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Introduction: Chronic pain affects approximately 30% of the global population, 
posing a significant public health challenge. Despite their widespread use, 
traditional pharmacological treatments, such as opioids and NSAIDs, often 
fail to deliver adequate, long-term relief while exposing patients to risks of 
addiction and adverse side effects. Given these limitations, medical cannabis 
has emerged as a promising therapeutic alternative with both analgesic and 
anti-inflammatory properties. However, its clinical efficacy is hindered by high 
interindividual variability in treatment response and elevated dropout rates.

Methods: A comprehensive dataset integrating genetic, clinical, and 
pharmacological information was compiled from 542 Caucasian patients 
undergoing cannabis-based treatment for chronic pain. A machine learning (ML) 
model was developed and validated to predict therapy dropout. To identify the 
most influential factors driving dropout, SHapley Additive exPlanations (SHAP) 
analysis was performed.

Results: The random forest classifier demonstrated robust performance, 
achieving a mean accuracy of 80% and a maximum of 86%, with an AUC of 0.86. 
SHAP analysis revealed that high final VAS scores and elevated THC dosages 
were the most significant predictors of dropout, both strongly correlated with 
an increased likelihood of discontinuation. In contrast, baseline therapeutic 
benefits, CBD dosages, and the CC genotype of the rs1049353 polymorphism 
in the CNR1 gene were associated with improved adherence.

Discussion: Our findings highlight the potential of ML and pharmacogenetics 
to personalize cannabis-based therapies, improving adherence and enabling 
more precise management of chronic pain. This research paves the way for the 
development of tailored therapeutic strategies that maximize the benefits of 
medical cannabis while minimizing its side effects.

KEYWORDS

dropout, cannabis, therapy, machine learning, pain treatment, pharmacogenetics, 
precision medicine

OPEN ACCESS

EDITED BY

Pengfei Zhang,  
Chengdu University of Traditional Chinese 
Medicine, China

REVIEWED BY

Junlong Cheng,  
Sichuan University, China
Jingxin Liu,  
Chongqing University of Science and 
Technology, China

*CORRESPONDENCE

Annalisa Santucci  
 annalisa.santucci@unisi.it

†These authors have contributed equally to 
this work

RECEIVED 09 January 2025
ACCEPTED 10 February 2025
PUBLISHED 20 February 2025

CITATION

Visibelli A, Finetti R, Roncaglia B, Poli P, 
Spiga O and Santucci A (2025) Predicting 
therapy dropout in chronic pain 
management: a machine learning approach 
to cannabis treatment.
Front. Artif. Intell. 8:1557894.
doi: 10.3389/frai.2025.1557894

COPYRIGHT

© 2025 Visibelli, Finetti, Roncaglia, Poli, Spiga 
and Santucci. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 20 February 2025
DOI 10.3389/frai.2025.1557894

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1557894&domain=pdf&date_stamp=2025-02-20
https://www.frontiersin.org/articles/10.3389/frai.2025.1557894/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1557894/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1557894/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1557894/full
mailto:annalisa.santucci@unisi.it
https://doi.org/10.3389/frai.2025.1557894
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1557894


