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A progressive brain disease that affects memory and cognitive function is Alzheimer’s 
disease (AD). To put therapies in place that potentially slow the progression of 
AD, early diagnosis and detection are essential. Early detection of these phases 
enables early activities, which are essential for controlling the disease. To address 
issues with limited data and computing resources, this work presents a novel deep-
learning method based on using a newly proposed hyperparameter optimization 
method to identify the hyperparameters of ResNet152V2 model for classifying 
the phases of AD more accurately. The proposed model is compared to state-of-
the-art models divided into two categories: transfer learning models and classical 
models to showcase its effectiveness and efficiency. This comparison is based on 
four performance metrics: recall, precision, F1 score, and accuracy. According 
to the experimental results, the proposed method is more efficient and effective 
in classifying various AD phases.

KEYWORDS

Alzheimer’s disease phases, multi-classification, deep learning, hyperparameters, 
ResNet152V25

1 Introduction

A progressive brain disease that affects memory and cognitive function is Alzheimer’s 
disease (AD). It is the main reason for dementia that affects aged people, impacting millions 
throughout the world. The disease’s spread is predicted to explode in the next few years, 
making it a huge public health issue. Early detection of AD is critical for effective treatment 
and disease control. Recently, there has been a high interest in applying artificial intelligence 
(AI) models to predict and detect the early symptoms of AD, obtaining promising results in 
accuracy and early treatment. The use of artificial intelligence techniques in predicting 
Alzheimer’s disease is a recent interest in the field of computer science.

AD progresses in phases (mild, moderate, and severe), each with its symptoms and nature 
(Alzheimer’s Association, n.d.; Li et al., 2024; By Mayo Clinic Staff, 2023). In the early phase, 
people may suffer from mild cognitive impairment (MCI), which shows slight changes in their 
capacity to reason and remember. The second phase of dementia lasts the longest and comes 
with noticeable symptoms like confusion, behavior changes, and difficulty speaking. While in 
the late phase, people lose most of their mental and physical abilities, may not be able to talk, 
and need help with everyday tasks all the time. The treatments vary from person to person, 
and each phase’s length is not fixed (Jraba et al., 2024; Winchester et al., 2023).
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Detecting AD involves several methods, such as automated 
systems, brain imaging, and machine learning techniques. 
Neuroimaging and machine learning are the main tools used to 
diagnose AD. Important brain imaging techniques include Magnetic 
Resonance Imaging (MRI), PET (positron emission tomography), 
Functional MRI (fMRI), and Diffusion Tensor Imaging (DTI) (Afzal 
et al., 2021; Shukla et al., 2023).

AI tools like Support Vector Machines, Bayesian Classifiers, and 
Deep Learning are used with these brain imaging techniques to make 
diagnoses more accurate. These tools inspect brain data to find 
patterns associated with AD, assisting in early detection and tracing 
of disease progress. The combination of brain imaging and AI shows 
promise (Alsubaie et  al., 2024; Logan et  al., 2021). Despite the 
limitations and drawbacks associated with these tools, which can 
be summarized in the following:

 • The complexity of neuroimaging data.
 • Lacking automated approaches (Aberathne et al., 2023).
 • Lacking effective diagnostic methods that help in the early 

diagnosis of AD.
 • Data acquisition and collection (Arafa et al., 2022).
 • Biomarker limitations (Dubois et al., 2021).

The main goal of this research is to find a suitable and effective 
framework for classifying AD phases and overcoming data 
limitations and computational resources. We propose a mathematical 
model called the HPO (Hyperparameters Optimization) model, 
which will be discussed later, applying its outputs to a pre-trained 
model such as the ResNetV2 model, especially (ResNet152V2), to 
build a framework for classifying AD phases with the focus on 
overcoming the challenges of data limitations and computational  
resources.

The main contribution of this paper can be summarized as follows:

 • Proposing a new HPO model for finding hyperparameters of 
deep learning techniques to improve their accuracy in classifying 
AD phases.

 • A multi-classification of AD phases: MildDemented, 
ModerateDemented, NonDemented, and VeryMildDemented 
with enhanced results.

 • Proof of the strength of ResNetV2 models in medical images, 
especially in AD classification.

The paper is organized as follows: Firstly, it will discuss related 
work and its limitations and drawbacks. Secondly, it will highlight the 
importance of deep-learning models and the significance of 
hyperparameters. Then, it will demonstrate and test the proposed 
approach using AD datasets. Finally, it will present results that indicate 
the effectiveness of the proposed approach.

2 Literature review

A variety of research was carried out using AI in detecting and 
diagnosing AI to better understand its nature and treatment process. 
The research covered all related topics of the disease, including early 
detection, using AI for the prediction of AD, tracing AD progression, 
and the combination of AI with neuroimaging for diagnosing processes.

One research study used automated processes and machine 
learning techniques to identify AD phases with over 95% accuracy. 
Better feature extraction and classification techniques are required, as 
biomarker approaches perform poorly in multi-group classification 
even while they perform well in binary classification (Shojaei 
et al., 2023).

Moreover, in this paper, the collective AI for detecting and 
diagnosing AD was investigated, showing its importance. However, it 
showed great promise and results, but it faced complications and 
challenges concerning data diversity and integration. That caused 
complications in model training and evaluation (Neshat et al., 2024).

In the systematic review that focused on natural language processing 
for AD detection, it was concluded that it wasn’t as efficient and 
methodical as the demographic variables in patients were unbalanced 
and lacked performance standard metrics (Petti et al., 2020).

Another study focused on using lightweight deep-learning models 
for AD detection and diagnosis using MRI data. As the proposed 
model was uncomplicated and simple, it only had seven layers; it could 
be implemented and applied in real-time applications. Additionally, it 
underlined the shortcomings and complexity of conventional models, 
highlighting the importance of lightweight models that may offer 
reliable and efficient alternatives. The suggested approach performed 
well in the binary classification of AD, but the results were 
unsatisfactory in the multiclassification of AD phases (El-Latif 
et al., 2023).

In Li and Yang (2021), three models were compared and evaluated: 
Support Vector Machine (SVM) and two deep learning algorithms 
(3D-VGGNet and 3D-ResNet). Using Grad-CAM for visualization, it 
successfully detected disease regions and obtained excellent accuracy 
in binary classification (AD vs. normal). However, its application in a 
variety of clinical environments is limited by dependence on high-
quality MRI data.

