformers still 
outperform them in tasks requiring a longer context (Waleffe et al., 
2024). In the case of polyp segmentation, distant micro-organism 
pixels may affect the final segmentation accuracy. Hence, enhancing 
the model’s ability to capture long-range dependencies while ensuring 
faster convergence is critical, alongside exploring the integration of 
strengths from both Transformer and Mamba models.

In summary, this study aims to enhance the algorithm’s ability to 
perceive long-range dependencies in polyp images, address the 
variations in polyp size and shape and ensure improved convergence 
speed. Consequently, VMDU-Net, a dual-encoder polyp segmentation 
network that integrates the strengths of both Transformer and Mamba 
models, is proposed. The contributions of this paper are as follows:

Proposed VMDU-Net Model: VMDU-Net, a dual-encoder multi-
scale segmentation network, is introduced to tackle the challenges in 
polyp segmentation. Unlike previous dual-encoder algorithms, this 
model combines Transformer and Mamba architectures and 
incorporates Vision Mamba and Cross-Shape Transformer 
components. This significantly enhances the extraction of semantic 
information related to polyp shapes and boundaries, improves the 
model’s ability to capture long-range dependencies, and 
accelerates convergence.

Design of the Cross-Shape Transformer: A Cross-Shape Self-
Attention mechanism is developed to replace the standard Self-
Attention in traditional Transformers, resulting in the Cross-Shape 
Transformer. This mechanism utilizes cross-shaped regions as tokens 
and allows for more effective perception of long-range dependencies 
compared to patch-based Self-Attention.

Design of the Mamba-Transformer-Merge: The Mamba-
Transformer-Merge module is introduced to effectively integrate 
features from both encoders. This module employs attention weighting 
across spatial and channel dimensions, maximizes the advantages of 
both Transformer and Mamba structures, and significantly enhances 
segmentation performance.

2 Related works

This part provides a thorough overview of the research 
advancements in colorectal polyp segmentation, encompassing a 
variety of methods ranging from traditional image processing 
approaches to the latest developments in machine learning and deep 
learning. Additionally, it emphasizes the historical development of 
these technologies. Special focus is placed on the role of Convolutional 
Neural Networks (CNNs) and Transformer models in boosting the 
accuracy and efficiency of segmentation. Through a systematic review 
of the progression of these techniques, this section outlines key 
technological innovations and methodological enhancements, 
offering readers a solid understanding of both the current trends and 
future directions in polyp segmentation.

2.1 Traditional algorithms for polyp 
segmentation

Traditional polyp segmentation methods can generally be divided 
into two categories: traditional image processing techniques and 
machine learning approaches. Traditional techniques include methods 
such as threshold-based segmentation, edge detection, and region-
based segmentation, which focus on identifying features like color, 
texture, and shape in the images. In contrast, machine learning 
approaches are more effective at extracting color and texture features, 
particularly in polyp segmentation tasks. For instance, Guo et  al. 
(2020) introduced a threshold model featuring a Threshold Map 
Supervised Generator (TMSG) that directs threshold learning to 
improve segmentation performance. Their dual-branch framework 
combines threshold learning with segmentation to enhance accuracy. 
Similarly, Ratheesh et  al. (2016) presented an innovative polyp 
detection algorithm that improves accuracy by merging two 
segmentation techniques: the first uses linear thresholding to detect 
saturated regions in HSV images, while the second applies Markov 
Random Fields for deeper segmentation. This algorithm, designed to 
extract color and texture features from endoscopic images, stands out 
for its simplicity, speed, and effectiveness, providing reliable assistance 
to radiologists in detecting polyps.

Despite the progress achieved with these methods, traditional 
colorectal polyp segmentation still depends heavily on operator 
expertise and manual feature selection. This reliance on human 
knowledge introduces variability and often leads to subpar 
segmentation results. To meet the growing demands for accuracy and 
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efficiency in real-world applications, developing more robust and 
automated segmentation methods is essential.

2.2 CNN for polyp segmentation

With the advent of Convolutional Neural Networks (CNNs), many 
CNN-based algorithms have been successfully adapted for general 
medical image segmentation and subsequently applied to polyp 
segmentation tasks. Prominent examples include U-Net by Ronneberger 
et al. (2015) and U-Net++ introduced by Zhou et al. (2018). Beyond 
these classic CNN models, some techniques have been developed 
specifically for polyp segmentation, such as ResU-Net by Diakogiannis 
et al. (2020) and ResU-Net++ by Jha et al. (2019). The ResU-Net family 
leverages residual learning to extract detailed micro-tissue and micro-
structure features from polyp images, demonstrating strong 
segmentation performance. Additionally, Fan et al. (2020) proposed the 
PraNet algorithm, which enhances segmentation by aggregating high-
level features through parallel sub-decoders and utilizing an inverse 
attention module to detect boundary cues, thereby improving the 
model’s ability to connect regions and boundaries. Banik et al. (2020) 
introduced Polyp-Net, a hybrid polyp segmentation network aimed at 
overcoming the limitations of traditional manual screening in colorectal 
cancer diagnosis. This model combines a Dual-Tree Wavelet Pooling 
Convolutional Neural Network (DT-WpCNN) with a Local Gradient 
Weighted Embedding Level Set Method (LGWe-LSM), which helps in 
extracting deep features, reducing false positives, and boosting 
segmentation accuracy. Sun et al. (2019) employed dilated convolutions 
to capture multi-scale high-level semantic features, simplifying the 
decoder’s feature fusion and reducing parameter count. Kim et  al. 
(2021) introduced the Uncertainty-Aware Context Attention Network 
(UACANet), which enhances the model’s focus on polyp regions by 
leveraging uncertainty-aware attention mechanisms. Similarly, Zhang 
et al. (2020) presented an adaptive context selection encoding-decoding 
framework to address the challenges posed by the varying shapes and 
sizes of polyps. Furthermore, Yeung et  al. (2021) developed Focus 
U-Net, a dual-attention-guided network that integrates spatial and 
channel attention into a Focus Gate module, improving the selective 
learning of polyp features.

While CNNs are highly effective at capturing local features due to 
their reliance on localized receptive fields, this very characteristic can limit 
their ability to capture long-range dependencies, restricting their use of 
global contextual information. As a result, CNNs may struggle to fully 
understand overall structures and intricate spatial relationships in polyp 
segmentation tasks, which can negatively impact model performance.

2.3 Transformer for polyp segmentation

Convolutional Neural Networks (CNNs) excel in polyp 
segmentation due to their strength in capturing local features. 
However, their ability to model global context and long-range 
dependencies is limited. In contrast, Transformers, with their self-
attention mechanisms, are better equipped to capture global features 
and address CNNs’ shortcomings. As research on Transformers for 
image segmentation has progressed, numerous models have 
incorporated Transformer components to improve both the accuracy 
and robustness of polyp segmentation.

