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General SIR model for visible and 
hidden epidemic dynamics
Igor Nesteruk *

Institute of Hydromechanics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

To simulate hidden epidemic dynamics connected with asymptomatic and 
unregistered patients, a new general SIR model was proposed. For some cases, 
the analytical solutions of the set of 5 differential equations were found, which 
allow simplifying the parameter identification procedure. Two waves of the pertussis 
epidemic in England in 2023 and 2024 were simulated with the assumption of 
zero hidden cases. The accumulated and daily numbers of cases and the duration 
of the second wave were predicted with rather high accuracy. If the trend will 
not change, the monthly figure of 9 new pertussis cases (as it was in January–
February 2023) can be achieved only in May 2025. The proposed approach can 
be recommended for both simulations and predictions of different epidemics.
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1 Introduction

Asymptomatic and unregistered cases are characteristic of almost all infectious diseases, 
in particular, SARS-CoV-2 (Mass coronavirus testing in Slovakia-a, 2020; Mass coronavirus 
testing in Slovakia-b, 2020; An experiment with mass testing for COVID-19 was conducted 
in Khmelnytsky, n.d.; Schreiber et al., 2023; Fowlkes et al., 2022; Shang et al., 2022) and 
pertussis (Craig et al., 2020) are no exception. The percentage of asymptomatic patients can 
be age dependent and lead to huge differences in registered numbers of cases for countries 
with young and old population (Davies et al., 2020; Nesteruk, 2024b; Nesteruk and Keeling, 
2023). Some theoretical estimations of the visibility coefficient β—the ratio of real infections 
to the registered ones can be found in Nesteruk (2024b), Nesteruk (2021e), Nesteruk (2021c), 
and Nesteruk (2021d). In this study we will use the concepts of the classical SIR (susceptible-
infectious-removed) model (Kermack and McKendrick, 1927; Weiss, 2013; Daley and Gani, 
2005; Keeling and Rohani, 2008; Cherniha, 2020; Mohammadi et al., 2021; Nesteruk, 2021a), 
its generalization for simulations of different epidemic waves (Nesteruk, 2021a; Nesteruk, 
2021b; Nesteruk, 2023b) and procedures of parameter identification (Nesteruk, 2023b; 
Nesteruk, 2017). Numerous improvements of SIR model (see, e.g., Hethcote, 2000; Nakamura 
et al., 2020; Britton, 2004; Pesco et al., 2014; Nesteruk, 2023a) do not take into account the 
visibility coefficient.

The obtained theoretical results will be applied for simulations of the pertussis (whooping 
cough) epidemic in England in 2023 and 2024 (Confirmed cases of pertussis in England by 
month, n.d.). This disease increases the risk of infant fatality and became a serious problem in 
many countries including the developed ones (Pesco et al., 2014; Confirmed cases of pertussis 
in England by month, n.d.). Numerical differentiation of the monthly numbers of new cases 
revealed two waves of the epidemic in England (before and after November 2023) (Nesteruk, 
2024a). Due to the absence of necessary amount of observations, SIR simulations were 
performed in Nesteruk (2024a) only for the first wave. In this study we will use the new 
approach for simulation of both waves of the pertussis epidemic and compare the predictions 
with the recent statistical data.
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2 Differential equations and initial 
conditions

For every epidemic wave i, let us divide the compartment of 
infectious persons I(t) (t is time) into visible (registered) and 
hidden (invisible/asymptomatic and unregistered) parts 

( ) ( )v hI I I= +  and suppose that these persons are appearing 
according to the visibility coefficient 1iβ ≥  and removing with 
rates ( ) ( )v v

i Iρ and ( ) ( )h h
i Iρ . Then the general SIR model (Nesteruk, 

2021a; Nesteruk, 2021b; Nesteruk, 2023b) takes the 
following form:

 
( ) ( )( )v h

i
dS S I I
dt

α= − +
 (1)
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( ) ( )( ) ( ) ( )

v
vv h vi

i
i

dI S I I I
dt

α ρ
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= + −
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hi i v h h
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( ) ( ) ( )
h

h h
i

dR I
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(5)

The compartment of removed persons R(t) is also divided into 
visible (registered) and hidden parts ( ) ( )v hR R R= + . Infection and 
removal rates ( iα , ( )v

iρ , ( )h
iρ ) and the visibility coefficient iβ  are 

supposed to be constant for every epidemic wave, i.e., for the time 
periods: 1, 1,2,3,i it t t i∗ ∗

+≤ ≤ = …. Summarizing Equations 1–5 yields  
zero value of the derivative ( ) ( ) ( ) ( )( ) /v h v hd S I I R R dt+ + + + .  