Recent studies indicated that hierarchical binary classifiers 
improved by Ant Colony Optimization (ACO) performed better in 
mechanical problems classification, showing potential applications in 
AD classification. But it could not be generalized across datasets and 
may be  restricted due to the reliance on specific optimization 
techniques (Vinodha and Gopi, 2024).

In addition, a review of imbalanced data classification emphasized 
the challenges posed by uneven class distributions, proposing various 
strategies such as algorithmic adjustments and data rebalancing 
techniques. However, the major challenges and drawbacks of these 
approaches are extensive preprocessing, computation density, and 
resource requirements. Which leads to limitations of implementation 
within real-time applications and environments (Yang et al., 2024).

In addition, these models were proposed and implemented 
depending on high-quality data and needed extensive feature 
extraction engineering, which might be considered another drawback 
and challenge. Besides, many studies were proposed and addressed 
AD detection theoretically and were not practically adequate and 
interpretable. Which is critical for clinical applications (Park et al., 
2023). While the use of AI in AD research shows great potential, 
several drawbacks need to be addressed. These include the need for 
high-quality and standardized datasets, ethical considerations in the 
use of AI, and the potential limitations of AI in predicting disease 
progression and finding a cure. Finally, the advancements in binary 
and multi-classification techniques for AD have shown promising 
results, but challenges such as data imbalance, model complexity, and 

https://doi.org/10.3389/frai.2025.1558725
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elmotelb et al. 10.3389/frai.2025.1558725

Frontiers in Artificial Intelligence 03 frontiersin.org

interpretability persist, necessitating further research and innovation 
in this critical area of health informatics.

2.1 Deep learning models hyperparameters

Hyperparameters in deep learning models are important since 
they define the network architecture and how it is trained. These 
parameters are specified before the training process and include 
variables related to the training method, such as epochs, iterations per 
epoch, dropout rate, batch size, and optimizer (Jafar and Lee, 2023).

The selection of hyperparameters considerably influences the 
performance of the deep learning model. So, finding the right set of 
hyperparameters is essential for achieving an optimal deep learning 
model. Hyperparameter tuning, which involves searching the 
hyperparameter space for the best combination of values, is a critical 
step in the model development process. Various methods, such as 
manual search, grid search, random search, and Bayesian 
optimization, are used to find the optimal set of hyperparameters, 
ensuring the model’s effectiveness and efficiency (Fabrizio et al., 2021; 
Ghazal and Issa, 2022; IBM, n.d.; Subramanian et al., 2022).

The importance of hyperparameters in deep learning models is 
summarized below (Arnold et al., 2024; Naushad et al., 2021; Shojaei 
et al., 2023):

Learning rate indicates how rapidly a network adjusts its 
parameters. A high learning rate may result in unstable training, 
whereas a low learning rate may cause slow convergence.

Batch size determines how many samples are utilized in each 
training iteration. A small batch size may produce noisy gradients, 
whereas a large batch size may cause weak convergence.

The activation function determines the model’s nonlinearity. 
Different activation functions may be better suited to different sorts 
of data.

Dropout helps minimize overfitting by randomly removing units 
during training. The dropout rate is the probability of dropping out of 
each unit.

Optimizer determines the algorithm for updating the model’s 
parameters. Certain optimizers, like Adam and SGD, may be better 
suited to certain sorts of data.

Early stopping prevents overfitting by halting the training process 
when the validation loss no longer improves. A hyperparameter 
specifies how many epochs to wait before ending.

Finally, each hyperparameter in deep learning models has a 
significant impact on the model’s performance. Each hyperparameter’s 
importance is determined by the individual problem and data being 
used. Thus, hyperparameter tuning is required to determine the 
optimum set of hyperparameters for a specific problem.

2.2 ResNet152V2 model

ResNet152V2 is a deep learning model that belongs to the residual 
network family. Using residual connections, the ResNet152V2 model 
efficiently trains very deep networks with 152 layers (see Table 1) 
(Shaziya and Zaheer, 2021). Because of its great accuracy and 
efficiency, it has been used in many different applications, such as 
medical diagnosis and image classification. The ResNet152V2 model 
has 71,177,348 parameters, including 143,744 that are non-trainable 

and 71,033,604 that are trainable. Compared to developing a model 
from scratch, this pre-trained model helps to achieve acceptable 
accuracy more rapidly since it contains starting weights (Ibrahim 
et al., 2021; Nagarathna et al., 2023).

3 Material and method

In this paper, we propose a model called HPO that will be used to 
expect epoch number, batch size, and dropout factor based on input 
size and expected target accuracy, as we noticed most recent studies 
adjust these parameters based on the babysitting approach, i.e., trial 
and error, which leads to using a huge number of computations for 
training models and is time-consuming.

3.1 Hyperparameters optimization (HPO)

Traditionally, there were many methodologies for finding the 
optimal configuration of these parameters: babysitting approach, grid 
search, random search, and Bayesian optimization (Farag et al., 2021; 
Ibrahim et  al., 2021; Jafar and Myungho, 2020), they had many 
drawbacks. The main ones were time and resource consumption, and 
the vast number of computations.

Therefore, we  study the nature of the most used heuristic 
techniques: Bayesian optimization and random search (Ali et al., 2023; 
Bai et al., 2023; Turner et al., 2021) investigation of their limitations 
and drawbacks; as Bayesian optimization was complex structure and 
computations overhead, and random search however it was simple but 
might not find the optimum configurations of hyperparameters.

Then create a mathematical model called the HPO model, see 
Figure 1, that estimates the number of epochs, batch size, and dropout 
factor depending on the input size and target accuracy. The proposed 
mathematical model (HPO) is supposed to offer preliminary 
estimations and may not correctly reflect all real-world issues, but 
we apply the approximation theory (Deo et al., 2020; Elbrächter et al., 
2021; Kamath et al., 2021; Leluc, n.d.). The actual performance of a 
model may differ based on its difficulties and dataset.

The proposed HPO model works as the model inputs and 
processes these inputs to solve the objective function then computes 
the model output as follows:

TABLE 1 The general structure of ResNet152v2 along with the function of 
these layers.

Layer Description

Input Layer Accepts image as input.

Convolutional Layers

Initial convolutional layers extract low-level features.

