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Introduction: Lung ultrasound (LUS) has become an essential imaging modality

for assessing various pulmonary conditions, including the presence of B-line

artifacts. These artifacts are commonly associated with conditions such as

increased extravascular lungwater, decompensated heart failure, dialysis-related

chronic kidney disease, interstitial lung disease, and COVID-19 pneumonia.

Accurate detection of the B-line in LUS images is crucial for e�ective diagnosis

and treatment. However, interpreting LUS is often subject to observer variability,

requiring significant expertise and posing challenges in resource-limited settings

with few trained professionals.

Methods: To address these limitations, deep learning models have been

developed for automated B-line detection and localization. This study introduces

YOLOv5-PBB and YOLOv8-PBB, two modified models based on YOLOv5 and

YOLOv8, respectively, designed for precise and interpretable B-line localization

using polygonal bounding boxes (PBBs). YOLOv5-PBB was enhanced by

modifying the detection head, loss function, non-maximum suppression, and

data loader to enable PBB localization. YOLOv8-PBB was customized to convert

segmentation masks into polygonal representations, displaying only boundaries

while removing the masks. Additionally, an image preprocessing technique was

incorporated into the models to enhance LUS image quality. The models were

trained on a diverse dataset from a publicly available repository and Ugandan

health facilities.

Results: Experimental results showed that YOLOv8-PBB achieved the highest

precision (0.947), recall (0.926), and mean average precision (0.957). YOLOv5-

PBB, while slightly lower in performance (precision: 0.931, recall: 0.918, mAP:

0.936), had advantages in model size (14 MB vs. 21 MB) and average inference

time (33.1 ms vs. 47.7 ms), making it more suitable for real-time applications in

low-resource settings.

Discussion: The integration of these models into a mobile LUS screening tool

provides a promising solution for B-line localization in resource-limited settings,

where accessibility to trained professionals may be scarce. The YOLOv5-PBB

and YOLOv8-PBB models o�er high performance while addressing challenges

related to inference speed and model size, making them ideal candidates for

mobile deployment in such environments.
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1 Introduction

Lung ultrasound (LUS) has emerged as a vital imaging tool

in the field of pulmonary and critical care medicine due to

its non-invasiveness, portability, and safety (Zhou et al., 2024).

Unlike traditional imaging modalities such as X-rays or computed

tomography scans, LUS can be performed at the point of care,

providing rapid diagnostic insight without needing radiation

exposure (Yang et al., 2023). This advantage is particularly relevant

in the context of respiratory diseases, where timely and accurate

diagnosis can significantly impact patient outcomes. The basis of

LUS is the relative amounts of fluid and air (the air/fluid ratio)

in the lung, which defines the characteristics of the image seen

in LUS and may vary depending on the lung’s level of aeration.

A healthy lung would mostly be filled with air, and because of

the high mismatch in acoustic impedance between the air and the

tissue, the ultrasound waves are reflected to the transducer during

scanning. These reflected waves bounce back and forth between the

pleural line and the transducer multiple times before they are finally

detected, creating a series of horizontal lines on the LUS image

at regular intervals. These horizontal lines, commonly known as

A-lines, are seen parallel to the pleural line (Demi et al., 2023)

(Figure 1a). When lung health deteriorates, air volume reduces,

allowing less attenuating substances such as fluid or other biological

materials to accumulate. This allows the LUS field to penetrate

deeper into the lung, leading to greater visibility of vertical artifacts

like B-lines (Soldati et al., 2020). Recent research suggests that B-

lines are generated by the internal reflection of LUS waves within

semi-aerated alveoli, which act as acoustic traps (Demi et al.,

2020). The B-lines normally appear as hyper-echoic discrete vertical

artifacts that originate from a point along the pleura-line and lie

perpendicular to the latter (Demi et al., 2023) (Figure 1b). In a

severe diseased state, the B-lines may merge to form confluent B-

lines, spanning the entire intercostal space (Fischer et al., 2022)

(Figure 1c).

In clinical practice, B-lines are among the most important

artifacts in LUS for detecting and evaluating the severity of

pulmonary congestion in patients with conditions such as

pulmonary edema, decompensated heart failure, kidney disease,

pneumonia, interstitial lung disease, or infections caused by SARS-

CoV-2 such as coronavirus disease 2019 (COVID-19) (Demi et al.,

2023; Luna et al., 2022). Precise localization of B-lines in LUS

images allows clinicians to differentiate between various lung

pathologies, understand the extent of lung involvement, and make

informed decisions regarding patient management (Pic̆uljan et al.,

2020). However, unlike ultrasound imaging of other organs and

tissues, LUS does not offer a direct anatomical representation of

the lung parenchyma in its images (Soldati et al., 2019). This is

because the high air content in the lung obstructs ultrasound waves

from penetrating the parenchyma (Demi et al., 2023). Instead,

various scattering phenomena are produced and shaped by the size

and distribution of air-filled compartments, such as alveoli, which

prevent conventional B-mode anatomical imaging (Gino et al.,

2020). As a result, LUS relies on the observation and interpretation

of imaging artifacts, such as A-lines and B-lines. However, manual

interpretation of LUS imaging artifacts is subject to intra- and inter-

observer variability and requires substantial expertise (Lucassen

et al., 2023). This variability presents a significant challenge,

particularly in resource-limited settings where trained professionals

may be unavailable. Automating the detection and localization of

B-lines through advanced computational methods, such as deep

learning, presents an opportunity to standardize LUS interpretation

and extend its utility in diverse clinical environments.