Visibelli et al. 10.3389/frai.2025.1557894

Frontiers in Artificial Intelligence 02 frontiersin.org

1 Introduction

Chronic pain, defined by the International Association for the 
Study of Pain (IASP) as an unpleasant sensory and emotional experience 
linked to actual or potential tissue damage (Raja et al., 2020), affects an 
estimated 30% of individuals globally, imposing profound personal and 
societal burdens (Dahlhamer et al., 2018). Unlike acute pain, which 
serves as a protective mechanism, chronic pain persists beyond 
3 months, often becoming a disease (Treede et al., 2019). Traditional 
pharmacological treatments for chronic pain, such as opioids and 
NSAIDs, are usually inadequate due to incomplete pain relief, risks of 
dependency (Institute of Medicine, Board on Health Sciences Policy, 
Committee on Advancing Pain Research, Care, and Education, 2011), 
and adverse side effects. These limitations have driven increasing 
interest in alternative therapies, including medical cannabis, which 
offers potential analgesic and anti-inflammatory benefits (Vučković 
et al., 2018). Despite its growing use, the clinical application of cannabis 
remains hindered by substantial inter-individual variability in outcomes 
(Wang et al., 2023; Tait et al., 2023). This variability underscores the 
challenges posed by the pharmacokinetics and pharmacodynamics of 
cannabis, which are shaped by its rich phyto-complex. Cannabis 
contains over 100 cannabinoids distributed across 18 chemical classes, 
including terpenes, flavonoids, and alkaloids, with their concentrations 
influenced by factors such as extraction methods and product brands 
(Foster et al., 2019). Once absorbed, cannabinoids undergo extensive 
hydroxylation by cytochrome P450 enzymes, followed by 
glucuronidation and excretion (Chayasirisobhon, 2019) before their 
active forms bind to CB1 and CB2 receptors to mediate pharmacological 
effects. Furthermore, these cannabinoids interact with other compounds 
in the phyto-complex, resulting in potential synergistic and entourage 
impact (Anand et al., 2021). This complexity and individual biological 
diversity contribute to the wide variability in clinical outcomes. 
Pharmacogenetics, the study of how genetic differences influence drug 
response, has emerged as a promising tool for understanding and 
predicting patient-specific outcomes in cannabis therapy (Papastergiou 
et al., 2020). Research has identified polymorphisms in genes such as 
ABCB1, TRPV1, and UGT2B7 as potential determinants of cannabis 
efficacy and tolerability (Poli et al., 2022). These genetic markers could 
serve as predictors for identifying patients who are more likely to benefit 
from cannabis therapy or who are at risk of dropping out due to poor 
outcomes or adverse effects. While pharmacogenetics holds promise for 
personalizing cannabis therapy, translating genetic insights into clinical 
practice requires robust analytical methods capable of handling 
complex and multidimensional data. Machine learning (ML) has 
emerged as a transformative tool in this context, offering advanced 
capabilities to analyze large datasets and uncover patterns that might 
elude traditional statistical approaches (Delgado et  al., 2018). ML 
models can integrate genetic, clinical, and pharmacological data to 
predict patient-specific outcomes, optimize therapeutic strategies, and 
ultimately improve the quality of care (Frusciante et al., 2022; Guerranti 
et al., 2021). In the context of chronic pain management, ML has the 
potential to identify key predictors of therapy success and dropout, 
facilitating a more targeted and efficient approach to treatment (Visibelli 
et al., 2023). Despite the potential of ML in healthcare, there is still a 
critical gap in its application to predicting dropout outcomes in chronic 
pain patients undergoing cannabis therapy. Most existing studies 
concentrate on treatment efficacy or side effect profiles (McMahon 
et  al., 2023) without addressing the factors that drive patients to 

discontinue therapy. Understanding and mitigating dropout is crucial 
not only for enhancing patient outcomes but also for optimizing the 
allocation of healthcare resources and advancing precision medicine. In 
this study, we aim to address this gap by developing an ML model to 
predict therapy dropout in chronic pain patients treated with cannabis. 
Using a dataset comprising genetic, clinical, and pharmacological 
information, we investigate the interplay between pharmacogenetics 
and treatment outcomes to identify key predictors of dropout. This 
research seeks to advance our understanding of patient retention in 
cannabis therapy and to pave the way for personalized interventions 
that improve treatment adherence and efficacy. The workflow of this 
study is summarized in Figure 1.