Then the sum:

 
( ) ( ) ( ) ( )v h v h

iN S I I R R= + + + +  (6)

must be constant for every epidemic wave. We will consider the 
value Ni to be an unknown parameter of the model corresponding 
to the i-th wave, which is not equal to the known volume of 
population and must be estimated by observations. There is no need 
to assume that before the outbreak all people are susceptible, since 
many of them are protected by their immunity, distance, lockdowns, 
etc. Thus, we will not reduce the problem to a 4-dimensional one. 
It means that the solution can be obtained by numerical integration 
of the set of 5 differential Equations 1–5. Nevertheless, there are 
some separate cases, when analytical solutions are possible (see 
next Section).

Taking into account Equation 6, the initial conditions for the set 
of Equations 1–5 at the beginning of every epidemic wave it∗ can 
be written as follows:

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

, , ,v h v h
i vi i hi i vi i

hi i i vi hi vi hi

I t I I t I R t R R t

R S t N I I R R

∗ ∗ ∗ ∗

∗

= = = =

= − − − −
 

(7)

If at moment it∗ all previously infected persons are removed, we can 
take into account only cases starting to appear during i-th wave and 
use the initial conditions:

 1, 1, 0, 0vi hi i vi hiI I R Rβ= = − = =  (8)

3 Examples of analytical solutions

Let us introduce the functions corresponding to the accumulated 
numbers of visible and hidden cases:

 
( ) ( ) ( ) ( ) ( ) ( ),v v v h h hV I R V I R= + = +  (9)

Then it follows from Equations 2–5 that

 

( )
( ) ( )( )

( ) ( ) ( ) ( )( )1
,

v h
i iv h v hi

i i

dV dVS I I S I I
dt dt

β αα
β β

−
= + = +

 
(10)

Dividing Equation 10 by Equation 1 yeilds:

 

( ) ( ) ( )11 ,
v h

i

i i

dV dV
dS dS

β
β β

−
= − = −

 
(11)

and simple linear solutions taking into account initial Equation 7:

 
( ) ,v i vi hi vi hi

vi vi
i i

S N I I R RV I R
β β

− − − −
= − + + +

 
(12)

 

( ) ( ) ( )( )1 1
.i i i vi hi vi hih

hi hi
i i

S N I I R R
V I R

β β

β β

− − − − − −
= − + + +

 
(13)

Equations 12, 13 allow obtaining simple linear relationship:

 
( ) ( ) ( ) ( )( )1 1h v

i i vi vi hi hiV V I R I Rβ β= − − − + + +

which demonstrates that the ratio of total accumulated cases 
( ) ( )v hV V V= +  to the registered ones:

 ( )
( )( )

( )
1i vi vi hi hi

iv v
I R I RV

V V

β
β

− + − −
= −

 
(14)

is not constant and equals iβ  only approximately at large ( )vV  
numbers. Equation 14 limits the accuracy of the approach used in 
Nesteruk (2021e), Nesteruk (2021c), and Nesteruk (2021d).
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Introducing

 
( ) ( ) ( ) ( ) ( ) ( ), v hv h v h

i iI I I I I Iρ ρ∗= + = +  (15)

summarizing Equations 2, 3 and dividing by Equation 1 yield the 
following differential equation:

 
1

i

dI I
dS ISα

∗
= − +

 
(16)

In 3 separate cases:

 I ( ) ( )v h
ii iρ ρ ρ= =

 II ( ) ( ) ( ),v h vI I I I>> ≈ , ( )v
i iρ ρ=

 III ( ) ( ) ( ),v h hI I I I<< ≈ , ( )h
i iρ ρ=

Equation 16 simplifies and has an analitycal solution taking into 
account the initial Equation 7:

 
1 ,i

i

dI
dS S

ρ
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≅ − +
 

(17)
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i vi hi
i i vi hi vi hi

SI S N R R
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ρ
α

≅ − + − − +
− − − −  

(18)

Equations 17, 18 exact in the case (I) and approximate in cases (II) 
and (III).