Deep learning (DL), a subset of artificial intelligence, has shown

remarkable success in image analysis tasks across various domains,

including medical imaging (Zhao et al., 2022). It has recently drawn

much attention in LUS imaging, particularly for tasks such as image

classification, artifact detection, and segmentation (Howell et al.,

2024). The most commonly used deep learning techniques for

vision-related tasks rely on convolutional neural networks (CNNs)

because of their powerful ability to extract features from visual

data. The CNN architecture comprises convolutional layers that

automatically learn and extract hierarchical features from input

data, allowing it to identify complex patterns in images efficiently.

Despite the potential of DL in automating LUS interpretation,

several challenges remain. The heterogeneous nature of ultrasound

data, which varies based on patient demographics, equipment

settings, and scanning protocols, presents a significant hurdle for

model generalization. Additionally, the complex appearance of

B-lines, which can be affected by factors such as noise and the

presence of other artifacts (e.g., A-lines, pleural irregularities),

requires models that are robust and capable of distinguishing

between different types of echogenic patterns. Addressing these

challenges is essential for developing deep learning solutions that

are reliable and widely applicable.

By leveraging large annotated datasets, DL models, such as You

Only Look Once (YOLO), can be trained to identify and localize

B-lines in LUS, potentially replicating or surpassing human-level

performance. YOLO is a family of real-time object detection

models renowned for their efficiency and speed in identifying and

localizing objects within images. Unlike traditional object detection

algorithms that rely on region-based approaches, YOLO redefines

the problem by treating object detection as a single regression task.

It predicts both class probabilities and bounding box coordinates

for objects in an image simultaneously, making it a highly

efficient framework for real-world applications requiring speed and

precision (Joseph and Ali, 2017). The evolution of YOLO, from

its early versions to the more advanced YOLOv5 and YOLOv8,

showcases remarkable improvements in precision, scalability,

and functionality (Jocher et al., 2023). YOLOv5 introduced

optimizations such as better anchor box mechanisms and lighter

architectures, while YOLOv8 integrates advanced segmentation

capabilities, enabling pixel-wise predictions alongside bounding

box detections (Hussain, 2024). These enhancements make

YOLO adaptable to various tasks, including object detection,

segmentation, and localization in medical imaging.

Recent studies have explored various methods for LUS image

analysis, including the localization and segmentation of B-

lines (Cristiana et al., 2020; Van Sloun and Demi, 2020; Hamideh

et al., 2021; Sourabh et al., 2018; Subhankar et al., 2020; Zhao

et al., 2022; Howell et al., 2024). However, the models proposed

in Cristiana et al. (2020) and Sourabh et al. (2018) face challenges

in accurately capturing the shapes of B-line artifacts, while

those in Van Sloun and Demi (2020), Hamideh et al. (2021),
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FIGURE 1

Examples of LUS images captured during data collection, illustrating A-line and B-line LUS imaging artifacts. (a) In a healthy lung, ultrasound waves

are reflected at the pleura, resulting in horizontal reverberation artifacts known as A-lines. (b) As fluid volume increases, vertical artifacts (B-lines)

become common, characterized by bright lines that originate from the pleural line. (c) In severe cases, B-lines may merge together and become

confluent, spanning the entire intercostal space.

Subhankar et al. (2020), Zhao et al. (2022), Howell et al. (2024),

and Lucassen et al. (2023) fail to preserve the fine-grained details

of the artifacts, diminishing their interpretability. Additionally,

none of these models have been incorporated into a mobile LUS

screening tool for deployment in resource-constrained settings.

To address these limitations, there is need for a model that can

accurately capture the shapes and fine-grained details of B-line

artifacts, while also being integrated into a mobile LUS screening

tool for use in resource-limited settings. This study aims to bridge

these gaps by developing amore precise and interpretablemodel for

B-line artifact localization, ultimately improving the accessibility

and effectiveness of LUS analysis in underserved environments.

This article explores the adaptation of YOLOv5 and YOLOv8

object detection models for precise localization of B-line artifacts

in lung ultrasound (LUS) using polygonal bounding boxes (PBBs).

YOLOv5, an anchor-based detection model, and YOLOv8,

an anchor-free variant with improved feature extraction and

segmentation capabilities, were both employed to assess their

their accuracy, inference speed, and computational complexity

in localizing B-line artifacts. To achieve PBB localization in

YOLOv5, modifications were made to the detection head,

non-maximum suppression function, loss function, and data

loader. Meanwhile, in the YOLOv8 segmentation model,

the post-processing was customized to fit polygons onto the

segmented mask while removing the mask to preserve the

fine-grained details of B-line artifacts. Additionally, a tailored

image preprocessing technique, developed using the OpenCV and

Keras-OCR libraries, was integrated into the models to enhance

LUS image quality by extracting the region of interest (RoI)

and eliminating ultrasound text labels. The method first applies

Otsu’s thresholding to differentiate foreground objects from the

background, followed by morphological operations to refine region

boundaries. OpenCV’s contour detection algorithm is then used

to identify and extract the RoI. Subsequently, the Keras-OCR

identifies ultrasound text labels and applies a mask to highlight

them. Furthermore, the models have been incorporated into a

mobile LUS screening tool for deployment in resource-limited

areas. The main contributions of this study can be summarized

as follows.

1. We improved the quality of LUS images by implementing a

customized image preprocessing technique that uses OpenCV

and Keras-OCR libraries to extract the region of interest (RoI)

from the image and remove ultrasound text labels.