Batch normalization layers normalize activations.

ReLU activation function introduces non-linearity.

Residual Blocks Building blocks with shortcut connections

Bottleneck Blocks Reduce computation and memory requirements.

Global Average Pooling Reduce spatial dimensions of feature maps.

Fully Connected Layers

Receive global average pooled features for 

classification.

The number of layers depends on the specific task.

Output Layer Products predicted class probabilities.
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Model’s input: Dataset size and Target accuracy.
Model’s output: a desirable set of hyperparameters (epoch number, 

batch size, and dropout factor).
Let us define the following variables:
N = Dataset size (number of samples in the dataset).
Acc = Target accuracy (e.g., 0.95 for 95% accuracy), +∈ .Acc R
En = Number of epochs, ∈En N
Bs = Batch size, ∈Bs N
Df = Dropout factor (a value between 0 and 1)

3.1.1 Assumptions recap
 • We assume a simple training model based on a feedforward 

neural network.
 • To keep things simple, the relation between input size N and 

number of epochs En is linear ∝En N .
 • The batch size Bs is inversely related to the square root of the 

input size, this concept is supported by various discussions in 

machine learning literature ∝
√

1
N

 .

 • The dropout factor Df is calculated and influenced 
depending on the target accuracy, i.e., Higher target accuracy 
would likely correspond to lower dropout (stronger 
model) ∈  0,1Df .

 • We use the SLSQP (Sequential Least Squares Programming) 
implemented within the SciPy library (Brownlee, 2021; Rayhan 
and Kinzler, 2023) which is a mathematical library in Python to 
solve our objective function after adjusting the initial values of 
the hyperparameters.

The objective function f  can be as follows:

 ( )
=

× × −1
Accf

En Bs Df  
(1)

3.1.2 Validating the relationship

 • Relation between En, N and f: we assume the number of epochs 
increases when dataset size increases, where k is a constant 
positive integer number, i.e., +∈k Z .

 =En kN  (2)

 • Relation between Bs, N and f: we assume that batch size decreases 
with the square root of the dataset size, where c is a constant 
positive integer number, i.e., +∈c Z

 
∝

cBs
N  

(3)

This shows that f is inversely proportional to √N . As the dataset 
size increases, the objective function f decreases because more epochs 
and smaller batch sizes are needed to process the larger dataset, thus 
increasing the computational cost.

 • Relation between Df, N and f: As Df increases, the term 
(1 − Df) decreases, making the denominator larger and thus 
reducing f.

Substitution in from Equations 2, 3 in Equation 1

 ( )
×√

=
× × −1
Acc Nf

kN c Df  
(4)

Theorem 1: The objective function, f, can be obtained from the 
relation equation

 ( )
=

× × −1
Accf

En Bs Df

where  ,f

 • Has inverse relation with En, i.e., ∝
1f
En

 • Has inverse relation with Bs, i.e., ∝
1f
Bs

 • Has inverse relation with Df, i.e., 
( )

∝
−
1

1
f

Df

Proof of Theorem 1: We  evaluate the objective function f 
sensitivity to hyperparameter changes by calculating partial 
derivatives. To find the partial derivatives of a function

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )( )

′ ′
′

−
= = 2Since ,
g x g x h x g x h x

f x f x
h x h x

 • Partial derivatives with respect to En: to find the partial 
derivatives of Equation 1 with respect to En.

FIGURE 1

Proposed HPO model that estimates the hyperparameters.
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 ( ) ( ) ( )= = × × −, , 1let g En Acc h En En Bs Df

Step 1: Differentiate ( )g En
Since Acc is treated as a constant with respect to En:

 ( )′ = 0g En

Step 2: Differentiate ( )h En

 ( ) ( )= × × −1h En En Bs Df

Here both Bs and (1- Df) are treated as constant with respect 
to En then

 ( ) ( )= −′ × 1h En Bs Df

 

( ) ( ) ( )
( )( )

× −

∂

′×∂
= 2

0 h En g En h Enf
En h En

 

( )( )
( )( )

− × −∂
=

∂ × × −
2

1

1

Acc Bs Dff
En En Bs Df

Simplify it:

 ( )
∂

= −
∂ × × −2 1
f Acc
En En Bs Df

⸪ derivative is negative
∴ …increases when decreases .En f  (Equation 1).
Confirming that the function penalizes larger numbers of epochs.

 • Partial derivatives with respect to Bs: to find the partial derivatives 
of Equation 1 with respect to Bs.

 ( ) ( ) ( )= = × × −, , 1let g Bs Acc h Bs En Bs Df

Step 1: Differentiate ( )g Bs
Since Acc is treated as a constant with respect to Bs:

 ( )′ = 0g Bs

Step 2: Differentiate ( )h Bs

 ( ) ( )= × × −1h Bs En Bs Df

Here both En and (1−Df) are treated as constant with respect 
to Bs then

 ( ) ( )= −′ × 1h Bs En Df

 

( ) ( ) ( )
( )( )

× −

∂

′×∂
= 2

0 h Bs g Bs h Bsf
Bs h Bs

 

( )( )
( )( )

− × −∂
=

∂ × × −
2

1

1

Acc En Dff
Bs En Bs Df

Simplify it:

 ( )
∂

= −
∂ × × −2 1
f Acc
Bs Bs En Df

⸪ derivative is negative
∴ …increases when decreasesBs f  (Equation 2).
The objective function appropriately penalizes large batch sizes.

 • Partial derivatives with respect to Df: to find the partial 
derivatives of Equation 1 with respect to Df.

 ( ) ( ) ( )= = × × −, , 1let g Df Acc h Df En Bs Df

Step 1: Differentiate ( )g Df
Since Acc is treated as a constant with respect to Df:

 ( )′ = 0g Df

Step 2: Differentiate ( )h En

 ( ) ( )= × × −1h Df En Bs Df

Here both En and Bs are treated constants with respect to Df

 ( ) = − ×′h Df En Bs

 

( ) ( ) ( )
( )( )

× −

∂

′×∂
= 2

0 h Df g Df h Dff
Df h Df

 

( )
( )( )

− − ×∂
=

∂ × × −
21

Acc En Dsf
Df En Bs Df

Simplify it:

 ( )
∂

=
∂ − 21

f Acc
Df Df

https://doi.org/10.3389/frai.2025.1558725
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elmotelb et al. 10.3389/frai.2025.1558725

Frontiers in Artificial Intelligence 06 frontiersin.org

 derivative is positive

∴ …increases when decreasesDf f  (Equation 3).