For example, TransFuse (Zhang et al., 2021) combines the strengths 
of both CNNs and Transformers, enabling the capture of global 
dependencies alongside low-level spatial details. The model uses a 
BiFusion module to efficiently merge multi-layer features from both 
architectures. Similarly, Duc et al. (2022) introduced ColonFormer, an 
encoder-decoder model that captures long-range semantic information 
across branches. Its encoder utilizes a lightweight Transformer to model 
global semantic relationships at multiple scales, thus improving polyp 
representation. Sanderson and Matuszewski (2022) developed the 
FCN-Transformer architecture, which combines Transformers with 
fully convolutional networks (FCNs). The main branch leverages the 
Transformer for feature extraction, while an auxiliary convolutional 
branch compensates for limitations in full-size prediction. Features 
from both branches are fused to generate a complete segmentation map. 
Additionally, Park and Lee (2022) proposed SwinE-Net, which 
combines EfficientNet, a CNN-based model, with the Swin Transformer. 
This integration, alongside multiple dilated convolution blocks, helps 
generate detailed feature maps, enhancing feature discriminability while 
retaining global semantic information and low-level CNN features. 
Dong et al. (2021) introduced Polyp-PVT, incorporating three core 
modules—Cascaded Fusion Module (CFM), Camouflage Identification 
Module (CIM), and Similarity Aggregation Module (SAM)—to address 
feature transfer and fusion limitations in traditional CNN-based 
models, thus achieving effective multi-level feature extraction. 
Meanwhile, Xiao et al. (2024) designed CTNet to handle challenges like 
polyp camouflage and size variability, employing long-range 
dependencies and structured feature maps for precise localization of 
camouflaged polyps. Other Transformer-based models for polyp 
segmentation include TransNetR by Jha et al. (2024), TransResU-Net by 
Tomar et al. (2022), and META-Unet by Wu et al. (2023), UCTNet by 
Guo et al. (2024), Multi-scale dual-channel feature embedding decoder 
method by Agarwal et al. (2024), Compound attention embedded dual 
channel encoder-decoder method by Ghosal et al. (2024).

Despite their advantages, Transformer-based models face challenges 
like slower convergence rates and higher computational complexity. The 
self-attention mechanisms used by Transformers, while powerful, are 
computationally intensive, leading to increased time complexity when 
processing long sequences. Additionally, selecting an appropriate 
learning rate can be difficult. A low rate may cause slow convergence, 
whereas a high rate can destabilize training. Furthermore, Transformers 
are less effective at capturing local features, which can reduce 
convergence efficiency for certain tasks. Their performance is also 
highly sensitive to the quality and diversity of training data—insufficient 
or highly variable data can further prolong the convergence process.

2.4 Mamba for polyp segmentation

In comparison to Transformer models, the Mamba model achieves 
long-range dependency capabilities with faster convergence rates. 
U-Mamba (Ma et al., 2024) integrates the Mamba model with U-Net 
and enhances long-range dependency without increasing 
computational complexity. Ruan et al. (2024) introduced VM-UNet, 
which incorporates a Visual State Space (VSS) block as a fundamental 
module to capture extensive contextual information. Furthermore, 
Tang et al. (2024) proposed RM-UNet, which features a Residual Visual 
State Space (ResVSS) module and a Rotational State Space Model 
(SSM) module to mitigate the efficiency reduction when transferring 
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information from shallow to deep layers. The Rotational SSM module 
addresses the challenges of channel feature extraction within state space 
models. Fan et al. (2024) presented the SliceMamba model, which 
includes an efficient Bidirectional Slicing Scan (BSS) module that 
performs bidirectional feature slicing and applies different scanning 
mechanisms for slices with varying shapes. This design ensures the 
spatially adjacent features to remain close during the scanning 
sequence, so that segmentation performance is enhanced. Haggar and 
Boushey (2009) introduced HC-Mamba, which combines the Mamba 
model with convolutions for polyp segmentation, effectively captures 
long-range dependencies and maintains local information perception. 
Zhang et al. (2024) proposed HMT-UNet, which fuses the Mamba 
model with the Transformer model in the segmentation network.

Although the Mamba model effectively captures long-range 
dependencies and reduces computational complexity, its ability to do 
so is still inferior to that of Transformers.

2.5 Analysis of previous work

In spite of some technological advancements in colorectal polyp 
segmentation research, there are still lots of challenges. Traditional 
image processing methods, such as threshold segmentation and edge 
detection, rely heavily on the expertise and manual feature selection 
of operator, which can lead to inaccuracies and increased uncertainty. 
Therefore, more automated and stable segmentation techniques 
should be developed to enhance efficiency and precision.

Although Convolutional Neural Networks (CNNs) excel at local 
feature extraction, their limited receptive fields restrict their ability to 
model long-range dependencies and influence the understanding of 

overall image structure. In contrast, the Transformer architecture 
effectively captures global features. However, its computational 
complexity and slow convergence due to the self-attention mechanism 
hinder its application in medical image segmentation. Furthermore, 
Transformers have a relatively weak ability to extract local features, 
particularly when processing diverse medical image data, which is 
constrained by the quality and diversity of the training data.

Although the Mamba model converges faster than Transformers, 
it still falls short in modeling long-range dependencies and does not 
completely overcome the limitations of traditional methods. Thus, 
approaches that combine multi-scale feature extraction with attention 
mechanisms are a crucial research direction for improving the 
accuracy and robustness of polyp segmentation.

3 Method

This section introduces the proposed polyp segmentation 
network, VMDU-Net, along with its components, providing a detailed 
description of each component.

3.1 Overall architecture

The polyp segmentation network proposed in this paper, VMDU-
Net, is illustrated in Figure 2.

VMDU-Net employs a dual-encoder design and incorporates a 
Cross Shape Self-Attention (CSA) mechanism based on a cross-
window shape as tokens in one branch. The CSA is utilized to 
construct the Cross Shape Transformer (CST), which serves as the 

FIGURE 2

The overall architecture of VMDU-Net, including a dual encoder consisting of the Cross Shape Transformer and Vision Mamba for feature extraction, as 
well as the Mamba-Transformer-Merge (MTM) for merging features from the Transformer and Mamba.
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core structure of the first encoder. The second encoder integrates the 
Vision Mamba Encoder (VME) from Vision Mamba (Zhu et al., 2024) 
as its main component. Both encoders leverage a multi-scale feature 
extraction approach divided into five stages, in which each stage is 
downsampled to half the size of the previous stage through bilinear 
interpolation. At each stage, the features extracted by CST and VME 
are merged via the Mamba-Transformer-Merge (MTM) module. In 
addition to the dual-branch encoders, each level incorporates a 
lightweight Depthwise Separable Convolution layer as an auxiliary 
layer to provide bias-inducing information for both the Transformer 
and Mamba components. During the decoder phase, each decoder 
consists of standard convolution layers that receive three feature 
inputs: the output features from the MTM module, the output features 
from the previous decoder layer, and the output features from the 
Depthwise Separable Convolution layer.