2. We modified the YOLOv5 object detection model for PBB

localization of B-line artifacts by adjusting the detection head,

non-maximum suppression function, loss function, and data

loader within its architecture.

3. We adapted the YOLOv8 segmentation model by customizing

its post-processing function to fit polygons onto the segmented

mask, while preserving the fine-grained details of the B-line

artifacts.

4. We integrated the model, featuring a smaller size and faster

inference, into a mobile LUS screening tool for deployment in

resource-constrained settings.

The rest of the paper is organized as follows. Section 2 reviews

related works, while Section 3 outlines the methods used in the

study. The results are presented in Section 4. Section 5 illustrates

the integration of themodel into the LUS system. Section 6 provides

a discussion, and Section 7 concludes the paper.

2 Related work

To date, several studies have investigated the detection of B-

line artifacts in LUS using DL with different techniques, including

gradient-based class activation mapping (Grad-CAM), rectangular

bounding box (RBB), single-point and segmentation. For example,

Cristiana et al. (2020) intended to quantify the evaluation of B-lines

in LUS. They focused on the binary classification of the presence

or absence of B-lines with a sensitivity of 93% and specificity of

96%. In addition, they attempted to measure the severity of B-

lines on a scale of 0–4. Although this study showed potential,

it is not transparent enough to describe how the model makes

predictions, which reduces the clinicians’ trust toward the model

for computer-assisted diagnosis (Choy et al., 2018). Differently,

Van Sloun and Demi (2020) proposed a DL model for automatic

B-line detection in LUS image frames, using Grad-CAM, with

the possibility of being implemented in real-time at 276 frames

per second. Although Grad-CAM provides visual insights into

the model’s decision-making process (Talaat et al., 2024), its

precision in delineating B-line boundaries is limited, reducing its

effectiveness for fine-grained localization. Additionally, in LUS
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images containing multiple closely spaced B-lines, the generated

heatmapsmay overlap, making it challenging to interpret the B-line

patterns (Tjoa and Guan, 2020). Similarly, Hamideh et al. (2021)

integrated long short-termmemory (LSTM) network and temporal

attention mechanism to localize B-lines in LUS videos using spatial

attention map (SAP). The model could localize the most salient

B-line regions both spatially and temporally with a correlation

coefficient of 0.67 and an IoU of 69.7%, respectively. However,

the SAP approach highlights B-line regions broadly rather than

pinpointing the exact boundaries of the artifact, making it difficult

to understand the semantic context of the artifacts. In addition,

the complex design of LSTM frequently strains the hardware (Yang

et al., 2023). In 2018, Sourabh et al. (2018) presented a single-shot

object detector for localizing pleural line, A-line artifacts, B-line

artifacts, pleural effusion, and lung consolidations in swine lung

ultrasound images. The authors implemented the RBB localization

technique, and their model attained at least 85% in sensitivity

and specificity for all features, except B-line sensitivity. While this

strategy of RBB detection is simple and shows promise, it does

not capture the exact shape and orientation of B-line artifacts.

In most cases, some parts of the object might be left out, or

irrelevant background might be included, leading to unnecessary

computational overhead or false positives/negatives in detection

tasks. In addition, since all data were collected from animals with

induced pathology, further research is needed to see whether the

model can be generalized to human LUS videos.

Other researchers have presented a segmentation approach

for B-line detection in LUS. In 2020, Subhankar et al. proposed

a model based on a spatial transformers network to segment

healthy lung features and COVID-19 imaging biomarkers in LUS

with an accuracy of 96%, utilizing this to develop a preliminary

approach to severity assessment (Subhankar et al., 2020). Zhao

et al. (2022) trained deep neural networks (DNNs) on simulated

LUS images to segment B-line artifacts and the (DNNs) attained

mean dice similarity coefficient (DSC) of 0.45. Relatedly, Howell

et al. (2024) presented a lightweight U-Net model to segment

the ribs, pleural line, A-lines, discrete and confluent B-lines in

B-mode images of a COVID-19 lung tissue-mimicking phantom

with mean DSC of 0.74. While these segmentation techniques in

Subhankar et al. (2020), Zhao et al. (2022), and Howell et al.

(2024) allow precise delineation of features, it is challenging to

understand the meaning or significance of specific regions within

the mask without additional context. Alternatively, Lucassen et al.

(2023) proposed a segmentation network, comprising an ensemble

of EfficientNet-B0 and U-Net decoder for single-point localization

of B-lines. The network was trained using single-point annotations

located where B-lines originate from the pleura. Although this

technique can predict the landmark locations of discrete B-lines

as single points with an F1-score of 0.65, the prediction of B-

line origins can coalesce for merged B-lines or discrete B-lines in

close proximity, making imprecise predictions of B-lines origins on

the pleura.

In summary, various deep learning approaches have been

investigated for detecting and localizing B-line artifacts in LUS,

each with distinct advantages and limitations. The classification

model in Cristiana et al. (2020) achieves high sensitivity and

specificity but lacks interpretability, which may reduce clinical

trust. Methods like the Grad-CAM-based approach in Van Sloun

and Demi (2020) and the SAP-based technique in Hamideh et al.

(2021) provide insights into model predictions and localization

but do not capture the precise boundaries of B-lines. The

RBB method in Sourabh et al. (2018) is simple but limited in

accurately representing the shape, orientation, and generalizability

of artifacts to human data. Segmentation models proposed

in Subhankar et al. (2020), Zhao et al. (2022), and Howell

et al. (2024) excel in delineating features but lack contextual

interpretability. Meanwhile, the single-point localization approach

in Lucassen et al. (2023) effectively detects discrete B-lines

but faces challenges with merged or closely spaced artifacts.