The function appropriately captures the fact that increasing 
dropout can reduce performance.

Finally, from Equations 1–3 the function is mathematically 
validated ■.

Our objective is to optimize accuracy while reducing epochs, 
batch size, and determining the best dropout factor. However, 
these characteristics are typically interrelated, and there is no 
simple mathematical equation that explicitly connects them. As a 
result, we’ll create an objective function that combines all these 
factors and enables us to reach a compromise between accuracy and 
resource utilization. Algorithm 1 formalizes the proposed HPO 
as follows.

HPO is implemented and tested to obtain its result using the 
Python library (SciPy. Optimize), then feed forward these parameters 
to Resnet125V2.

3.2 Proposed approach

Since most deep learning models require a huge amount of 
computation and resources to achieve the required results, they often 
use a babysitting approach to adjust their hyperparameters. Moreover, 
the proposed approach is designed for use in detecting all four phases 
of AD. The main idea of the proposed approach is to use a pre-trained 
model (Resnet152v2) after adjusting the hyperparameters (number of 
epochs, batch size, and dropout factor) using HPO. The workflow of 
the proposed model is shown in Figure 2:

 1 Reading inputs as the model takes MRI images as input. The 
MRI images are classified into four different categories 
MildDemented (MID), ModerateDemented (MOD), 
NonDemented (NOD), and VeryMildDemented (VMD).

 2 Proposed Model (HPO + ResNet152V2)
 • HPO is implemented to obtain the best combination of 

hyperparameters (epochs, batch size, and dropout factor).
 • ResNet152V2 is proposed to classify MRI images due to its 

strength in medical image classifications.

 3 Custom layers
 • Extracted features are reshaped into suitable formats.
 • Global average pooling 2D is implemented to 

reduce dimensionality.
 • Three fully connected (Dense) layers are included: Dence 1024, 

Dence 256, and Dence 4 neurons (represent the final 
classification classes).

 4 Dropout layers are included in the model to reduce model 
complexity, computation overhead, and avoid overfitting.

 5 Final classification layer (SoftMax activation) to classify entered 
MRIs into: MID, MOD, NOD, and VMD.

Algorithm 2 formalizes the workflow of the proposed model 
as follows:

3.3 Dataset preprocessing and preparation

The MRI images are preprocessed to ensure standardization and 
stability during experiments and to obtain the optimum 
model performance.

 • Resizing: all MRI images are resized into (128*128*3) to obtain 
RGB images using CNN to reach our goal of attaining high 
performance with low computations and complexity.

 • Scaling: we change the scale by 1/255 to scale all images from 
[0,255] to [0,1].

The dataset is considered the most crucial part. Several AD 
datasets are available online for classification processes, but the known 
datasets like ADNI and OASIS have some limitations (El-Latif et al., 
2023; Liu et al., 2022):

 • Publicly not available.
 • Huge dataset size.
 • Fewer number of samples and classes.
 • High computational costs.
 • Long processing time and hardware and memory issues.

For these reasons, in this paper, two different datasets obtained 
from Kaggle were used:

BEGIN
// Hyperparameter optimization (HPO)
bounds ← [(min_epochs, max_epochs), (min_batch, max_batch), (min_dropout, 

max_dropout)]
initial ← [default_epochs, default_batch, default_dropout]    
// Compute the objective value 
FUNCTION evaluate(params):

// Generic loss calculation (implementation-specific)
objective_value  ← model_performance(params[0], params[1], params[2])
RETURN objective_value 

// Run optimization (using minimize from scipy)
optimized_params ← MINIMIZE(evaluate, initial, BOUNDS=bounds)
RETURN optimized_params

END

ALGORITHM 1

The proposed mathematical model (HPO).
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The first dataset (OrDS) was originally curated by Dubey (2020) 
and subsequently utilized in studies (Ali et al., 2024; El-Latif et al., 
2023; Liu et al., 2022). It had about 6,400 MRI; all of them are in jpg 
format, most of them are 176*208 sizes, that were hand-verified and 
annotated by experts, obtained from various sources for research 
purposes, and organized into four directories: MID, MOD, NOD, and 
VMD. The dataset consisted of 896 MRI for MID, 64 MRI for MOD, 
3200 MRI for NOD, and 2,240 MRI for VMD. Sample images are 
shown in Figure  3 to illustrate the classes. The dataset is publicly 
available for developing deep-learning models that can effectively 
classify AD stages, consequently finding the right treatment.

The second dataset (AuDS) was originally curated by Uraninjo 
(2022) and subsequently utilized in studies (Li et al., 2024; Li, 2024). 
It comprised MRI scans of Alzheimer’s patients that had been 
augmented or edited in some way to boost the dataset’s size or 
diversity and were divided into two directories (train and test). AuDS 
was divided into four phases: MID, MOD, NOD, and VMD. It had 
8,960 MRIs for MID, 6464 MRIs for MOD, 9600 MRIs for NOD, and 
8,960 MRIs for VMD. It was created to train deep learning models to 
identify Alzheimer’s disease. It was an augmented version of OrDS to 
solve the unbalancing issue of the OrDS. It was labeled with AuDS 
during experiments.

FIGURE 2

Block diagram of all stages of the proposed model.

BEGIN    
INPUT MRI images  
Call FUNCTION HPO()
// Define Model Function  
FUNCTION Build_Model(epochs, batch_size, dropout_rate):  

base_model ← ResNet152V2()  
model ← Sequential()  
model.ADD(base_model)  
model.ADD(GlobalAveragePooling2D())  
model.ADD(Dense(1024))  
model.ADD(Dropout(dropout_rate))  
model.ADD(Dense(256))  
model.ADD(Dropout(dropout_rate))  
model.ADD(Dense(4, activation='softmax'))  
RETURN model  

// Train the Model  
best_params ← HPO()  
model ← Build_Model(best_params["epochs"],best_params["batch_size"], 

best_params["dropout"])  
model.COMPILE(optimizer, loss='categorical_crossentropy',

metrics=['accuracy'])  
model.FIT(training_data, labels, epochs, batch_size, validation_data, 

callbacks)
END

ALGORITHM 2

The proposed model (HPO+ResNet152V2).
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3.4 Computational cost

The computational cost of the proposed model depends on:

 • Training complexity: how the neural network model is trained 
with the inputs and hyperparameters.