Assuming the input image is denoted as × ×∈ H W 3I  , at the i-th 

stage, the feature map output by CST has a size of 
× ×

∈
i

H W C
2 2TiE  , the 

feature map output by VME has a size of 
× ×

∈
i

H W C
2 2MiE  , the output 

feature size from the Depthwise Separable Convolution layer is × ×
∈

i
H W C
2 2DiE  , and the output size of each decoder layer is 

× ×
∈

i
H W C
2 2iD  , { }∈iC 32,64,128,256,512 . Thus, the resulting 

segmentation map after processing through the VMDU-Net is 
denoted as × ×∈ H W 3O  .

In the encoder section, the Mamba model has fewer parameters 
and lower computational cost, allowing for faster convergence, while 
the Transformer converges more slowly. Therefore, Mamba plays a 
critical role in capturing long-range dependencies during the early 
stages of training. As training progresses, the Transformer further 
explores deeper long-range dependencies to enhance the model’s 
semantic perception capabilities.

3.2 Cross Shape Transformer encoder

In order to enable the network structure to capture strong long-
range dependencies, this study has designed the Cross Shape 

Transformer (CST) as the core component of the first encoder, as 
illustrated in Figure 3a. The CST consists of layer normalization, Cross 
Shape Self-Attention (CSA), and a multi-layer perceptron (MLP). In 
this architecture, each layer normalization module is equipped with 
residual connections to effectively mitigate the gradient vanishing 
problem during training. The MLP includes two layers and employs 
the GELU activation function to enhance nonlinear expressive 
capabilities of the model. The computational process of this 
Transformer can be represented as follows:

 ( )( )− −= +l l 1 l 1X CSA LN X Xˆ
 (1)

 ( )( )= +l l lX MLP LN X X̂ˆ
 

(2)

In Equations 1, 2, the output from the previous layer is 
represented, while the current layer’s output is denoted. The 
feature maps are fed into the long-range dependency perception 
module within this structure. In the design of the Cross Shape 
Transformer, a specialized cross-shaped window is constructed, 
which allows parallel self-attention calculations along its 
horizontal and vertical strips, and thus implements Cross Shape 
Self-Attention (CSA), as shown in Figure  3b. This approach 
enables the model to effectively capture relationships between 
more distant pixels in the image, so that its overall feature 
extraction capabilities are enhanced.

In the CSA, the input features are first linearly projected into K 
heads. Subsequently, each head performs local self-attention 
calculations on the horizontal or vertical strips. During the self-
attention computation on the horizontal strips, the feature X is evenly 
divided into multiple non-overlapping horizontal strips 
 … 

1 2 MX ,X , ,X , each containing ×sw W tokens, where sw represents 
the width of the strips. This width can be  adjusted as needed to 
balance learning capacity and computational complexity. Formally, 
let Q

kW , K
kW , V

kW  denote the projection dimensions for the query, key, 
and value of the k-th head, respectively. The output of the k-th head 
after performing self-attention calculations on the horizontal strips 
can be expressed as follows:

FIGURE 3

Cross Shape Transformer network structure: (a) shows the components of the Cross Shape Transformer, and (b) illustrates the cross-shaped region in 
the Cross Shape Self-Attention.
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 = … 

1 2 MX X ,X , ,X
 

(3)

 ( )=i 1 Q 2 K M V
k k k kY Att X W ,X W ,X W

 
(4)

 ( )  = … 
1 2 M

k k k kHAtt X Y ,Y , ,Y
 

(5)

In Equations 3, 4, and 5, ( )× ×∈ sw W CiX  , ∈M H / sw , = …i 1, ,M, 
and ×∈ kQ C d

kW  , ×∈ kK C d
kW  , ×∈ kV C d

kW   represent the query, 
key, and value projection matrices used by the k-th head, respectively. 
The term C/K represents how the feature dimensions are divided. For 
the self-attention computation on the vertical strips, a similar 
derivation is applied, with the output for the k-th head represented 
as ( )kVAtt X . In view of the characteristics of head and neck medical 
images, this study assumes no directional bias. In this study, all K 
heads are divided into two groups, each containing K / 2 heads, with 
K typically being an even number. The first group is in charge of 
performing self-attention computations on the horizontal strips, 
while the second group focuses on the vertical strips. Finally, the 
outputs from both groups are concatenated to form the complete 
feature representation.

 ( ) ( )= … O
1 kCSA X Concat head , ,head W  (6)

 

( )

( )

 = …= 
 = …


k
k

k

KHAtt X ,k 1, ,
2head

KVAtt X ,k , ,K
2  

(7)

In Equations 6, 7, CSA represents Cross-Shape Self-Attention, 
while OW  is the standard projection matrix used to convert the self-
attention output into the target output dimension, typically set to 
C. As mentioned earlier, a key concept in the design of this self-
attention mechanism is dividing the multi-head attention into several 
groups, each employing different self-attention operations. This 
grouping approach expands the attention field of each token within 
the Transformer module. This is contrasted with traditional self-
attention mechanisms (Vaswani, 2017), which apply a uniform self-
attention calculation across all heads.

3.3 Vision Mamba Encoder

As shown in Figure 4, the Vision Mamba Encoder and Vision 
Transformer Encoder share a similar architecture. Given that the 
original Mamba encoder is primarily designed for processing 1D 
sequences, it is essential to modify the visual tasks. Specifically, the 
input 2D image is first divided into small patches and flattened. Let 

× ×∈ H W Ct   represent the image patch, with each patch containing C 
channels and a size of ( )×∈

2J p C
px  . Here, P represents the Patch Size, 

and px  is linearly projected into a vector of size D. Position encoding 
( )+ ×∈ J 1 D

posE   is then added to these flattened patches, which are 
linearly projected into feature vectors of dimension D, with positional 
embedding incorporated. The entire process can be  described 
as follows:

 
1 2 J

0 cls p p p posT t ; t W; t W; ; t W; E = … +   
(8)

In Equation 8, J
pt  represents the J-th patch of the image, while 

( )×∈
2p C DW   denotes the projection matrix. The sequence −l 1T  is then 

passed through the l-th layer of the Vision Mamba Encoder to 
generate the output lT . Finally, the class token L

0t , after normalization, 
is fed into a multi-layer perceptron (MLP) head, and produces the 
final prediction P. The detailed process is as follows:

 ( )− −= +l l 1 l 1T Vim T T  (9)

 ( )= L
0f Norm t

 
(10)

 ( )=p MLP f  (11)

In Equations 9–11, VME refers to the Vision Mamba Encoder, 
Norm denotes the normalization layer, and MLP represents the multi-
layer perceptron.