2 Materials and methods

2.1 Data source

Between November 2018 and September 2020, 565 Caucasian 
patients suffering from chronic pain and with inadequate response to 
standard therapies were enrolled in a study conducted by Azienda 
USL Toscana Sud-Est at San Donato Hospital (Department of Pain 
Medicine and Palliative Care, Arezzo, Italy), as described in previous 
work (Poli et al., 2022). Participants provided written consent for 
their genotyping and therapeutic cannabis treatment. The study was 
approved by the Tuscan Regional Ethical Committee (No. 1287) on 
May 15, 2018, the study adhered to the 2008 revision of the Helsinki 
Declaration. The study design included an initial visit for diagnosis 
and prescription of medical cannabis, followed by four quarterly 
follow-ups to adjust therapy based on patient responses. The cannabis 
preparations used were derived from multiple varieties, each with 
specific THC and CBD ratios. The initial dose of THC prescribed was 
standardized at 5 mg per day, regardless of the cannabis variety, and 
extraction was performed according to the SIFAP (Italian Association 
of Compound Pharmacists) protocol under the regulations of the 
Italian Ministry of Health. During the visits, pain intensity was 
assessed using the Visual Analogue Scale (VAS) (Begum and Hossain, 
2019), which rates pain intensity from 0 (indicating no pain) to 10 
(indicating the worst pain). Based on prior studies, VAS scores were 
divided as <3.4 for mild pain, 3.5–7.4 for moderate pain, and >7.5 for 
severe pain in patients with chronic musculoskeletal pain (Boonstra 
et al., 2014). Additionally, the Hospital Anxiety and Depression Scale 
(HADS) (Zigmond and Snaith, 1983) was used to monitor 
psychological well-being. Patients who discontinued treatment were 
also recorded, allowing detailed tracking of therapeutic response and 
tolerability across the cohort. In addition, patients were genotyped 
for eight polymorphisms associated with drug metabolism, opioid 
pharmacology, and pain perception, based on previous research (Poli 
et al., 2022) linking these genes to cannabis effects. The genes selected 
were MDR1/ABCB1 (rs1045642), TRPV1 (rs8065080), UGT2B7 
(rs7438135), CYP3A4 (rs2242480), CNR1 (rs1049353), COMT 
(rs4680), FAAH (rs2295632), and CYP3A4 (rs35599367).

2.2 Integrated clinical and treatment dataset

A comprehensive dataset of 542 anonymized individuals, each 
assigned a unique secure identifier, was developed to provide an in-depth 
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patient profile by integrating clinical, genetic, and pharmacological data. 
Each patient is characterized by two primary categories of information: 
clinical characteristics and treatment-related information. The clinical 
profile encompasses variables such as age (ranging between 10 and 
97 years), gender (male/female), the specific pathology diagnosed (e.g., 
central nervous system disorders, rheumatoid arthritis, inflammatory 
conditions, neuropathic pain, and others), as well as genetic 
polymorphism data. Meanwhile, the treatment-related information is 
split into two-time points: baseline and the final follow-up. Baseline data 
include initial daily doses of CBD and THC (measured in milligrams), 
binary indicators for the use of painkillers or other medications (yes/no), 
scores on the Visual Analog Scale (VAS, 0–10), assessments from the 
Hospital Anxiety and Depression Scale (HADS), reported therapeutic 
benefits, and the presence of side effects (yes/no). At the last follow-up, 
recorded parameters include updated daily doses of CBD and THC (in 
milligrams) and VAS scores (0–10). Additionally, the dataset features a 
“Drop” variable, a binary marker identifying patients who stopped 
treatment early. The pre-processed dataset encodes each categorical 
value between 0 and n classes-1, while the age column was standardized 
with a mean of 0 and a standard deviation (SD) of 1 due to its significantly 
higher range than the other values.

2.3 Data preprocessing

In this study, we applied a data preprocessing pipeline to ensure 
the dataset was clean, standardized, and suitable for analysis. All 
categorical variables were numerically encoded between 0 and n 
classes-1 to be compatible with the ML model. The age column was 
standardized by subtracting the mean and dividing by the standard 
deviation to ensure that features with different scales did not 
disproportionately influence the model. Missing data was managed 
systematically to maintain the integrity and reliability of the dataset. 
For numerical features, we employed the median to minimize the 
influence of outliers. Categorical variables were imputed using the 

mode to ensure consistency with the most frequently observed 
category. The decision to impute missing values rather than discard 
incomplete records was driven by the need to preserve valuable 
information, especially given the complexity of the dataset.