These findings emphasize the need for further development

of advanced, interpretable, and clinically adaptable models to

address the complexities of B-line detection and localization

in LUS.

3 Methods

3.1 Data collection and preprocessing

The data used in this study comprise a publicly available dataset

and a locally curated dataset, given the name of the Mulago and

Kiruddu Lung Ultrasound Dataset (M-K LUS), of patients with

lung disease. Both datasets were devoid of any patient-identifiable

information, ensuring compliance with privacy regulations and

preserving anonymity throughout the research process.

3.1.1 Public dataset
We downloaded 113 LUS videos from https://github.com/

nrc-cnrc/COVID-US to https://github.com/jannisborn/covid19_

pocus_ultrasound and selected 88 videos captured with a convex

ultrasound probe. We focused on these LUS videos because our

locally curated data included image frames obtained using the same

probe type. Next, we divided the video data into training and

validation sets at the patient level before extracting image frames,

ensuring that all frames from a single video were assigned to the

same set. Using a Python program, we extracted image frames at

a rate of 5 Hz, yielding an average of 10 ± 4 frames per video,

and a total of 926 images. In consultation with radiologists, we

selected 212 unique images (170 for training and 42 for validation)

containing B-line artifacts for annotation. Figure 2a shows a sample

of image frames with B-lines preprocessed from a public dataset.

3.1.2 M-K LUS dataset
Three senior radiologists, each with more than 10 years of

experience in LUS, collected B-mode LUS images from patients

suspected of COVID-19 or other pulmonary diseases. The patients

were enrolled in a clinical study conducted at Mulago and

Kiruddu referral hospitals in Uganda. The study obtained ethical

approval from the Mulago Hospital Institutional Review Board and

the Uganda National Council for Science and Technology. The

enrolled patients provided written consent, and the radiologists

conducted bedside LUS scans on them. All lung ultrasound scans

were performed using Clarius C3 curvilinear (Clarius Mobile

Health Corp, Burnaby, BC) and Philips Lumify C5-2 curvilinear

(Philips Ultrasound, Bothell, WA, USA) handheld ultrasound
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FIGURE 2

A representation of preprocessed LUS image frames from public and M-K LUS datasets. (a) Public dataset. Examples of image frames containing

B-lines, extracted from LUS video data using a Python program. (b) M-K LUS dataset. Left: image frame with noise (ultrasound measure scales and

text labels) before cropping. Right: corresponding image frame after cropping and the noise removed.

probes, at frame rates between 15 and 30 frames per second

using a low frequency (2–6 MHz) with preset configurations

for depth, focal point, and gain. During the lung ultrasound

examination, radiologists zoned every patient’s thorax into 12

regions (left: upper posterior, lower posterior, upper anterior, lower

anterior, upper lateral, lower lateral and right: upper posterior,

lower posterior, upper anterior, lower anterior, upper lateral,

lower lateral) and performed longitudinal and transverse scans on

each region. Zoning the patient’s thorax into 12 distinct regions

during lung ultrasound examinations was essential for thorough

and systematic assessment (Marini et al., 2021). It allowed the

radiologists to comprehensively evaluate each part of the lungs

and detect localized abnormalities, such as B-lines, consolidations,

or pleural irregularities, which could be present in different lung

zones (Duggan et al., 2020). Dividing the thorax into specific

sections; upper and lower, anterior, posterior, and lateral on both

the left and right sides, allowed radiologists to effectively identify

the distribution and severity of lung involvement (Hernandez-

Morgan et al., 2022). Additionally, longitudinally and transversely

scanning within each region ensures that the examination

captures different perspectives, improving the detection of hidden

pathologies that might be missed with only one type of scan

(Duggan et al., 2020).

The radiologist obtained 24 LUS image frames from each

patient, stored them in a folder with the respective patient ID, and

uploaded the folder to our local data server, which was created

for this study. In the preprocessing phase, we excluded image

frames without B-lines from each patient’s folder using metadata

provided by radiologists. We uniquely divided the folders into

training, validation, and test sets, ensuring that image frames from

the same patient were included in only one of the sets. Some images

were of low quality, while others included noise in the form of

LUS textual information. Poor-quality images were identified and

removed in consultation with radiologists, and a noise reduction

algorithm was applied to address the noise in the remaining 458

images (286 for training, 72 for validation and 100 for testing).

The algorithm initially crops the image using the OpenCV library

and then utilizes the keras_ocr library to detect text within

the images. The identified text is subsequently in-painted using

a Python function. Figure 2b shows an image frame with noise

before cropping, alongside the same frame after being cropped

and processed with the noise reduction technique integrated into

the model.

3.2 Data annotation

We used the Visual Geometry Group Image Annotator (VIA)

to annotate both the publicly available dataset and the M-K

LUS dataset for training and validating the deep learning model.

The VIA is a highly efficient web-based tool renowned for its

intuitive interface and powerful image labeling features (Dutta and

Zisserman, 2019). We began the annotation process by launching

the VIA tool and uploading the images. In consensus with the

radiologists, we applied two types of annotations to each image:

RBB and polygonal bounding box (PBB), as illustrated in Figure 3.

The RBB annotation provided a straightforward, encompassing

outline for the B-lines (Figure 3b), while the PBB allowed for more

precise, contour-specific labeling (Figure 3c). This dual approach in

annotation was aimed at capturing the variability in the shape and

orientation of B-lines, enabling the model to learn comprehensive

localization strategies.