Due to the fact that the traditional Mamba module is primarily 
designed for one-dimensional sequences, it struggles to effectively 
manage spatial information in visual tasks. To address this, the Vision 
Mamba Encoder incorporates a bidirectional sequence modeling 
strategy specifically optimized for visual data. In Algorithm 1, the 
Vision Mamba Encoder processes both forward and backward 
sequences, where each direction can employ distinct state-space 

FIGURE 4

Vision Mamba Encoder structure consists of two parts: one part is Tokenlize, which is charge of tokenizing the input image into patches, and the other 
part is the Vision Mamba Encoder, which captures long-range dependencies. Finally, Patch Merging is adopted to convert the vectors into feature 
maps.
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parameters. This approach allows the model to simultaneously attend 
to the beginning and end of the sequence, capturing both spatial and 
contextual details more effectively. Before sequence processing begins, 
the input data is standardized using layer normalization (LN) to 
stabilize the training process and enhance overall performance. 
Following this, the normalized sequence is linearly projected into two 
independent spaces, which are subsequently used for bidirectional 
processing and gating via separate linear layers. Afterward, each 
direction independently processes the sequence, using 1D 
convolutions to capture local dependencies and produce the output, 
x1. This output is then passed through three linear layers to compute 
three critical parameters: B, C, and Ä. Additionally, parameter D 
undergoes a softplus transformation to ensure it remains positive, as 
it is integral to the temporal scaling transformation. The modified Ä 
serves as a scaling factor for the evolution matrix B and the input 
matrix C, with Ä regulating the scaling of these matrices. After this 
transformation, the state-space model computes the final output. The 
forward and backward outputs are then combined using a gating 
mechanism, multiplied spatially, and summed to generate the final 
sequence output. This process involves linear layers and residual 
connections, ultimately constructing the final sequence. Finally, the 
Patch Merging module reconstructs the output into × ×∈ H W Ct  .

3.4 Mamba-Transformer-Merge

The Mamba-Transformer-Merge (MTM) module’s network 
structure combines feature maps obtained from the Cross Shape 
Transformer and the Vision Mamba Encoder at each stage. In the 
input representation, the red feature map signifies the output from the 

Cross Shape Transformer, whereas the green feature map represents 
the output from the Vision Mamba Encoder. Subsequently, the MTM 
module concatenates and fuses these two feature maps (see Figure 5).

Assuming the input feature of the MTM module is × ×∈ H W CX 
, the processing occurs through several steps. To improve long-range 
interactions and accurately capture spatial information, local attention 
is split into two branches: one that performs pooling in the H-direction 
and another that does so in the W-direction. The resulting vectors 
decompose the original feature map into horizontal and vertical 
components, with each coordinate encoding distinct pixel 
information. For the input X, the output in the H-direction across the 
C channels can be expressed as:

 
( ) ( )

≤ <
= ∑h

c c
0 m W

1Z h X h,m
W  

(12)

Output in the W-direction across the C channels can 
be expressed as:

 
( ) ( )

≤ <
= ∑w

c c
0 m H

1Z w X w,m
H  

(13)

In Equations 12, 13, the two feature maps are compressed into 
feature vectors of size ×∈ W C

hZ   and ×∈ H C
wZ  , respectively. 

When H = W, these two feature maps are concatenated to form a 
feature vector of size ×∈ W 2CZ  . Then, four fully connected branches 
are applied to reduce the dimensions of the concatenated vector to 1/4 
of the input channels, producing four feature maps { }∈i 1 2 3 4f f ,f ,f ,f . 

ALGORITHM 1

Vision Mamba Encoder process.
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After the four fully connected branches are formed, the resulting 
feature maps are concatenated to obtain a feature map 
of size ×∈ W 2C

oZ  .

 ( )×∈ =W 2C
o 1 2 3 4Z Concat f ,f ,f ,f  (14)

In Equation 14, this is then split into feature vectors ×∈ W C
hO   

and ×∈ H C
wO  , and matrix multiplication is performed on the two 

vectors to generate × ×∈ H W CO  .

 = ×h wO O O  (15)

In Equation 15, the decomposition along the W and H directions is 
inspired by the coordinate attention mechanism, allowing for spatial 
position weighting during the attention calculation. The use of four fully 
connected branches for dimensionality reduction and concatenation 
follows the concept of channel attention weighting. Drawing from SENetV2 
(Narayanan, 2023), multiple branches facilitate the perception of feature 
information from different dimensions.

4 Experiments and results

In this paper, the polyp segmentation network VMDU-Net is 
proposed. To evaluate its performance fairly, the study assesses 
VMDU-Net through five publicly available polyp datasets. This 
evaluation includes comparisons with classical algorithms, recent 
state-of-the-art (SOTA) methods, ablation studies, and visualization 
comparisons. In this section, these aspects will be elaborated.

4.1 Datasets

This study utilizes five publicly available datasets: Kvasir-SEG (Jha 
et al., 2019), CVC-ClinicDB (Silva et al., 2014), EndoScene (Bernal 
et  al., 2015), CVC-ColonDB (Tajbakhsh et  al., 2015), and ETIS 

(Vázquez et al., 2017), which are widely used to evaluate most of the 
current polyp segmentation models, such as Polyp-PVT (Dong et al., 
2021) and DEMF-Net (Cao et al., 2024).

Kvasir-SEG: The Kvasir-SEG dataset consists of 1,000 polyp images 
with ground truth annotations. The image resolutions vary from 
332 × 487 to 1,920 × 1,072 pixels, offering a wide range of image 
quality and detail.

CVC-ClinicDB: CVC-ClinicDB is an open-access dataset 
comprising 612 images extracted from 31 colonoscopy sequences, 
each with a resolution of 384 × 288 pixels. This dataset is mainly used 
for medical image segmentation, especially for polyp detection in 
colonoscopy videos.

EndoScene: EndoScene provides 912 annotated images created by 
merging CVC-ClinicDB and CVC300 datasets, offering a richer 
variety of samples for polyp segmentation research.

CVC-ColonDB: This dataset is based on 15 different colonoscopy 
sequences and contains 380 polyp images, all standardized to 
574 × 500 pixels with corresponding annotations.

ETIS: The ETIS dataset contains 192 polyp images and their 
annotations from 29 colonoscopy sequences, with each image 
uniformly sized at 1,225 × 996 pixels, ensuring consistency across 
the data.

During training, we combine the training sets of Kvasir-SEG and 
CVC-ClinicDB to create a new dataset for training the VMDU-Net 
model. For testing, the test sets from Kvasir-SEG and CVC-ClinicDB 
are used as in-distribution data, while EndoScene, CVC-ColonDB, 
and ETIS—datasets not involved in training—serve as out-of-
distribution test data. This approach allows for a comprehensive 
evaluation of the model’s generalization performance across different 
data distributions.