Putting Equation 18 into Equation 1 and integration yield:

 ( ) ( ),i iF S t tα ∗≅ −
 

(19)
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(20)

It follows from Equations 1, 2, 15 that:

 

( ) ( ) ( )1 ,
v vv

i

i i

IdI
dS SI

ρ
β α

= − +
 

(21)

Taking into account that

 
1dF

dS SI
≅ −

(see Equations 18, 20), the solution of the non-homogenous linear 
Equation 21 satisfying the first initial Equation 7 can be written as follows:
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(22)

With the use of Equations 9, 15 it is possible to express other functions 
as follows:

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

;

;

h v

v v v

h h h

I S I S I S

R S V S I S

R S V S I S

≅ −

≅ −

≅ −
 (23)

Then for every value of S, all unknown functions can be calculated 
with the use of Equations 12, 13, 18, 22, 23. Corresponding moments 
of time can be  found with the use of Equations 19, 20. Thus, 
Equations 12, 13, 18–20, 22, 23 yield an approximate analytical 
solution of the set of differential Equations 1–5 with the initial 
Equation 7. In the case (I) and when ( )vI I= , this solution is exact. 
For ( )vI I= , there is no need in Equations 22, 23 and corresponding 
formulas obtained in Nesteruk (2021a), Nesteruk (2021b), Nesteruk 
(2023b) are also valid.

4 Examples of parameter 
identifications and predictions

The analytical solution simplifies the procedure of identification 
of unknown parameters, since there is no need in numerical 
integration of differential Equations 1–5. It particular, having the 
set of accumulated cases ( )v

jV registered at moments tj, we  can 
calculate corresponding values Sj with the use of the linear 
Equation 12 for any values of unknown constant parameters 
appearing in Equations 1–7. Then Equation 20 allows calculating 
values Fj = F(Sj). Due to the linear relationship (Equation 19 shows 
that there is a linear dependence between time and the function F 
(Equation 20), which depends on the accumulated numbers of 
cases), standard linear regression formulas (Draper  and Smith, 
1998) can be  used to calculate the correlation coefficient r and 
values of parameters iα  and it∗. The optimal values of model 
parameters (providing the best fitting between the theoretical 
( ) ( )vV t  curves and the results of observations ( )v

jV ) correspond to 
the maximum value of the correlation coefficient r. Thus, the 
parameter identification problem can be reduced to the problem of 
searching the maximum of complicated but analytical function r. 
For ( )vI I=  (a completely visible epidemic), such approach was 
successfully used to simulate and predict the dynamics of 
mysterious children disease (Nesteruk, 2017), COVID-19 pandemic 
(Nesteruk, 2021a; Nesteruk, 2021b; Nesteruk, 2023b) and the 
pertussis epidemic in England (Nesteruk, 2024a).

Let us illustrate the parameter identification procedure for two 
waves of the pertussis epidemic in England in 2023 and 2024 
discussed in (Nesteruk, 2024a). The accumulated confirmed 
numbers of cases ( ( )v

jV ) and corresponding moments of time tj are 
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listed in Table 1 according to the official site of UK government 
[(Confirmed cases of pertussis in England by month, n.d.), version 
available on 10 August 2024, the last 4 figures were taken from 10 
December 2024 version]. The values ( )v

jV were used to calculate 
approximate daily numbers of new cases dV/dt at moments tj 
according to the Equation 1 from (Nesteruk, 2024a) (see the last 
column in Table 1).

Since the general problem contains 10 unknown parameters, their 
identification needs high performance computing and applying AI 
methods even for the analytical solution Equations 12, 13, 18–20, 22, 23.  
When this solution is approximate, the optimal values of parameters will 
contain discrepancies, which can reduce the accuracy of predictions. For 
our example, let us take the case of exact solution ( ) ( )1vI I β= =  and 
assume that at the beginning of every new epidemic wave all infectious 
persons from the previous waves are removed. Then we can use initial 
Equation 8, perform simulations and then add cases accumulated at 
moments when the monthly numbers of visible cases started to increase. 
For every wave we will have only four unknown parameters Ni, iα , ( )v

iρ
and it∗. Due to linear relation 19 and using linear regression, only two of 
these parameters are independent.

The first and second epidemic waves were simulated with the use 
of ( )v

jV  and tj corresponding to j = 3–9 and j = 11–18, respectively. 
The optimal values of parameters (corresponding to the maximum of 
correlation coefficients r = 0.999721131761662 
(0.999822556136920)) are:

Ni = 50739.992 (3657890.47292358);
iα  =1.50488802805402e-05 (2.11266650706657e-06) [day]−1;
( )v
iρ =0.752503596035381 (7.7088126606047) [day]−1;

it∗=89.1566573802040 (333.429529143536) days.

(figures in brackets correspond to the second wave). It should 
be noted that these optimal values are very different for the first 
and second waves and differ from the figures in Nesteruk (2024a) 
for the simulation of the first wave using observations with 
j = 1–10.