3.3 Proposed architectures

This work suggests a model based on the YOLO network

structure for the localization of B-lines. At the core of

YOLO’s architecture lies the CNN, a specialized neural

network that processes grid-like data, such as images.

CNNs are adept at extracting spatial hierarchies from image

data through convolutional layers, which apply filters to

identify features such as edges, textures, and shapes. These

features are then propagated through successive layers,

enabling YOLO to comprehensively represent the image. The

mathematical representation of a basic convolutional layer can be

expressed as:

Y(i, j) = σ

(

∑

m

∑

n

X(i+m, j+ n) · K(m, n)+ b

)

Where:
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FIGURE 3

Sample image frame illustrating B-line artifacts and their corresponding annotations. (a) Original LUS image frame showing B-line artifacts. (b) RBB

annotation highlighting the B-line region. (c) PBB annotation providing a precise contour of the B-lines.

• Y(i, j) represents the output of the convolutional layer at

position (i, j)

• σ is the activation function

• X(i+m, j+ n) corresponds to the input data

• K(m, n) denotes the convolutional kernel

• b is the bias term

YOLO divides an image into a grid and assigns responsibility

for detecting objects to specific grid cells. Each cell predicts

a fixed number of bounding boxes, confidence scores and

class probabilities. The direct prediction approach eliminates

the need for complex pipelines and region proposals, common

in earlier detection models like R-CNN and Fast R-CNN.

This streamlined process allows YOLO to achieve real-time

detection performance while maintaining competitive accuracy.

The mathematical formulation for calculating bounding box

coordinates (x, y, w, h) and class probabilities (Pc) can be

expressed as:

Bx = σ (Tx)+ cx

By = σ (Ty)+ cy

Bw = pw · e
tw

Bh = ph · e
th

Pc = σ (tc)

Where:

• Bx and By represent the predicted center of the bounding box

• Bw and Bh represent the width and height of the bounding box

• Pc is the confidence score

• σ is the logistic sigmoid function

• Tx,Ty, tw, th, tc, cx, and cy are the predicted parameters

In this study, we propose two architectures: YOLOv5-PBB and

YOLOv8-PBB.

3.3.1 YOLOv5-PBB
We developed YOLOv5-PBB to precisely localize B-lines in

LUS images by modifying the YOLOv5 architecture, an object

detection framework designed for RBB localization (Jocher et al.,

2021). The YOLOv5 architecture consists of a backbone network,

a neck network, and a prediction output head. The backbone

FIGURE 4

Comparison of detection head outputs of YOLOv5 and

YOLOv5-PBB. (a) The RBB output of YOLOv5 includes cx and cy ,

which represent the center coordinates of the RBB, while w and h

indicate its width and height. (b) The PBB output of YOLOv5-PBB

consists of x1, y1, x2, y2, x3, y3, and x4, y4, which represent the

coordinates of the corners.

network extracts features from input images at multiple scales using

convolutional operations. The neck network merges these features,

typically employing a feature pyramid structure to combine low-

level features with high-level, abstract representations. Finally,

the prediction head generates the final outputs, including object

locations (bounding boxes), classes, and confidence scores. To

develop YOLOv5-PBB, we made the following changes at multiple

levels in the model’s architecture and codebase.

i) Converted the RBB output format (cx, cy, w, h) (Figure 4a)

of YOLOv5 to the PBB format (x1, y1, x2, y2, x3, y3, x4, y4)

(Figure 4b). Here, cx and cy represent the center coordinates

of the RBB, while w and h denote its width and height.

The PBB is defined by its corner coordinates, subject to the

following constraints: y3, y4 ≥ y1, y2; x1 ≤ x2; and x4 ≤ x3.

Figure 4 illustrates a comparison between the RBB format used

in YOLOv5 and the PBB format introduced in YOLOv5-PBB.

ii) Modified the Intersection over Union (IoU) andNon-Maximum

Suppression (NMS) computations to work with PBB instead

of rectangular ones. We used a custom function to compute

the IoU for overlapping polygons. The function uses shapely,

a Python library, to compute the intersection area and

the union area to derive IoU. For the NMS, we replaced
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torchvision.ops.nms, a function in the Torchvision

library designed to perform NMS on RBBs, with polygon-aware

kernels to adjust the prediction tensor structure, bounding box

representation, and confidence calculations.

iii) Enhanced the compute loss functions for RBB detection

to support loss computation for PBBs. Specifically, we

implemented constraints on the order of polygon vertices to

ensure a consistent arrangement and utilized Smooth L1 loss

for polygons to address vertex misalignment. Additionally, we

created a custom function to match anchors with targets by

computing the minimum bounding rectangle of polygons and

considering shape-based heuristics (width and height of the

bounding box enclosing the polygon).

iv) Developed custom data loader functions to process annotations

and perform augmentations for polygonal datasets. Specifically,

we designed a logic to manage polygon-specific data

structures and transformations for annotations and utilized

Albumentations to perform polygon-specific augmentations.

3.3.2 YOLOv8-PBB
We developed YOLOv8-PBB from the YOLOv8 segmentation

model, utilizing its segmentation capabilities to generate object

masks, which are then post-processed to approximate polygon

shapes by fitting polygons to the segmented masks. Instead of

masking the B-line artifacts, the YOLO-PBB generates PBBs using

a custom post-processing Algorithm 1, preserving the fine-grained

details of the artifacts. To achieve this, we implemented the

following:

i) Developed Algorithm 1 for detecting the contours of B-

line artifacts in the segmentation mask and approximating

them as polygons. These contours typically consist of many

points representing the B-line’s boundary. The polygonal

approximation reduces the number of points based on

a simplification criterion defined by ǫ, ǫ = 0.02 ×

arcLength(contour, True) as illustrated in Algorithm 1. The

exact number of points for each polygon depends on the shape

and complexity of the contours in the segmentation mask.

ii) Integrated Algorithm 1 into the post-processing function of the

YOLOv8 segmentation model.