2.4 Machine learning method

To develop an ML model for predicting therapy dropout in chronic 
pain patients treated with cannabis, we selected the random forest (RF) 
(Breiman, 2001) model as the most effective classifier. This choice was 
based on RF’s capability to handle complex datasets and its robustness 
against overfitting. RF is a powerful ensemble learning method that 
combines multiple decision trees, each trained on a random subset of 
the data, to improve overall prediction accuracy. In addition to RF, 
we  tested other machine learning models, including Logistic 
Regression, Support Vector Machine, and eXtreme Gradient Boosting. 
However, RF consistently outperformed these alternatives. Since the 
primary goal of this study was to identify the factors influencing 
therapy dropout, we present only the results from the RF model, which 
provided the most effective approach. Hyperparameter tuning was 
conducted using GridSearchCV, systematically exploring combinations 
of parameters to balance model complexity and computational 
efficiency while ensuring robust performance. The optimized model 
configuration consisted of 100 trees, a maximum depth of 40, and a 
minimum of two samples per split and leaf node. Class weights were 
adjusted to address data imbalance. Model performance was primarily 
evaluated using accuracy, defined as the ratio of correct predictions to 
the total number of predictions, providing an overall measure of model 
effectiveness. In addition, the receiver operating characteristic (ROC) 
curve was used to assess the trade-off between true and false positive 
rates. The area under the ROC curve (AUC) was also calculated, with 
higher AUC values indicating better model performance in 
distinguishing between the two classes. Feature selection was not 
explicitly performed, as the data had already been carefully curated to 

FIGURE 1

Study design for predicting dropout in chronic pain patients undergoing cannabis therapy.
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comprehensively represent the trial population. Furthermore, the RF 
model inherently performs feature selection by selecting a random 
subset of features at each tree split, ensuring that only the most relevant 
features are considered for each decision tree.

2.5 Descriptors analysis

We also report the contribution of the eight key features in the 
prediction through the SHapley Additive exPlanations (SHAP) 
technique (Hartono et al., 2020). SHAP methods assign a score to each 
input feature based on its influence on the target variable. In our 
context, SHAP values highlight the significance of each attribute by 
quantifying its contribution to the dropout prediction, with higher 
values indicating attributes essential for the decision-making 
processes. SHAP values are based on Shapley values, a concept from 
cooperative game theory that attributes contributions to individual 
players within a game. In the context of ML, SHAP values assign each 
feature an importance score for a specific prediction, offering insights 
into how each feature impacts the model’s output.

3 Results

3.1 Random forest prediction

The pre-processed dataset was divided into a training set (80%) 
and a test set (20%). The training set was used to make the model learn 
the hidden features while the test set evaluated the model’s performance 
after training. To optimize the model’s hyperparameters, a GridSearch 

procedure was performed, systematically searching through a grid of 
hyperparameter values to identify the best combination that maximizes 
model performance. We implemented a model with 100 trees with a 
maximum depth of 40, and it requires at least two samples per leaf and 
two samples for splitting internal nodes. Moreover, the model balances 
class weights to handle class imbalance. Training and testing were 
performed over 1,000 iterations, using a unique dataset split. The 
model achieved a mean accuracy of 0.80, with an SD of 0.021 and a 
maximum accuracy of 0.86. The ROC curve illustrating the best model 
performance is shown in Figure 2, with an AUC value of 0.86.

3.2 Predictor importance assessment via 
SHAP

To gain insights into the key factors influencing therapy dropout 
in chronic pain patients treated with cannabis, SHAP analysis was 
employed. The SHAP summary plot in Figure 3 provides an overview 
of the influence of the eight most important features on the 
prediction outcome.