4.2 Implementation details

In this study, the VMDU-Net architecture is implemented 
alongside several comparative algorithms, including U-Net. The 
implementation uses PyTorch 1.10. To ensure an objective evaluation 

FIGURE 5

The Mamba-Transformer-Merge network structure features red and green feature maps in the input, representing the concatenation of outputs from 
the Cross Shape Transformer and the Vision Mamba Encoder, respectively. The input and output dimensions of the MTM module are the same.
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of VMDU-Net, all reproduced PyTorch network architectures are 
integrated into the MMsegmentation framework. This integration 
ensures consistency in input and output dimensions, preprocessing 
techniques, training epochs, loss functions, and metric calculations. 
To maintain fairness, the study does not utilize pretrained weights for 
any of the networks during training. Training occurs on four Quadro 
RTX 8000 GPUs, each equipped with 48GB of memory.

Various hyperparameters and data preprocessing strategies are 
employed throughout the experiments. Input images are resized to 
(384, 384) pixels and normalized to have a mean of 0 and a standard 
deviation of 1. Data augmentation techniques include random 
flipping, photometric distortion, padding, and random warping. The 
optimizer used is Adam, with a learning rate of 1e-4, and a polynomial 
learning rate schedule is applied with an exponent of 0.9. The model 
trains for 5,000 iterations with a batch size of 8.

The performance of the model is assessed using four key metrics: 
mIoU, Dice, Precision, and Recall. Mean Intersection over Union 
(mIoU) serves as a widely used metric for evaluating model accuracy 
in semantic segmentation tasks; it computes the ratio of the 
intersection to the union of the predicted and ground truth areas, then 
averages these results. The Dice coefficient, which ranges from 0 to 1, 
quantifies overlap, with values approaching 1 indicating a higher 
degree of similarity in segmentation outcomes. Precision measures the 
fraction of true positive samples among all samples predicted as 
positive, reflecting the model’s accuracy. Recall assesses the proportion 
of correctly predicted positive samples among all actual positive cases, 
representing the model’s sensitivity. Collectively, these four metrics 
provide a comprehensive evaluation of model performance.

In terms of the loss function, polyp segmentation is considered as 
a binary classification problem. Thus, Binary Cross-Entropy (BCE) 
loss is leveraged. Given that the gradient flow information at polyp 
boundaries is rich, Dice loss is also used to enhance the accuracy of 
positive and negative sample predictions. The total loss TotalL  is 
expressed as follows:

 ( ) ( )Total Bce DiceL L O,G O,GLα β= +
 (16)

In Equation 16, let O represent the segmentation map predicted 
by the network and G denote the ground truth labels. The BCE loss is 
denoted as BceL  and the Dice loss as DiceL . The parameters á  and â 
represent the weights for each loss component. In the experiments, 
this study validated that the optimal accuracy is achieved when á =â=1.

4.3 Comparative experiments

In the comparative experiments, this study implemented the 
VMDU-Net architecture and reproduced several benchmark 
algorithms, including U-Net (Ronneberger et al., 2015) and PraNet 
(Fan et  al., 2020), which are convolutional neural network-based 
medical image segmentation methods. At the same time, Transformer-
based algorithms such as TransUnet (Chen et al., 2021) and SwinUnet 
(Cao et al., 2022) were included. Additionally, Mamba model based 
U-Mamba (Ma et al., 2024) and VM-Unet (Guo et al., 2024) were 
selected. Algorithms such as Focus-Unet (Yeung et  al., 2021) and 
Polyp-PVT (Dong et  al., 2021) represent recent state-of-the-art 
(SOTA) methods in polyp segmentation. These algorithms were 

employed for an objective evaluation of VMDU-Unet, with results 
presented in Tables 1, 2.

In Table 1, the results of the comparative experiments conducted 
on the Kvasir-SEG and CVC-ClinicDB datasets are presented. Due to 
the larger data volumes in Kvasir-SEG and CVC-ClinicDB among the 
five datasets, this study employed four evaluation metrics: Dice, mIoU, 
Precision, and Recall.

4.3.1 Kvasir-SEG
In the CNN models, ResUnet and ResUnet++ showed 

improvements over U-Net. However, ResUnet++ had a Precision 
of 0.878 but a Recall of only 0.703, indicating an issue with 
insufficient recall. PraNet and Focus U-Net performed well 
among CNN models, with Focus U-Net achieving a Dice score of 
0.911. Transformer-based models, such as TransUnet, SwinUnet, 
and SwinE-Net, significantly outperformed traditional CNNs in 
terms of Dice and mIoU, in which SwinE-Net achieved the best 
Dice score of 0.926. Polyp-PVT also demonstrated strong 
performance, highlighting the potential of Transformers in 
segmenting complex structures. U-Mamba and VM-UNet, based 
on the Mamba architecture, showed competitive results, but 
VMDU-Net achieved the overall best performance with a Dice 
score of 0.938 and a mIoU of 0.871. Overall, Transformer models 
significantly outperformed CNNs on the Kvasir-SEG dataset, with 
VMDU-Net achieving the best results, demonstrating a Dice 
coefficient of 0.938, a mIoU of 0.871, a Precision of 0.933, and a 
Recall of 0.938.

4.3.2 CVC-ClinicDB
Within the CNN architectures, Focus U-Net and PraNet 

performed notably well, achieving Dice scores of 0.942 and 0.898, 
respectively, indicating strong segmentation capabilities. In contrast, 
U-Net++ performed poorly, with a Dice score of only 0.716, reflecting 
its limitations in handling complex structures. Transformer-based 
models, including DEMF-Net, TransUnet, and Polyp-PVT, also 
exhibited competitiveness. DEMF-Net achieved a Dice score of 0.958, 
a mIoU of 0.917, as well as Precision and Recall scores of 0.965 and 
0.951, respectively, demonstrating strong segmentation accuracy and 
recall. VMDU-Net reached a Dice coefficient of 0.964, a mIoU of 
0.932, and Precision and Recall scores of 0.971 and 0.959, respectively, 
showcasing an excellent balance between accuracy and recall. That is 
to say, the model accurately identifies most polyps, effectively captures 
additional polyp regions, and significantly enhances 
segmentation quality.

4.3.3 CVC-ColonDB
In the CNN architectures, Focus U-Net and PraNet  also 

performed well, achieving Dice scores of 0.911 and 0.897, respectively, 
with mIoU values exceeding 0.840, demonstrating their effectiveness 
in segmenting complex structures. In contrast, U-Net++ performed 
relatively poorly, with a Dice score of only 0.723, indicating its 
limitations in handling colorectal polyp segmentation tasks. 
Transformer-based models, such as TransUnet, SwinUnet, and 
Polyp-PVT, exhibited strong performance. Particularly, TransUnet 
demonstrated excellent segmentation results with a Dice score of 
0.917 and an mIoU of 0.951. These models optimize the feature 
extraction process, enhancing their ability to capture fine details. On 
the CVC-ColonDB dataset, VMDU-Net maintained the best 
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performanceand achieved a Dice coefficient of 0.938 as well as an 
mIoU of 0.871.