Using these optimal values in the analytical solution 
Equations 10, 12, 18–20, 22, 23 yielded the theoretical curves  
shown in Figure 1 (solid and dashed for the first and the second 
wave, respectively). The predicted values (see blue and black 
“crosses” for j = 19–22, July–October 2024) are in good agreement 
with the theoretical blue and black curves. To estimate the accuracy 
of 4-month prediction, let us take the accumulated number of 
visible cases ( )

22
vV  =15,309 corresponding to the end of October 

2024 (see Table 1) and compare with the theoretical value ( )
670

v

t
V

=

= 17,430 corresponding to the blue dashed line in Figure 1. After 
adding 505 cases accumulated at t10 and extracted for the 
simulation of the second wave (compare blue “crosses” and “circles” 
in Figure  1), we  obtain the accuracy (17,935-15,309)/15,309 
around 17%. Since the final number of visible cases decreases with 

TABLE 1 Accumulated numbers of confirmed pertussis cases in England in 2023 and 2024 and estimations of the average daily numbers of visible cases.

Months, starting 
with January 
2023

Days, starting with 
1 January 2023, tj

Accumulated numbers of visible 
cases, ( )V

v
j , (Confirmed cases of 

pertussis in England by month, n.d.)

Calculated daily numbers of new 
visible cases at moments tj dV/dt, 

equation 1 in Nesteruk (2024a)

1 31 9 –

2 59 18 0.35426

3 90 30 0.52688

4 120 50 0.86559

5 151 83 1.41559

6 181 136 2.04462

7 212 208 2.66129

8 243 301 3.20

9 273 403 3.34516

10 304 505 3.47849

11 334 615 5.75269

12 365 858 12.87096

13 396 1,413 24.79644

14 425 2,332 38.86096

15 456 3,759 58.23280

16 486 5,872 84.44247

17 517 8,924 89.67581

18 547 11,351 67.65968

19 578 13,038 44.27419

20 609 14,096 28.79785

21 639 14,800 19.94301

22 670 15,309 –
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the increase of the visibility coefficient (see the next Section), 
we can expect to obtain a lower theoretical value ( )

670

v

t
V

=

and 

better accuracy after the real visibility coefficient will be calculated 
and taken into account. The accuracy of 17% is comparable with 
the long-time predictions for the first waves of the COVID-19 in 
different countries (Nesteruk, 2021a) and even for the case 1β =  is 
likely to allow healthcare professionals to develop the right strategy. 
The average daily numbers of new cases will be less than 1.0 only 
in March 2025. If trend will not change, the monthly figure of 9 
new cases (as it was before starting the first wave, see Table 1) can 
be achieved only in May 2025.

5 Examples of exact solutions at 
different values of the visibility 
coefficient

The use of initial Equation 8 allows reducing the numbers of 
unknown parameters by 4. Then, Equations 12, 14 yield

 
( ) ,v i

i

N SV
β
−

=
 

(24)

 
( )v

iV Vβ=  (25)

According to Equation 25 the real accumulated numbers of new cases 
V are iβ  times higher than visible figures ( )vV registered during the 
fixed epidemic wave, if all infectious patients were removed before this 
wave started.

In the case (I), i.e., equal removing rates for visible and hidden 
patients ( ) ( )v h

ii iρ ρ ρ= = , another simplification can be obtained with 
the use of Equation 18:

 
lni

i
i i i

SI S N
N

ρ
α β

= − + +
−  

(26)

Assuming that spreading the infection stops when the real 
number of infectious I (visible and hidden) is less than 1.0, the 
corresponding final number of susceptible Sf can be obtained as a 
solution of the non-linear equation:

 
1 ln fi

f i
i i i

S
S N

N
ρ
α β

+ = +
−  

(27)

following from Equation 26 and allowing us to calculate the 
corresponding final accumulated numbers of visible and total cases 
with the use of Equations 24, 25.

Figure  2 represents the results of calculations for the optimal 
values of parameters corresponding to two pertussis waves in England 
(see previous Section) and the first COVID-19 pandemic waves in 
Austria and the UK (in brackets), (Nesteruk, 2021a):

Ni = 75176.032 (479782.4);
iα  =1.924971386379e-05 (9.1371956639e-07) [day]−1;
( )v
iρ =1.29635017900866 (0.330545378991741) [day]−1.