 • Optimization complexity: how the proposed HPO is trained, 
scaled, and converged with the hyperparameters.

3.4.1 The computational cost of training
The model complexity depends on the number of training epochs 

(En), batch size (Bs), dataset size (N), and model size (MS) as shown 
in Equation 5.

 

∗ ∗ =  
 

train
En N MST O

Bs  
(5)

3.4.2 The computational cost of HPO algorithm
The optimization is considered as a black box of solving the 

objective function and finding the optimum value of hyperparameters, 
therefore it is supposed to be linear time K denoted by O(K).

 ( )= +The total cost HPO Training

The best case as the HPO converges quickly and finds 
hyperparameters as presented in Equation 6.

 

∗ ∗ =  
 

train
E N MST O

Bs  
(6)

The worst case: the search space is huge, and the parameters 
bound are huge as shown in Equation 7.

 

∗ ∗ = + 
 

train
E N MST O K

Bs  
(7)

4 Results and discussion

4.1 Experiments setup

The codes and analysis were written and performed using 
Python with the Jupyter Notebook. Google Colab and Kaggle were 
used in the training of the ResNet152V2 model and the 
compilation of Python codes. The experiments were carried out 
over the two datasets (OrDS and AuDS) under the 
following considerations:

 • The datasets were partitioned into 70% for training and validation 
and 30% for testing.

 • The training partition was divided into 70% for training and 30% 
for validation.

 • Three different optimizers were applied (Adam, RMSprop, and 
SGD) to update the learning rate and processes.

FIGURE 3

Sample images that illustrate the classes of the disease: the 1st row represents MID class, 2nd row indicates MOD class, 3rd row shows NON class and 
4th row represents VMD class.
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 • The SoftMax classifier was used to classify the datasets into four 
main classes: MID, MOD, NOD, and VMD.

 • Two different callbacks were applied to aid in saving the best 
model, avoiding overfitting, and improving convergence 
(ModelCheckpoint, and EarlyStopping).

 • The values of the hyperparameters of model obtained from the 
HPO are shown in Table 2.

4.2 Performance metrics

These metrics detail how effectively the model performs on an 
issue, enabling it to judge its strengths and limitations (Hwang et al., 
2024; Ibrahim et al., 2021; Powers, 2020; Sethuraman et al., 2023).

Accuracy: The ratio of correctly predicted instances to the total 
number of instances.

 • Formula:

 
=

   
   

Number of Correct Predictions
Accuracy

Total Number of Rredictions  
(8)

Precision: Measures the accuracy of positive predictions. High 
precision means fewer false positives.

 • Formula:

 
=

+
 

  
True Positives

Precision
True Positives False Positives  

(9)

Recall: Measures of the ability to identify all positive instances. 
High recall means fewer false negatives.

 • Formula:

 
=

+
 

True Positives False Negatives
True Positives

Recall
 

(10)

F1-score: Harmonic mean of precision and recall, giving a balance 
between the two.

 • Formula:

 
×

− = ×
+

1 2 Precision RecallF Score
dPrecision Recall  

(11)

4.3 Experiments 1: testing model using 
OrDS

The model was trained and tested several times over OrDS (6,400 
samples), and the dataset was redivided into the training and 

validation portion (3,135 train, 1,344 validate), and test portion (1,921 
sample) using the above-mentioned hyperparameters and 
configurations by applying three different optimizers SGD, Adam, and 
RMSprop. The accuracy, precision, recall, and F1-score were calculated 
using Equations 8–11, respectively. An analysis of the results obtained 
from different experiments using the SGD, Adam, and RMSprop 
optimizers is shown in Table 3.

It is shown that the SGD optimizer results are the best. The 
accuracy of classification of the MOD phase reached 100% accuracy, 
and the overall accuracy of the model reached 95.21%. SGD is the 
optimal choice among the three optimizers, offering the best 
performance across all AD phases. The SGD achieves perfect precision 
and recall in the MOD phase, along with high scores in other phases, 
making it the most robust and effective optimizer. Adam is a strong 
alternative, especially in the NOD and VMD phases, while RMSprop 
lags slightly behind, particularly in the MOD phase. Overall, SGD 
provides the most consistent and reliable results, making it the 
preferred optimizer for this classification task. Still, the results 
obtained needed more enhancements as the OrDS was too small to 
ensure the reliability of the proposed model. The results show that the 
MOD phase contains a very small number of samples. However, the 
proposed model was able to achieve satisfactory results in the accurate 
classification of other phases. Here, to ensure the validity of the 
proposed model, it was necessary to use a balanced data set containing 
enough samples in the different disease categories. Accordingly, a 
balanced dataset was used.

The performance analysis of the proposed model using SGD 
optimizer during training and validation is shown in Figures 4, 5. The 
confusion matrix is shown in Figure 6.

The performance analysis of the proposed model during training 
and validation using Adam is shown in Supplementary Figures 1, 2, 
and that using RMSprop optimizer is shown in 
Supplementary Figures 3, 4. The confusion matrices of the proposed 
model using Adam and RMSprop optimizers are shown in 
Supplementary Figures 5, 6, respectively.

4.4 Experiments 2: testing model using 
AuDS

The proposed model was tested and trained using AuDS (34,003 
samples), the AuDS was partitioned into the training and validation 
portion (16,661 for training, and 7,141 for validation) and the test 
portion (10,201 samples). The hypothesis hyperparameters were 
adjusted and tuned using the HPO model. The results of the 
experiments are shown in Table 4.

It was noticed from the experiments and the results of the SGD 
optimizer; the training accuracy was 98.56% and the test accuracy was 
98.26%. It classified the AD stages into 4 Phases; it reached an accuracy 

TABLE 2 The values of the hyperparameters that were applied during the 
experiments.

Hyperparameter Value

Epochs 50

Batch size 32

Dropout factor 0.2
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of 99.9% in the MOD phase, 98.6%in the MID phase, 98.2% in the 
NOD phase, and 96.8% in the VMD phase.