4.3.4 ETIS
U-Net and U-Net++ showed weak performance, with Dice scores 

of only 0.401 and 0.297, reflecting their limitations on this dataset. 
ResUnet and ResUnet++ had even lower results, with Dice coefficients 
of 0.152 and 0.121, indicating significant shortcomings in extracting 
subtle structures. Among the better-performing models, DEMF-Net 
achieved a Dice score of 0.680 and a mIoU of 0.603. In addition, 
PraNet, Polyp-PVT, and VM-UNet also yielded relatively good results, 
with Dice scores of 0.628, 0.670, and 0.675, respectively. These models 
exhibited relatively strong segmentation capabilities, but overall 
performance remained below that of VMDU-Net, which achieved a 
Dice coefficient of 0.715 and a mIoU of 0.634.

4.3.5 EndoScene
U-Net++ performed poorly, with a Dice score of only 0.428, 

reflecting its inadequacies in handling complex polyp structures. Even 
though ResUnet++ achieved a Dice score of 0.834, it still fell short 
compared to more advanced models. Among other models, 
DEMF-Net and VM-UNet  also presented strong performance, 
achieving Dice scores of 0.908 and 0.898, respectively, indicating 
robust segmentation capabilities. PraNet attained a Dice score of 
0.871, demonstrating its effectiveness in detail extraction. VMDU-Net 
excelled with a Dice coefficient of 0.926 and an mIoU of 0.886.

VMDU-Net achieved excellent results across all three datasets, 
and attained the highest scores in Dice and mIoU. It demonstrated 
strong capabilities in handling complex intestinal structures, and 
provided an effective solution for the automatic segmentation of 
colorectal polyps.

TABLE 1 The comparison experiment results on the Kvasir-SEG dataset and CVC-ClinicDB use four metrics: Dice, mIoU, Precision, and Recall.

Type Model
Kvasir-SEG CVC-ClinicDB

Dice mIoU Precision Recall Dice mIoU Precision Recall

CNN

U-Net 

(Ronneberger 

et al., 2015)

0.812 0.721 0.853 0.831 0.834 0.751 0.882 0.857

U-Net++ (Zhou 

et al., 2018)

0.723 0.637 0.832 0.764 0.716 0.607 0.819 0.771

ResUnet 

(Diakogiannis 

et al., 2020)

0.835 0.745 0.865 0.815 0.814 0.785 0.854 0.793

ResUnet++ (Jha 

et al., 2019)

0.811 0.792 0.878 0.703 0.799 0.791 0.879 0.705

PraNet (Fan et al., 

2020)

0.897 0.844 0.907 0.914 0.898 0.843 0.963 0.913

Focus U-Net 

(Yeung et al., 

2021)

0.911 0.847 0.913 0.915 0.942 0.895 0.953 0.933

Transformer

TransUnet (Chen 

et al., 2021)

0.917 0.951 0.936 0.892 0.938 0.889 0.927 0.926

SwinUnet (Cao 

et al., 2022)

0.915 0.864 0.928 0.912 0.914 0.877 0.929 0.889

SwinE-Net (Park 

and Lee, 2022)

0.926 0.862 0.924 0.928 0.925 0.914 0.922 0.919

Polyp-PVT 

(Dong et al., 

2021)

0.918 0.868 0.913 0.896 0.933 0.887 0.935 0.911

DEMF-Net (Cao 

et al., 2024)

0.913 0.865 0.911 0.935 0.958 0.917 0.965 0.951

Mamba

U-Mamba (Gu 

and Dao, 2023)

0.906 0.857 0.913 0.918 0.926 0.905 0.932 0.918

VM-UNet (Ruan 

et al., 2024)

0.912 0.852 0.922 0.913 0.938 0.904 0.941 0.913

Polpy-Mamba 

(Zhu et al., 2025)

0.915 0.853 0.925 0.914 0.940 0.911 0.944 0.920

VMDU-Net 0.938 0.871 0.933 0.938 0.964 0.932 0.971 0.959

The bold values represent the highest metrics achieved by the algorithms used in this study.
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As shown in Table  3, we  compare VMDU-Net with several 
existing algorithms in terms of parameter count and performance. The 
results show that VMDU-Net significantly reduces both computational 
cost and inference time compared to SOTA models such as Focus 
U-Net, Polyp-PVT, and DEMF-Net, achieving an impressive inference 
speed of 85.8 ms per image. However, it still falls short of pure 
Mamba-based architectures, mainly due to the additional 
computational overhead  introduced by the dual-encoder design. 
Future work will focus on optimizing this structure to further 
improve efficiency.

4.4 Ablation experiment

In VMDU-Net, four components were utilized, including the 
Vision Mamba Encoder (VM), Cross Shape Transformer Encoder 
(CST), Mamba-Transformer-Merge (MTM), and Depthwise Separable 
Convolution Encoder (DWConv). To further investigate the 
contribution of each component, ablation experiments were 

conducted on the Kvasir-SEG and CVC-ClinicDB datasets. The results 
are shown in Tables 4, 5.

As indicated by the experimental results on the Kvasir-SEG 
dataset, when only the Vision Mamba Encoder (VM) is used, the 
model achieves a Dice score of 0.893 and a mIoU of 0.832, 
demonstrating its effectiveness in capturing long-range dependencies. 
However, with the addition of the Cross Shape Transformer Encoder 
(CST), performance significantly improves to a Dice score of 0.915 
and an mIoU of 0.851, highlighting crucial role of CST in enhancing 
feature extraction capabilities. As revealed by further analysis, the 
combination of VM and CST leads to an even greater performance 
boost, with the Dice score reaching 0.922, indicating that the synergy 
between these two encoders facilitates a more comprehensive capture 
of image details. Besides, the introduction of the Mamba-Transformer-
Merge (MTM) module enables more effective fusion of different 
feature maps, consistently enhancing performance across various 
experimental setups. Ultimately, when all components are activated, 
VMDU-Net achieves a Dice score of 0.938 and a mIoU of 0.871 on the 
Kvasir-SEG dataset, showcasing the effective collaboration of all 

TABLE 2 The comparison experiment results on the CVC-ColonDB dataset and ETIS and EndoScence datasets use two metrics: Dice, mIoU.