3.4 Model cost function

The cost (loss) function of YOLOv5-PBB comprises of:

• Bounding box loss (Lbox): measures the difference between

predicted polygon coordinates and ground truth.

• Objectness loss (Lobj): measures how well the model predicts

whether the B-line object is present in a grid cell.

To compute the Lbox, the following are computed:

• CIoU loss (LCIoU ): a metric that considers the overlap and

geometric distance between predicted and target polygons,

defined as;

1: Input: Segmentation mask (binary_mask)

2: Output: Image with the polygonal line drawn around

the mask

3: Load the binary segmentation mask binary_mask from

YOLOv8 output.

4: Convert the mask to a suitable format for contour

detection, if necessary.

5: Detect contours in the mask using a contour

detection algorithm:

6: contours ← findContours(binary_mask,

RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)

7: Initialize an image or canvas image to draw the

polygonal lines.

8: for each contour in contours do

9: Approximate the contour to a polygon using

polygonal approximation:

10: ǫ ← 0.02× arcLength(contour, True)

11: polygon ← approxPolyDP(contour, ǫ, True)

12: Draw the polygonal line on the image:

13: drawPolygon(image, polygon, color = (0, 0,

255), thickness = 2)

14: end for

15: Display or save the image with the drawn polygon.

Algorithm 1. Contour detection algorithm for generating PBBs around

B-line segmentation masks.

LCIoU = 1− IoU(pbox, tbox)

where IoU(pbox, tbox) is the intersection over union for the

predicted polygonal bounding box (pbox) and the ground truth

polygonal bounding box (tbox).

• Vertex ordering constraints (Lorder): ensures the predicted

polygon maintains correct geometric constraints. It is defined

as;

Lorder =
1

6

6
∑

i=1

max(0, pi − pj)
2

where pi and pj are pairs of vertices ensuring correct ordering.

• SmoothL1 loss (Lvertex): penalizes errors in polygon vertex

predictions. It is defined as;

Lvertex = SmoothL1(pbox, tbox,β = 0.11)

The final bounding box loss is,

Lbox = LCIoU + Lorder + Lvertex

The Lobj is computed using Binary Cross-Entropy (BCE) as;

Lobj =

N
∑

i=1

BCE(p
(i)
obj
, t
(i)
obj
)

where,

p
(i)
obj

is the predicted objectness score and t
(i)
obj

is the target
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objectness score.

The total loss is given by:

L = λboxLbox + λobjLobj

where λbox, λobj are hyperparameters controlling the importance

of each term. The loss function weights are optimized using two

approaches:

i) Static weighting via predefined hyperparameters

lbox *= self.hyp[’box’]

lobj *= self.hyp[’obj’]

ii) Dynamic weighting for the lobj when

autobalance=True.

The total loss of YOLOv8-PBB is computed as the sum of

several individual losses:

Ltotal = λ1Lobj + λ2LCIoU + λ3Ldfl + λ4Lseg

λ1, λ2, λ3, λ4 are weighting factors to balance the contributions of

the individual losses.

Ldfl is the distribution focal loss, which focuses on

learning the confidence scores for B-line detection,

defined as;

Ldfl =
1

N

N
∑

i=1

[

LCE(pi, tl) · wl + LCE(pi, tr) · wr

]

where:

• tl and tr are left and right targets, respectively

• LCE(pi, t) is the cross-entropy loss for the predicted probability

pi and the target t,

• N is the total number of samples,

• pi is the predicted probability for the i-th element in the

distribution.

• wl and wr are the weights assigned to the left and right targets,

respectively

Lseg is the segmentation mask loss, typically computed as a BCE

loss for the predicted segmentation masks compared to the ground

truth masks.

Lseg =
1

area

∑

i

BCE(M̂i,Mgti
)

where M̂i and Mgti
are the predicted and ground truth masks

for the i-th anchor, and areai is the area of the corresponding

bounding box.

The loss optimization process for YOLOv8-PBB involves

calculating individual losses, summing and weighting them, using

backpropagation to compute gradients, updating the model’s

weights with an Adam optimizer, and repeating this process

until convergence.

3.5 Model training and parameter
configuration

We conducted experiments on a system running Windows 10,

utilizing PyTorch 2.5 as the deep learning framework and Python

3.10 for the programming environment. We trained YOLOv5

and YOLOv8 to localize B-lines using RBB, YOLOv8-OBB to

localize B-lines using the oriented bounding box (OBB), YOLOv8-

SEG to segment B-lines, and YOLOv5-PBB and YOLOv8-PBB

to localize B-lines using PBB in LUS images. We trained and

validated the models using the public dataset, the M-K LUS

dataset, and a mixed dataset that combined the public and M-K

LUS datasets.

During training, we optimized the models using the AdamW

optimizer, which integrates the Adam algorithm with weight

decay regularization to improve generalization. We configured

the optimizer with an initial learning rate of 0.01, a momentum

value of 0.937, and a weight decay coefficient of 0.0005. We

resized input LUS images to 320 × 320 pixels and applied

horizontal flipping and mosaic data augmentations by adjusting

their parameters in the model training pipeline. Horizontal flipping

was applied with a 50% probability, meaning each image had

a 50% chance of being flipped horizontally during training.