Dashed lines demonstrate that the final accumulated 
numbers of all cases (Equations 25, 26) very slightly depend on 
the visibility coefficient. The final accumulated numbers of 
visible cases (Equations 24, 26) diminish with the increase of iβ  
(see solid curves). The values of other parameters are fixed and 

FIGURE 1

Accumulated numbers of visible pertussis cases (blue curves, the first Equation 9); the average daily numbers of new cases (black curves, the first 
Equation 10); numbers of infectious persons (red curves, Equation 18). “Circles” represent the confirmed numbers of cases ( )v

jV  taken for 

identification of parameters of the first (j = 3–10) and second (j = 11–18) waves; blue “crosses” – all confirmed numbers of cases ( )v
jV listed in Table 1; 

black “crosses” – results of calculations of approximate daily numbers of new cases at moments tj listed in the last column of Table 1.
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correspond to the case iβ =1. The values ( )v
jV  for j = 20, 21, 22, 

which are smaller then theoretical prediction for the second 
pertussis wave (compare blue “crosses” and the blue dashed line 
in Figure  1), reflect reducing the final value of ( )vV for iβ >1. 
Nevertheless, good estimations of the visibility coefficient can 
be obtained only with the use of all parameters. Since removing 
rates can be  different for symptomatic and asymptomatic 
patients, a general parameter identification procedure needs a 
numerical solution of the set of differential Equations 1–5 and 
huge numbers of calculations, which can be performed only with 
the use of high performance computing and AI methods. The 
full parameter sensitivity analysis will be  considered in 
future research.

With the use of Equations 24, 10, 26 can be rewritten as follows:

 
( )

( )
ln ,

v
v i i i

i
i i i

N VI V
N

ρ ββ
α β

−
= +

−  
(28)

 

( )
( )( ) ( )( ),

v
v vi

i i i i i
i

dV dVN V I N V I
dt dt

α β α β
β

= − = −
 

(29)

Figure 3 represents the calculations of real number of infectious 
I (visible and hidden, Equation 28) and visible and real numbers 
of new daily cases (Equation 29) versus accumulated numbers of 
visible cases ( )vV  for different values of the visibility coefficient. 
Values of other parameters correspond to the second pertussis 
wave in England (listed in the previous Section).

The maximum values of infectious slightly increase with the 
increase of the visibility coefficient (compare red lines in Figure 3). 

The black and the solid blue curves show the same but more 
pronounced trend for the real numbers of new daily cases. The 
positions of the maxima on these lines are very close to ones on the 
red curves. Corresponding moments of time can be calculated with 
the use of Equations 19, 20, 24. Thus, the average daily numbers of 
visible cases reflects trends in real numbers of infectious persons 
(symptomatic and asymptomatic) and can be  used to control 
epidemics. The numbers of new visible daily cases decrease with the 
increase of visibility coefficient (for fixed values of other parameters 
and ( ) ( )v h

ii iρ ρ ρ= = , see blue curves in Figure 3). The final numbers 
of visible cases demonstrate the same trend (see solid curves in 
Figure 2).

6 Conclusion

To simulate hidden epidemic dynamics connected with 
asymptomatic and unregistered patients, a new general SIR model 
was proposed containing 5 unknown functions. For some cases, the 
analytical solutions of the set of 5 differential equations were found 
which allow simplifying the parameter identification procedure. 
Two waves of the pertussis epidemic in England in 2023 and 2024 
were simulated for the case of zero hidden cases. Observations of 
accumulated visible numbers of cases during 4 months revealed 
rather high accuracy of predictions. If trend will not change, the 
monthly figure of 9 new pertussis cases (as it was in January–
February 2023) can be achieved only in May 2025. The proposed 
approach can be recommended both for preliminary simulations of 
different epidemics (supposing zero hidden cases) and for further 
research, using presented analytical solutions or numerical 
integration of differential equations. The theoretical estimations of 
numbers of hidden cases will allow healthcare professionals to 

FIGURE 2

Solid curves represent final numbers of visible (registered) cases (Equations 24, 27) dashed ones–final numbers of all cases (registered and unregistered, 
Equations 25, 27). Back and blue lines correspond to the optimal values of parameters (listed in previous Section) for the first and second pertussis 
waves in England, respectively. Magenta and red curves show the results for the first COVID-19 waves in Austria and the UK (Nesteruk, 2021a), 
respectively.
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know the real sizes of epidemics and to develop the right strategy 
without expensive mass testing.
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FIGURE 3

Solid, dashed and dotted curves represent calculations for values of the visibility coefficient 1; 2 and 3, respectively. Other values of parameters 
correspond to the second pertusis wave in England in 2023 and 2024 (listed in the previous Section). Red color corresponds to the real number of 
infectious persons (symptomatic and asymptomatic, Equation 28). Blue lines represent visible numbers of new daily cases; black ones - real (registered 
and hidden) numbers of new daily cases (Equations 28, 29).
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