Adam vs. RMSprop: Both optimizers performed similarly, with 
Adam slightly edging out in terms of overall accuracy (92.94% vs. 
92.79%) and performing better in recall in some phases. However, 
RMSprop showed slightly better precision in the MID phase. Despite 
these minor differences, neither Adam nor RMSprop can match the 
performance of SGD. The results showed that SGD was the most effective 
optimizer. It delivered the highest precision, recall, and F1-scores across 
all AD phases and had the highest training and overall accuracy.

This suggested that SGD not only generalizes well to unseen data 
but also accurately identifies the various stages of Alzheimer’s disease 
with minimal errors. Therefore, SGD is the optimal choice for this 
task, consistently outperforming Adam and RMSprop in every phase 
of AD. It achieves the highest accuracy and balanced performance 
across all evaluated metrics, making it the most robust and reliable 
optimizer in this context.

The performance analysis of the SGD optimizer during training 
and validation is shown in Figures 7, 8. The confusion matrix on the 
validation set is presented in Figure 9.

The performance analysis of the proposed model during training 
and validation using Adam on AuDS is shown in 
Supplementary Figures 7, 8, and that using RMSprop optimizer on 
AuDS is shown in Supplementary Figures  9, 10. The confusion 
matrices of the proposed model using Adam and RMSprop optimizers 
are shown in Supplementary Figures 11, 12, respectively.

4.5 Performance comparison with 
state-of-the-art models

The suggested approach outperforms existing models in the 
literature for AD classification as presented in Table 5. This consistent 
and resilient performance demonstrates the model’s greater capacity 

TABLE 3 Results obtained from the proposed model on OrDS.

Optimizer AD stage Precision Recall F1-score Train accuracy Overall 
accuracy

Adam

MID 0.959 0.877 0.916

94.42% 94.63%
MOD 0.905 1 0.95

NOD 0.954 0.968 0.960

VMD 0.932 0.942 0.937

RMSprop

MID 0.948 0.888 0.917

93.90% 93.80%
MOD 0.818 0.947 0.878

NOD 0.953 0.956 0.955

VMD 0.917 0.932 0.924

SGD

MID 0.947 0.940 0.944

95.01% 95.21%
MOD 1 1 1

NOD 0.959 0.968 0.963

VMD 0.943 0.933 0.938

The bold values indicate the optimum results obtained during several experiments.

FIGURE 4

Model accuracy using SGD: the training and validation accuracy 
increased quickly at the beginning and gradually stabilized after 10 
epochs. Both curves almost follow each other, and narrow gap 
between them, indicating effective model training. Finally, the model 
curves were almost flattened.

FIGURE 5

Model loss using SGD: both curves were high, indicating huge 
mistakes, gradually both curves decreased and stabilized after 10 
epochs, with no overshoots observed, the curves almost overlapped 
after 20 epochs, indicating that the model was not overfitted and 
effectively recognize patterns.
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to generalize and reliably discriminate across different cognitive levels, 
which is difficult for many other models. Overall, the suggested 
approach represents a significant leap in AD diagnosis, delivering 
more accurate and effective categorization than the current literature.

In terms of results, the table showcases various approaches to AD 
classification, with different models, data sources, and classification 
strategies. Most models focus on binary classification between AD and 
NC, with accuracy generally above 90%. Multi-class classifiers show 
more variation in accuracy, depending on the classes being 
distinguished. The proposed model in our work stands out with a 
98.26% accuracy in multi-class classification of different AD stages, 
surpassing most other models, particularly in multi-class scenarios, 
especially when using stochastic SGD. Unlike previous models that 
frequently use optimizers such as Adam and RMSprop, the suggested 
model yields greater precision, recall, and F1 scores throughout all AD 
phases, with perfect accuracy in the MOD phase.

4.6 Ablation analysis

In this part, several trials and analyses of the proposed model were 
performed to ensure its strength and dependability.

 • Due to budget limitations, the trials were trained using GPU T4 
on Kaggle and Google Colab platforms.

 • Data splitting was 70% for training, 20% for validation, and 10% 
for testing.

 • AuDS was the proposed dataset.

The ablation analyses were performed on three strategies: 
unplanned hyperparameters, planned hyperparameters, and 
combined ablation.

4.6.1 Unplanned hyperparameters ablation
In this strategy, the hyperparameters: epoch numbers, batch size, 

and dropout factor were changed in a randomized form. Several 
experiments were performed on the ResNet152V2 model, and the 

results are shown in Table 6. Table 6 presents the results obtained from 
various trials to evaluate the performance of the proposed model 
using different values of hyperparameters. The trials were performed 
with several values of hyperparameters (epoch numbers, batch size, 
and dropout factor). The performance metrics were training accuracy 
and testing accuracy.

The key observations were:
Impact of batch size: small batch sizes showed higher training 

accuracy, like trial 8, which reached a training accuracy of 100%, but 
the test accuracy was 97.84%, indicating it might be overfitted. On the 
other hand, large batch sizes had bad test and train accuracy like 
trail 1.

Effect of dropout: a high dropout value (0.6) had low accuracy. 
However, a low dropout value (0.1) had better accuracy. Finally, 
moderate dropout values (ranging from 0.35 to 0.5) balanced between 
model accuracy and avoiding overfitting.

Epochs: a high number of epochs did not ensure better results. For 
example, in trial 7, the epochs were 350 and the model overfitted.

In summary, the results indicate that finding the best combination 
of hyperparameters is crucial for the model’s performance. Finally, it 
is noticed from the results that trial 5 with 32 batch sizes with 0.2 
dropout and 50 epochs reached the optimum model accuracies and 
performance. These values are equal to the values obtained from the 
proposed HPO model.

4.6.2 Planned hyperparameters ablation
In this strategy, the proposed model was trained and tested several 

times using values of epoch numbers, batch size, and dropout obtained 
from the HPO model. The experiments were performed by changing 
the values of one of the hyperparameters and fixing the others, 
studying its effect on the proposed model. The results were 
summarized in Tables 7–9. The performance metrics were train and 
test accuracy, precision, recall, and F1-score.

Table 7 shows how the performance of the model was improved 
as it was trained for more epochs. It was noticed from the table that 
the model performance improved while the training epochs 
increased, as noticed from the evaluation metrics. Finally, from 
epochs 40 and 50, the model’s performance reached optimality, and 
no overfitting was noticed, showing the model generalizes well to new 
data. Training for 50 epochs was enough and ideal since there were 
no more improvements after this point. The model was effective 
and efficient.