This technique helps the model learn spatial invariance to left-

right orientation changes. The mosaic augmentation, with a

scaling factor of 1.0, combines four images into one, offering

diverse contextual information and enabling the model to detect

and recognize features from different perspectives. We set the

batch size to 16 and trained the models for 500 epochs,

providing sufficient time for them to learn and converge on the

relevant features.

3.6 Model evaluation metrics

We used precision (P), recall (R), and mean average precision

(MAP) metrics to evaluate the models.

• P: Measures the proportion of true positive detections among

all the instances identified by the model as positive. It is

calculated as the ratio of true positives to the sum of true

and false positives, indicating the model’s ability to avoid false

detections.

• R: Also known as sensitivity, quantifies the model’s ability to

identify all true positive instances correctly. It is calculated as

the ratio of true positives to the sum of true positives and false

negatives, reflecting the model’s ability to detect all relevant

B-line artifacts in the ultrasound images.

• mAP: Used to assess the overall performance of the model

across different detection thresholds. It is the mean of

the average precision scores for each class, providing a

comprehensive measure of both precision and recall across

various conditions. This metric is particularly useful for

evaluating object localization tasks where precise detection

and correct classification are critical. Higher mAP values

indicate greater prediction accuracy.
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FIGURE 5

Training curves for YOLOv5, YOLOv5-PBB, YOLOv8, YOLOv8-OBB YOLOv8-SEG, and YOLOv8-PBB models when trained on the mixed dataset. The

top row shows the mean average precision curves, while the bottom row depicts the box loss curves of the corresponding model.

4 Results

4.1 mAP and bounding box loss trends of
the models

We monitored the mAP and bounding box loss of the models

to evaluate their performance during training on the mixed dataset

over 500 epochs. Figure 5 presents the mAP and bounding box loss

curves for all models, showing a rapid rise in mAP during the initial

epochs before stabilizing. In contrast, the box loss steadily declines

and converges to a lower value as training progresses.

4.2 Precision, recall and mAP values of the
models

We evaluated YOLOv5, YOLOv5-PBB, YOLOv8, YOLOv8-

OBB, YOLOv8-SEG and YOLOv8-PBB models on a held-out test

dataset derived from the M-K LUS dataset following training

on public, M-K LUS and mixed datasets. The evaluation results,

including the P, R, andmAP values for each model, are presented in

Table 1. It is observed that both models attained the lowest values

of P, R and mAP when trained on a public dataset and the highest

when trained on a mixed dataset.

4.3 Qualitative results of the models

Figure 6 illustrates the qualitative results for B-line localization

using the YOLOv5, YOLOv5-PBB, YOLOv8, YOLOv8-OBB,

YOLOv8-SEG, and YOLOv8-PBB models, providing valuable

insights into the interpretability of thesemodels. The results pertain

to two sample images from the held-out test set, each model trained

on the mixed dataset. It is observed that B-line localization with

PBB captures the B-line shape more accurately compared to RBB

and OBB localizations, while segmentation using YOLOv8-SEG

lacks contextual interpretability.

TABLE 1 The P, R, and mAP values of YOLOv5, YOLOv5-PBB, YOLOv8,

YOLOv8-OBB, YOLOv8-SEG and YOLOv8-PBB models trained on public,

M-K LUS, and mixed datasets, and evaluated on a held-out test dataset

derived from the M-K LUS dataset.

Training dataset Model P R mAP

Public YOLOv5 0.862 0.835 0.863

YOLOv5-PBB 0.895 0.871 0.892

YOLOv8 0.872 0.855 0.887

YOLOv8-OBB 0.890 0.862 0.892

YOLOv8-SEG 0.898 0.862 0.893

YOLOv8-PBB 0.901 0.886 0.897

M-K LUS YOLOv5 0.867 0.843 0.896

YOLOv5-PBB 0.920 0.911 0.933

YOLOv8 0.897 0.878 0.901

YOLOv8-OBB 0.900 0.855 0.904

YOLOv8-SEG 0.910 0.909 0.928

YOLOv8-PBB 0.938 0.917 0.954

Mixed YOLOv5 0.891 0.886 0.898

YOLOv5-PBB 0.931 0.918 0.936

YOLOv8 0.913 0.902 0.920

YOLOv8-OBB 0.926 0.906 0.928

YOLOv8-SEG 0.929 0.913 0.930

YOLOv8-PBB 0.947 0.926 0.957

Bold values indicate the highest performance in each dataset category.

5 Integration of the model into a
mobile LUS screening tool

5.1 Model integration

The mobile LUS screening tool consists of a portable

ultrasound Clarius scanner, a smartphone equipped with the

Clarius ultrasound application (Clarius app), and a laptop equipped
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FIGURE 6

Comparison of B-line localization by YOLOv5, YOLOv5-PBB, YOLOv8, YOLOv8-OBB, YOLOv8-SEG, and YOLOv8-PBB models on two sample

inference images from the held-out test set.

with both the Clarius Cast application programming interface (CC

API) and the model, as shown in Figure 7.

The integration process began with downloading the

Clarius app from the Google Play Store and installing it on

the smartphone. Next, we downloaded the CC API binary files

(version 9.1) along with the supporting libraries (cast.dll,

cast.lib, pycaster.py, and pysidecaster.py) from

https://github.com/clariusdev/cast. Finally, we modified the

pysidecaster.py script to incorporate the model and convert

image frames into QuickTime (Qt) format.