Type Model
CVC-ColonDB ETIS EndoScence

Dice mIoU Dice mIoU Dice mIoU

CNN

U-Net (Ronneberger 

et al., 2015)

0.812 0.721 0.401 0.340 0.627 0.535

U-Net++ (Zhou et al., 

2018)

0.723 0.637 0.297 0.247 0.428 0.357

ResUnet (Diakogiannis 

et al., 2020)

0.835 0.745 0.152 0.089 0.591 0.511

ResUnet++ (Jha et al., 

2019)

0.811 0.792 0.121 0.081 0.834 0.777

PraNet (Fan et al., 

2020)

0.897 0.844 0.628 0.567 0.871 0.791

Focus U-Net (Yeung 

et al., 2021)

0.911 0.847 0.590 0.528 0.760 0.688

Transformer

TransUnet (Chen et al., 

2021)

0.917 0.951 0.593 0.551 0.754 0.682

SwinUnet (Cao et al., 

2022)

0.915 0.864 0.570 0.530 0.745 0.686

SwinE-Net (Park and 

Lee, 2022)

0.926 0.862 0.590 0.508 0.762 0.695

Polyp-PVT (Dong 

et al., 2021)

0.918 0.868 0.670 0.590 0.787 0.708

DEMF-Net (Cao et al., 

2024)

0.913 0.865 0.680 0.603 0.908 0.882

Mamba

U-Mamba (Gu and 

Dao, 2023)

0.906 0.857 0.614 0.545 0.856 0.804

VM-UNet (Ruan et al., 

2024)

0.912 0.852 0.675 0.582 0.898 0.823

Polpy-Mamba (Zhu 

et al., 2025)

0.913 0.866 0.666 0.601 0.899 0.825

VMDU-Net 0.938 0.871 0.715 0.634 0.926 0.886

The bold values represent the highest metrics achieved by the algorithms used in this study.

https://doi.org/10.3389/frai.2025.1557508
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Li et al. 10.3389/frai.2025.1557508

Frontiers in Artificial Intelligence 13 frontiersin.org

modules. Overall, the ablation experiments not only validate the 
complementarity and necessity of the components in the VMDU-Net 
design, but also provide a robust performance foundation for polyp 
segmentation tasks.

In the ablation experiments on the CVC-ClinicDB dataset, the 
model achieved a Dice score of 0.903 and an mIoU of 0.895 when only 

the Vision Mamba Encoder (VM) was used, demonstrating its 
effectiveness in capturing long-range dependencies. However, with the 
introduction of the Cross Shape Transformer Encoder (CST), the Dice 
score improved to 0.917, despite slight decrease of the mIoU to 0.857, 
indicating CST’s exceptional performance in enhancing the semantic 
information extraction of features. Furthermore, when Depthwise 

TABLE 3 The performance comparison table is based on input images of size 256 × 256, tested on an RTX 3090 GPU, and reports the number of 
parameters, FLOPs, and inference time.

Method FLOPs (GFLOPs) Parameters (M) Inference time (ms)

U-Net (Ronneberger et al., 2015) 29.8 31.5 18.2

U-Net++ (Zhou et al., 2018) 38.5 42.0 35.4

PraNet (Fan et al., 2020) 119.6 142.2 81.5

Focus U-Net (Yeung et al., 2021) 113.8 127.7 98.6

TransUnet (Chen et al., 2021) 162.4 105.3 139.3

SwinUnet (Cao et al., 2022) 123.5 62.0 90.0

Polyp-PVT (Dong et al., 2021) 245.9 227.7 221.7

DEMF-Net (Cao et al., 2024) 139.3 145.8 121.2

U-Mamba (Gu and Dao, 2023) 58.7 45.1 45.6

VM-UNet (Ruan et al., 2024) 61.2 44.3 41.3

VMDU-Net 135.1 102.2 85.8

TABLE 4 The ablation experiment results on the Kvasir-SEG dataset evaluate four metrics: Dice, mIoU, Precision, and Recall.

Index
Setting Kvasir-SEG

VM CST MTM DWConv Dice mIoU Precision Recall

1 ✓ × × × 0.893 0.832 0.898 0.901

2 × ✓ × × 0.915 0.851 0.910 0.916

3 ✓ × × ✓ 0.905 0.841 0.909 0.913

4 × ✓ × ✓ 0.918 0.854 0.915 0.920

5 ✓ ✓ × × 0.922 0.855 0.916 0.921

6 ✓ ✓ × ✓ 0.924 0.860 0.918 0.923

7 ✓ ✓ ✓ × 0.925 0.862 0.920 0.926

8 ✓ ✓ ✓ ✓ 0.938 0.871 0.933 0.938

VM represents Vision Mamba Encoder, CST represents Cross Shape Transformer Encoder, MTM represents Mamba-Transformer-Merge, and DWConv represents Depthwise Separable 
Convolution Encoder. The bold values represent the highest metrics achieved by the algorithms used in this study.

TABLE 5 The ablation experiment results on the CVC-ClinicDB dataset evaluate four metrics: Dice, mIoU, Precision, and Recall.

Index
Setting CVC-ClinicDB

VM CST MTM DWConv Dice mIoU Precision Recall

1 ✓ × × × 0.903 0.895 0.927 0.902

2 × ✓ × × 0.917 0.857 0.912 0.915

3 ✓ × × ✓ 0.914 0.852 0.908 0.911

4 × ✓ × ✓✓ 0.926 0.860 0.918 0.920

5 ✓ ✓ × × 0.931 0.871 0.924 0.925

6 ✓ ✓ × ✓ 0.934 0.874 0.927 0.928

7 ✓ ✓ ✓ × 0.958 0.925 0.965 0.952

8 ✓ ✓ ✓ ✓ 0.964 0.932 0.971 0.959

VM represents Vision Mamba Encoder, CST represents Cross Shape Transformer Encoder, MTM represents Mamba-Transformer-Merge, and DWConv represents Depthwise Separable 
Convolution Encoder. The bold values represent the highest metrics achieved by the algorithms used in this study.
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Separable Convolution (DWConv) was combined with CST, the Dice 
score reached 0.926, signifying an enhancement in the model’s local 
information processing ability. When both VM and CST were 
employed, the model’s performance significantly improved, achieving 
a Dice score of 0.931 and a mIoU of 0.871. Ultimately, when all 
components were activated, VMDU-Net attained a Dice score of 0.964 
and a mIoU of 0.932 on the CVC-ClinicDB dataset, demonstrating 
optimal performance. Evidently, the synergistic effect of all 
components greatly enhances the model’s segmentation capability for 
complex structures, validating the importance and complementarity 
of each module in the design.

The hyperparameter sw in the CSA module affects the model’s 
accuracy. In Table 6, we conduct an ablation study on sw in the CSA 
module. The model achieves the highest accuracy when sw = 3. A 
small sw makes it difficult to capture global information, while a large 
sw slows down convergence. Therefore, sw is set to 3.

As shown in Figure 6, the loss curves were visualized to investigate 
the impact of the Vision Mamba Encoder (VM) and Depthwise 
Separable Convolution (DWConv) on model convergence. Without 
the use of DWConv and VM, the model exhibited the slowest 
convergence rate. After introduction of the Mamba model, the 
convergence speed improved, and the loss value significantly 
decreased. When prior feature information was provided through 
Depthwise Separable Convolution, the model achieved the fastest 
convergence rate.

4.5 Visualization

In order to analyze VMDU-Net from a subjective perspective, this 
study presented segmentation results of various algorithms on the 
Kvasir-SEG and CVC-ClinicDB datasets in Figures 7, 8, respectively. 
These images not only reveal the performance differences among the 
algorithms in the polyp segmentation task but also highlight their 
respective strengths and weaknesses.