In Table 8 the epoch number and batch size were fixed to values 
50 and 32, respectively, while varying the dropout value. The result 
shows the performance improvement of the model concerning the 
changing dropout values. It is noticed that with small dropout values 
like 0.1 and 0.2, the performance metrics were high, and no overfitting 
was noticed. At dropout 0.3, the performance collapsed, and the 
model struggled to make meaningful predictions. While high dropout 
values performed well, the performance metrics decreased and slowed 
down the learning. Finally, the dropout of 0.2 was ideal for this task, 
balancing learning and generalization.

In Table 9 the epoch number and dropout were fixed to values 50 
and 0.2, respectively, while varying the batch size value. The model 
performance improvement concerning changing batch size values. 
As noticed from experiments, when the batch size was too small, like 
2, the performance metrics were too small, and the model could not 
provide meaningful results. In addition, when the batch size 

FIGURE 6

Confusion matrix using SGD optimizer; the model successfully 
identified and predicted the true labels.
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increased, the performance improved gradually. Finally, the optimum 
batch size value was 32 when the performance metrics were near-
perfect results.

In conclusion, Tables 7–9 present the performance metrics of the 
ResNet152V2 model under different configurations of epochs, batch 
size, and dropout. The results show how the model performs for 
changing the values of these variables. Moreover, finding the balanced 
values of epochs, batch size, and dropout is critical for the model’s 
performance. In addition, the best settings were 50 epochs, 32 batch 
sizes, and 0.2 dropouts, which gave the highest accuracies and 
performance and ensured the stability of our proposed HPO model.

4.6.3 Combined ablation
In this part of the analysis, the proposed HPO model was tested 

and validated with various transfer models.
The following considerations were proposed:

 • The hyperparameter values obtained from the HPO model were 
50 epochs, 32 for the batch size, and 0.2 for the dropout.

TABLE 4 Results obtained from the proposed model on AuDS.

Optimizer AD stage Precision Recall F1-score Train accuracy Overall 
accuracy

Adam

MID 0.954 0.948 0.951

92.52% 92.94%
MOD 0.997 0.999 0.998

NOD 0.954 0.858 0.904

VMD 0.842 0.937 0.887

RMSprop

MID 0.976 0.912 0.944

92.93% 92.79%
MOD 0.999 0.998 0.999

NOD 0.933 0.882 0.907

VMD 0.837 0.940 0.886

SGD

MID 0.986 0.993 0.989

98.56% 98.26%
MOD 0.999 1 0.999

NOD 0.982 0.970 0.976

VMD 0.968 0.973 0.971

The bold values indicate the optimum results obtained during several experiments.

FIGURE 7

Model accuracy using SGD on AuDS. Both training and validation 
accuracy rapidly increased from epochs 0 to 5, then smoothed and 
slowly increased between epochs 5 and 10. Finally, the model 
stabilized and converged after 10 epochs.

FIGURE 8

Model loss using SGD on AuDS: Both training loss and validation loss 
showed a rapid decrease within the initial 5 epochs. Then, validation 
loss showed a slow decrease between epochs 5 and 15. Finally, both 
loss curves stabilized and flattened without any sudden overshoot.

FIGURE 9

Confusion matrix of the proposed model using SGD optimizer on 
AuDS.

https://doi.org/10.3389/frai.2025.1558725
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Elmotelb et al. 10.3389/frai.2025.1558725

Frontiers in Artificial Intelligence 13 frontiersin.org

TABLE 5 Performance analysis of the proposed model versus state-of-the-art-models.

Authors Model Database Classification 
method

Accuracy

El-Latif et al. (2023) Lightweight CNN OrDS Binary and multi classifier.
Binary classification: 99.22%; multi 

classification: 95.93%.

Sethuraman et al. (2023) CNN, ALEXNET, inception blocks ADNI
Binary classifier: AD and 

Normal control (NC)
96.61%

Hu et al. (2023) VGG-16 + transformer ADNI Multi classifier 77.20%

Mora-Rubio et al. (2023)
CNN, pre-trained deep learning 

models

ADNI+

OASIS

Multi classifier:

NC, and Mild Cognitive 

Impairment (MCI),

89% AD vs. NC

80% Late MCI vs. NC

66% MCI vs. NC

67% Early MCI vs. NC

Hazarika et al. (2023) Hyper model (LetNet+ AlexNet) ADNI
Multi classifier: CN, MCI, 

and AD
93.58%

Shojaei et al. (2023) 3D CNN ADNI
Binary classifier: AD vs. 

NC
96%

Jraba et al., 2024

VGG-16

Inception-v3

ResNet152

Images collected from 

different resources

Multi classifier:

NOD, VMD, MID, and 

MOD

98% for ResNet 152, 96% for 

Inception-v3, and 80% for VGG 16

Nagarathna et al. (2023)
Deep Learning (Multi-layer Feed-

forward Neural Network)

Collected from ADNI+ 

Kaggle datasets

Multi classifier: AD, MCI, 

and NC
93.38%

Shaziya and Zaheer (2021)

Machine Learning (Logistic 

Regression, SVM, Extreme Gradient 

Boosting, MLP)

PET images from 199 

participants.

Multi classifier: cognitive 

unimpairment (CU), MCI, 

and AD

AUC > 0.96 for CU vs. AD; AUC 0.88 

for MCI vs. AD; AUC 0.75 for MCI 

vs. CU

Tuvshinjargal and Hwang 

(2022)
Pre-trained model Kaggle

Predict AD using MRI 

dataset
77.46%

Ghazal and Issa (2022) Utilized transfer learning OrDS
Multi classifier: MID, 

NOD, MOD, and VMD
91.70%

Li et al. (2024)
a novel adaptive disease detection 

model named EAFP-Med ST
AuDS

Propose EAFP-Med, an 

efficient adaptive feature 

processing module based 

on prompts for medical 

image detection

97.60%

Our work Proposed Model AuDS
Multi classifier: MID, 

NOD, MOD and VMD
98.26%

The bold values indicate the optimum results obtained during several experiments.

TABLE 6 Results from running the ResNet152v2 with different hyperparameters values.