Each dot in the SHAP summary plot represents a patient’s data for 
a specific feature. The x-axis position reflects the SHAP value, 
indicating the magnitude and direction of the feature’s contribution to 
the prediction. Positive SHAP values drive predictions toward 
dropout, while negative values push predictions away from dropout. 
Features are arranged on the y-axis in descending order of importance, 
with the most impactful features displayed at the top. Dot colors 
represent the feature values for individual patients, ranging from low 
values in blue to high values in red. Both numerical and categorical 
features use the same color gradient. However, for categorical features, 

FIGURE 2

ROC curve of the classification model. The magenta line represents the RF best model’s performance, and the dashed line indicates a random 
classifier.

https://doi.org/10.3389/frai.2025.1557894
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Visibelli et al. 10.3389/frai.2025.1557894

Frontiers in Artificial Intelligence 05 frontiersin.org

a higher encoded value does not imply a hierarchical relationship but 
rather signifies a distinct category compared to a lower value.

The most influential feature, the final VAS, indicates that higher 
reported pain levels are strongly associated with an increased dropout 
probability. This is because patients who perceive inadequate pain relief 
are more likely to discontinue therapy. Similarly, THC daily dosages at 
the final and baseline stages significantly affect dropout predictions. 
Higher THC dosages are linked to increased probabilities of dropout, 
likely due to side effects such as cognitive impairment or anxiety 
outweighing therapeutic benefits. Conversely, baseline therapeutic 
benefits suggest that patients reporting greater initial benefits are less 
likely to drop out, highlighting the importance of early positive outcomes 
in maintaining adherence. The genetic rs1049353 polymorphism is an 
important factor in the analysis. In this context, the SHAP plot highlights 
how different genotypes influence the prediction outcome. The red dots 
correspond to individuals with the CT genotype, while the blue dots 
represent those with the CC genotype. The TT genotype, however, is 
underrepresented in the sample, meaning there are too few individuals 
with this genotype to draw meaningful conclusions. As a result, the TT 
genotype is excluded from the analysis to avoid biased interpretations or 
unreliable results. Additionally, age and CBD daily dosages at the final 
and baseline stages contribute to shaping predictions, though less 
significantly. Lower CBD dosages tend to slightly increase the likelihood 
of dropout, whereas higher CBD dosages appear to moderate 
THC-related side effects, promoting adherence.

4 Discussion

The ML model developed in this study demonstrated strong 
predictive performance, achieving a mean accuracy of 80% and an AUC 
of 0.86. These metrics highlight the robustness of the RF classifier in 
identifying key predictors of therapy dropout among chronic pain 
patients treated with cannabis. To enhance interpretability, SHAP 
analysis was employed to determine the relative importance of various 

features, providing deeper insights into the factors driving the model’s 
predictions. Visual Analog Scale (VAS) scores emerged as a critical 
predictor of treatment trajectory. A decreasing VAS trend correlated 
strongly with reduced therapy dropout rates and higher patient 
satisfaction, while minimal changes indicated suboptimal pain relief 
(Giorgi et al., 2020; Wang et al., 2021; Harris et al., 2022). Beyond 
dropout prediction, VAS scores provided valuable insights into 
cannabis’s broader impact on clinical parameters, including sleep 
quality, fatigue, and anxiety (Bapir et al., 2023; Cahill et al., 2021). The 
variability in outcomes emphasizes the importance of considering 
individual patient profiles, including comorbidities such as anxiety or 
depression (Romero-Sandoval et  al., 2018). The SHAP analysis 
identified cannabinoid dosing patterns as significant predictors of 
therapy adherence, with baseline THC levels showing greater impact 
on model predictions than final levels. CBD demonstrated a stabilizing 
influence throughout therapy, supporting its role in moderating 
THC-related side effects such as anxiety and cognitive impairment 
(Foster et al., 2019; Chayasirisobhon, 2019; Anand et al., 2021). The 
interplay between these cannabinoids is influenced by individual 
variability in pharmacokinetics and pharmacodynamics, affected by 
genetic polymorphisms and prior cannabis exposure (Babayeva and 
Loewy, 2023). Genetic analysis revealed rs1049353, a variant in the 
CNR1 gene encoding the cannabinoid receptor type 1 (CB1), as a key 
predictor of therapy dropout. Patients carrying the CT genotype 
showed significantly higher discontinuation rates compared to those 
with the CC genotype, likely due to altered CB1 receptor sensitivity or 
intracellular signaling pathways crucial for THC’s psychoactive and 
analgesic effects (Poli et al., 2022). This polymorphism has broader 
implications beyond cannabis therapy, having been associated with 
substance dependency (Pabalan et al., 2021; Zhang et al., 2004) and 
cognitive/psychiatric side effects during long-term cannabis treatment 
(Zeraatkar et al., 2022). These findings suggest a structured approach to 
optimizing cannabis-based pain management. Initial genetic screening 
for the rs1049353 variant should inform dosing strategies: CT genotype 
patients should start at 2.5 mg THC/day (versus standard 5 mg/day), 