As shown in Figures 7, 8, convolutional neural network-based 
algorithms, such as U-Net and ResUnet, exhibit common issues of 
missed and false detections, triggering noticeable holes or artifacts in 
the segmentation results and overall poor performance. This not only 
affects the accuracy of the results but also diminishes the reliability of 
the models in practical applications. In contrast, Transformer-based 
algorithms and our Mamba algorithm demonstrate strong semantic 
consistency in segmentation tasks. These models can more effectively 
capture complex structures and details within images, significantly 
reduce both missed and false detections, and thus ensure the integrity 
and accuracy of the segmentation results. Notably, our proposed 
VMDU-Net yields segmentation results closest to the ground truth 
(GT), highlighting its superiority in handling complex images and 
extracting relevant features. Based on comparative analysis, this study 
has clearly observed the exceptional performance of VMDU-Net in 
polyp segmentation, and validated its potential and application value 
in medical image segmentation.

TABLE 6 Ablation experiment of the hyperparameter sw in the CSA module, with sw set to 1, 3, 5, and 7.

sw
Kvasir-SEG CVC-ClinicDB

Dice mIoU Precision Recall Dice mIoU Precision Recall

1 0.920 0.850 0.915 0.915 0.950 0.910 0.960 0.950

3 0.938 0.871 0.933 0.938 0.964 0.932 0.971 0.959

5 0.932 0.864 0.927 0.933 0.960 0.924 0.965 0.953

7 0.928 0.860 0.923 0.927 0.957 0.919 0.962 0.950

FIGURE 6

Ablation experiment loss curve, in which the horizontal axis represents iteration and the vertical axis represents Loss value. “No DWConv” means that 
Depthwise Separable Convolution is not used, and “No VM” means that the Vision Mamba Encoder is not used.
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In Figure 9, we fuse the segmentation predictions of VMDU-Net 
with the original images and their corresponding ground truth for 
visualization. The segmentation predictions of VMDU-Net closely 
match the polyp regions. Our proposed VMDU-Net generates results 
that align most closely with the GT, especially in fitting edge details, 
highlighting its advantages in handling polyp images and extracting 
relevant features.

5 Discussion

5.1 Finding

Through effective use of a dual-encoder architecture and a feature 
fusion mechanism, the proposed VMDU-Net network demonstrates 
outstanding performance in polyp segmentation tasks. In addition, 
VMDU-Net combines the Cross Shape Transformer (CST) with the 
Vision Mamba Encoder (VME) to capture long-range dependencies 

effectively and enhance the semantic understanding of the model. The 
innovative aspect of this design lies in CST’s utilization of a Cross Shape 
Self-Attention mechanism (CSA) for more efficient feature extraction, 
while VME focuses on capturing local features. The combination of 
these components enables the model to excel in handling complex 
medical images.

5.1.1 Balancing long-range dependencies and 
local features

The dual-encoder design of VMDU-Net  allows the model to 
rapidly capture long-range dependencies between pixels in the early 
stages of training. In the later stages, CST further explores deeper 
long-range dependencies. This process helps the model understand 
the global structure of images and maintain high-precision 
segmentation in  local regions. The effectiveness of this structural 
design is reflected in the experimental results, where VMDU-Net 
outperforms existing mainstream segmentation algorithms across 
multiple public datasets.

FIGURE 7

Partial visualization of segmentation results on the Kvasir-SEG dataset.

FIGURE 8

Partial visualization of segmentation results on the CVC-ClinicDB dataset.
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5.1.2 Effectiveness of feature fusion
The Mamba-Transformer-Merge (MTM) module plays a critical 

role in feature fusion. By effectively integrating features from CST and 
VME, the MTM module enhances the feature representation 
capabilities of the model and improves segmentation accuracy. As 
indicated by the experimental results, compared to traditional feature 
fusion methods, the MTM module better captures spatial location 
information in images, thereby enhancing segmentation precision 
and robustness.

5.1.3 Comparison with existing methods
In comparison to other mainstream segmentation networks 

such as U-Net and ResUnet, VMDU-Net exhibits higher 
segmentation accuracy across multiple datasets. Notably, 
VMDU-Net demonstrates superior performance in handling 
complex polyp images, primarily due to its unique encoder 
design and feature fusion strategy. By incorporating Depthwise 
Separable Convolution as an auxiliary module during training, 
the model provides local bias information, which further 
improves convergence speed and segmentation effectiveness.

5.2 Limitations analysis

Although the promising results indicate that VMDU-Net 
performs well in polyp segmentation tasks, there are several 
limitations. First, while the datasets used (Kvasir-SEG, 
CVC-ClinicDB, EndoScene, CVC-ColonDB, and ETIS) are 
representative, they may vary in image quality, size, and annotation 
standards, potentially influencing the generalization ability of the 
model. Additionally, sample imbalance in certain datasets could 
hinder the model’s learning effectiveness for specific types 
of polyps.

Despite that VMDU-Net has achieved favorable performance, its 
complexity and computational demands may restrict its application in 

real clinical settings, particularly in real-time medical image analysis. 
Furthermore, model performance is highly dependent on 
hyperparameter selection, and optimal combinations may not always 
be identified. The findings of this study are primarily based on internal 
evaluations, but lack validation with real clinical data, limiting the 
practical applicability of the model.

Lastly, though all datasets have been annotated by experts, 
subjectivity among different annotators may lead to inconsistencies in 
labeling, further influencing the model training and evaluation. 
Therefore, future research should focus on issues such as dataset 
diversity, sample balance, model simplification, and external validation 
so as to enhance the clinical applicability of the model.

6 Conclusion

To conclude, this study presents a novel dual-encoder multi-
scale feature fusion network, VMDU-Net, for the automated 
segmentation of colorectal polyps. By integrating the Vision 
Mamba component with the Cross-Shape Transformer, 
VMDU-Net effectively captures long-range dependencies and 
complex features associated with polyps. Experimental results 
indicate that our approach surpasses current state-of-the-art 
(SOTA) algorithms on both the Kvasir-SEG and CVC-ClinicDB 
datasets, attaining Dice coefficients of 0.934 and 0.951, respectively. 
The efficiency and accuracy of VMDU-Net in polyp segmentation 
significantly enhance the reliability of automated processes and 
provide strong technical support for the early detection and 
prevention of colorectal cancer. Furthermore, the Cross-Shape 
Transformer is specifically designed to utilize cross-shaped regions 
as tokens, effectively overcoming the limitations of conventional 
self-attention mechanisms in modeling long-range dependencies. 
Additionally, the Mamba-Transformer-Merge module contributes 
to improved segmentation accuracy by merging features from 
both encoders.

FIGURE 9

The prediction result of VMDU-Net. (a) Ground truth. (b) Prediction result of VMDU-Net.
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Future research can explore the application potential of 
VMDU-Net in other medical image segmentation tasks and 
continuously optimize the model architecture to address more 
complex clinical scenarios. Overall, VMDU-Net provides an 
innovative solution in the field of polyp segmentation and 
demonstrates significant clinical application value.
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