Trial No. Batch size Dropout Epochs Train accuracy (%) Test accuracy (%)

1 128 0.6 150 18.78 19.01

2 64 0.58 100 26.07 26.35

3 64 0.55 250 26.56 26.35

4 32 0.5 200 95.66 95.67

5 32 0.2 50 98.56 98.26

6 16 0.35 120 96.43 96.58

7 8 0.7 350 99.95 94.11

8 8 0.1 180 100 97.84

9 4 0.40 300 98.12 94.21

10 4 0.25 220 99.98 95.04

11 2 0.5 160 67.78 66.42

The bold values indicate the optimum results obtained during several experiments.
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 • The key performance metrics were training and testing accuracy, 
precision, recall, and F1 score. The results were summarized and 
illustrated in Table 10.

Table  10 shows how the different transfer learning models 
perform when classifying AD. As noticed from experiments, 
performance metrics vary as follows:

 • The best performance was achieved in ResNetV2 models, 
especially ResNet50V2, ResNet101V2, and ResNet152V2. These 
models reached high scores in accuracy, precision, recall, and 
F1-score, leading to them being the most suitable models for 
AD classification.

 • DenseNet models were accepted but not competitive with 
ResNetV2 models.

 • VGG models were not accepted for the AD classification due to 
their old architecture.

 • EfficientNet models were not suitable at all for this task as they 
might require fine-tuning.

 • MobileNet models might be  accepted in case of 
resource limitations.

In addition, it can be concluded that the proposed mathematical 
model (HPO model) outperforms traditional methods for fine-tuning 

hyperparameters for the ResNetV2 models (50 V2, 101 V2, 152 V2). 
As they are the best choices for high accuracy and reliable predictions.

Finally, it can be concluded that the proposed mathematical model 
(HPO model), which is proposed to find the hyperparameters of the 
transfer learning models, is robust and suitable for AD classification when 
applied with ResNetV2 models. Moreover, the proposed approach finds 
the optimum results under various experiments with AD.

5 Conclusion

In this study, a new optimization method (HPO) for selecting the 
best hyperparameter values to achieve better accuracy is applied over 
ResNet152V2. The HPO proved its strength against different 
optimizers Adam, SGD, and RMSprop. It is tested on AD to classify 
its different stages. The method needs to be applied and tested on 
other benchmarks. It is recommended that this model be used in 
medical device terminals to make real-time classification.

The major drawbacks that face such models are the training 
process, a huge number of computations that exceed the ability of 
ordinary machines, and dataset availability. For these reasons, research 
uses Kaggle and Google Colab platforms to perform computations to 
achieve better training and results. For dataset availability, it is 
recommended to collect more real-world MRIs.

TABLE 7 Results from ResNet152v2 model where dropout = 0.2 and batch size = 32.

Epochs Train accuracy Test accuracy Precision Recall F1-score

10 0.82 0.80 0.83 0.81 0.80

20 0.91 0.93 0.93 0.93 0.93

30 0.96 0.97 0.97 0.97 0.97

40 0.98 0.98 0.98 0.98 0.98

50 0.99 0.98 0.98 0.98 0.98

The bold values indicate the optimum results obtained during several experiments.

TABLE 8 Results from ResNet152v2 model where epochs = 50 and batch size = 32.

Dropout Train accuracy Test accuracy Precision Recall F1-score

0.1 0.98 0.98 0.99 0.98 0.98

0.2 0.99 0.98 0.98 0.98 0.98

0.3 0.28 0.28 0.07 0.25 0.11

0.5 0.90 0.92 0.93 0.92 0.92

0.7 0.97 0.97 0.97 0.97 0.97

0.8 0.96 0.98 0.98 0.98 0.98

0.9 0.95 0.96 0.97 0.96 0.96

The bold values indicate the optimum results obtained during several experiments.

TABLE 9 Results from ResNet152v2 model where epochs = 50 and dropout = 0.2.

Batch size Train accuracy Test accuracy Precision Recall F1-score

2 0.26 0.26 0.07 0.25 0.10

4 0.82 0.84 0.85 0.85 0.85

8 0.77 0.78 0.80 0.80 0.80

16 0.93 0.94 0.95 0.95 0.95

32 0.99 0.98 0.98 0.98 0.98

The bold values indicate the optimum results obtained during several experiments.
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The proposed approach can be used to enhance hyperparameter 
values for better accuracy. This method can be extended or used with other 
models. AD was classified accurately into four different stages exceeding 
ordinary methods that distinguish between AD and other brain diseases. 
In future work, we want to generalize and validate the HPO model against 
different diseases. Moreover, applying naturally inspired algorithms like 
genetic algorithms, ant colony, simulating annealing, coco search, and 
differential evolution to solve the objective function of the HPO model.
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TABLE 10 Results obtained from several models using mathematical model (HPO) hyperparameters value; epochs = 50, batch size = 32, and dropout = 0.2.

Model Train accuracy Test accuracy Precision Recall F1-score

MobileNet 0.66 0.66 0.7 0.67 0.68

MobileNetV2 0.61 0.56 0.61 0.56 0.56

EfficientNetB0 0.28 0.28 0.12 0.25 0.12

EfficientNetB1 0.28 0.28 0.07 0.25 0.11

EfficientNetB2 0.28 0.28 0.07 0.25 0.11

EfficientNetB3 0.29 0.27 0.15 0.26 0.15

EfficientNetB4 0.29 0.31 0.15 0.28 0.19

EfficientNetB5 0.26 0.26 0.07 0.25 0.10

EfficientNetB6 0.28 0.28 0.15 0.25 0.11

EfficientNetB7 0.28 0.28 0.07 0.25 0.11

DenseNet121 0.58 0.58 0.58 0.59 0.56

DenseNet169 0.61 0.58 0.62 0.59 0.58

DenseNet201 0.62 0.58 0.61 0.59 0.57

ResNet50 0.61 0.64 0.66 0.67 0.66

ResNet50V2 0.99 0.99 0.99 0.99 0.99

ResNet101 0.66 0.67 0.68 0.69 0.68

ResNet101V2 0.98 0.99 0.99 0.99 0.99

ResNet152 0.78 0.80 0.82 0.82 0.82

ResNet152V2 0.99 0.98 0.98 0.98 0.98

VGG19 0.53 0.56 0.55 0.58 0.56

VGG16 0.56 0.59 0.59 0.61 0.59

The bold values indicate the optimum results obtained during several experiments.
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