FIGURE 3

SHAP summary plot depicting the eight most important features influencing therapy dropout predictions in chronic pain patients treated with cannabis. 
Each dot represents a patient’s data, with the x-axis indicating the SHAP value (feature contribution to dropout prediction). Colors represent feature 
values, transitioning from low (blue) to high (red).
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combined with higher CBD ratios (2:1 CBD: THC) to minimize side 
effects. VAS scores should be monitored weekly during the first month, 
then biweekly for the next 2 months. A less than 30% improvement in 
VAS scores by week 4 should trigger a comprehensive treatment review, 
including dosing adjustments and assessment of concurrent symptoms. 
For patients showing minimal VAS improvement (<15%) despite dose 
optimization, early intervention with complementary pain management 
strategies could help prevent dropout. THC dose escalation should 
proceed more cautiously in CT genotype patients, with increases 
limited to 1.25 mg/week compared to the standard 2.5 mg/week 
protocol. Implementation of these monitoring protocols could 
be facilitated through mobile health applications, enabling real-time 
symptom tracking and automated alert systems for concerning trends 
in VAS scores or side effect reports. Several limitations should 
be considered when interpreting these results. The study’s focus on 
Caucasian patients may limit generalizability to other populations. 
Environmental and psychosocial factors, such as socioeconomic status 
and healthcare access, were not included despite their potential 
influence on therapy adherence. Additionally, while cannabis products 
are available in various formulations and routes of administration 
(Lucas et al., 2018), this information was excluded from our analysis. 
Given that pharmacokinetics and side effects depend heavily on 
administration methods and compound formulations, future research 
should evaluate long-term tolerability, functional outcomes, and 
alternate delivery routes. External validation represents a crucial next 
step to ensure model robustness and generalizability. Future efforts 
should focus on testing the model with independent datasets from 
diverse clinical settings and populations. This could involve multi-
institutional collaboration to access comparable genetic, clinical, and 
pharmacological data. Practical implementation could include 
developing a decision support system that integrates genetic and clinical 
profiles to assess dropout risk and guide therapeutic strategies. 
Integration with electronic health records could streamline decision-
making, improving both patient care and resource efficiency. Initial 
pilot studies and clinician training would ensure effective 
implementation and demonstrate the potential of combining machine 
learning and pharmacogenetics in personalized chronic 
pain management.

5 Conclusion

This study highlights the potential of ML in predicting therapy 
dropout among chronic pain patients undergoing cannabis treatment. 
By incorporating clinical, pharmacological, and genetic data, 
we identified key factors that play a crucial role in patient adherence. 
The SHAP analysis provided a detailed perspective on the complex 
interactions between these variables, emphasizing the value of 
personalized approaches in cannabis-based therapies. However, a key 
limitation of this study is that our dataset included only Caucasian 
patients, which may limit the generalizability of our findings to other 
ethnic populations. Given that genetic variations across ethnic groups 
can influence drug metabolism and therapeutic responses, our results—
particularly those related to genetic polymorphisms like rs1049353—
may not be  directly applicable to non-Caucasian populations. 
Furthermore, cultural differences in pain perception, treatment 
preferences, and healthcare-seeking behaviors could impact therapy 
adherence patterns. Future studies should include more ethnically 

diverse cohorts to validate these findings and explore potential variations 
in cannabis treatment outcomes across different populations. Ultimately, 
this research demonstrates how integrating ML and pharmacogenetics 
can drive precision medicine in chronic pain management, advancing 
tailored interventions that improve patient outcomes.
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