During operation, the Clarius scanner initially connects to both

the smartphone and the laptop, as shown in Figure 7. Once the

connections are established, the user examines the patient with the

scanner, which streams the scanned image frames simultaneously

to the smartphone and the laptop. On the laptop, the model

processes the image frames, detecting and localizing B-lines using

PBB. Finally, the image frames are converted to Qt format and

displayed on the laptop screen.

5.2 Model inference times

We conducted inference on test data using both YOLOv5-PBB

and YOLOv8-PBB, measuring their inference times both before

integration into the mobile LUS screening tool (Tbefore) and after

integration (Tafter). Table 2 presents Tbefore and Tafter for the two

models on sample 30 images.

Table 2 shows that the average inference time for YOLOv5-

PBB increases from 10.0 ms before integration to 33.1 ms after

integration, while for YOLOv8-PBB, it rises from 12.1 ms to 47.7

ms. The rise in average inference times for bothmodels underscores

the influence of hardware and environmental factors on inference

performance. Before integration, the model ran on an optimized

cloud-based infrastructure with high-performance GPUs, enabling

faster processing. After integration, however, the model operates on

a local machine with potentially lower hardware specifications (e.g.,

CPU capabilities), resulting in longer inference times. Additionally,

it is observed that the inference times generally correlate with the

image size. Larger images tend to require more processing time,

which is reflected in the increases in time after integration.

Furthermore, Table 2 shows that YOLOv8-PBB consistently has

higher inference times on all images compared to YOLOv5-PBB,

both before and after integration. This could be attributed to the

additional complexity of YOLOv8-PBB, including segmentation

and extra post-processing steps, as well as its larger model size of

21 MB compared to 14 MB for YOLOv5-PBB.

6 Discussion

The performance of the five deep learning models, YOLOv5-

RBB, YOLOv8-RBB, YOLOv8-OBB, YOLOv5-PBB, and YOLOv8-

PBB, trained on three different datasets (public, local, and mixed)

and evaluated on a held-out local test set, is summarized in

Table 1. The results offer valuable insights into how dataset diversity

influences model performance. Overall, all the models achieved

higher P, R, and mAP values when trained on the mixed dataset,

compared to the public or MK-LUS dataset. This enhanced

performance is supported by Shea et al. (2023) and Joseph et al.

(2023), who suggest that dataset diversity helps deep learning

models learn more robust features and improves their ability to

generalize to unseen data. Specifically, the YOLOv8-PBB attained

the highest performance among all models, with P of 0.901, R of

0.886, and mAP of 0.897. In contrast, YOLOv5 recorded the lowest

values, with P at 0.862, R at 0.835, and mAP at 0.863. These results

are consistent with findings in prior studies that suggest that more

recent YOLO variants, such as YOLOv8, benefit from enhanced

feature extraction and localization capabilities (Khan et al., 2024).

The qualitative results in Figure 6 show that the YOLOv5-PBB

and YOLOv8-PBB models generate precise polygonal bounding

boxes that closely follow the shape of B-line artifacts. These findings

align with Li et al. (2020), which demonstrated that polygonal

bounding boxes are more effective at detecting irregularly shaped
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FIGURE 7

Mobile LUS screening tool comprising a Clarius scanner, a smartphone running the Clarius app, and a laptop equipped with both the CC API the

model.

objects compared to traditional rectangular bounding boxes. In

contrast, YOLOv5-RBB and YOLOv8-RBB did not tightly capture

the polygonal structure of the B-line artifacts and included

irrelevant regions. This is consistent with Yang et al. (2021), which

highlighted that rectangular bounding boxes are less effective for

detecting elongated objects.

In Table 2, YOLOv5-PBB demonstrated a lower average

inference time than YOLOv8-PBB, both before and after

integration into the mobile LUS screening tool. The larger model

size of YOLOv8-PBB (21 MB vs. 14 MB for YOLOv5-PBB)

contributed to greater model complexity, leading to increased

inference time. This observation aligns with findings from Hu et al.

(2021) to Zawish et al. (2024), which highlight that deep learning

model size influences complexity, with smaller models generally

achieving faster inference times. Zawish et al. (2024) further

emphasizes that balancing model accuracy and complexity is

essential when choosing a model for resource-constrained Internet

of Things environments.

7 Conclusion

This study modified YOLOv5 and YOLOv8 models into

YOLOv5-PBB and YOLOv8-PBB, respectively, for detecting and

localizing B-line artifacts in LUS images using polygonal bounding

boxes (PBBs). The YOLOv5 adaptation involved modifying the

detection head, loss function, non-maximum suppression function,

and data loader, while YOLOv8 was enhanced with a custom

post-processing algorithm to enable PBB-based localization.

Additionally, a tailored image preprocessing technique was

integrated to improve LUS image quality. Comparatively, YOLOv8-

PBB achieved slightly higher precision, recall, and mAP than

YOLOv5-PBB, but YOLOv5-PBB was more lightweight and had a

shorter inference time. Furthermore, each model was incorporated

into a mobile LUS screening tool for utilization in resource-

constrained settings with scarce expert radiologists.

A limitation of this study is its exclusive focus on localizing B-

line artifacts in LUS images. While the models effectively identified

and counted isolated B-lines, they struggled in more complex

scenarios where B-lines clustered together or merged into a

continuous white line on the ultrasound image, making precise

separation and counting difficult.

In the future, we plan to focus on the spatiotemporal

localization of B-line artifacts and extend our work to include

the detection of other artifacts, such as irregular pleural lines and

consolidations, at both the frame and video levels. Additionally,

we aim to explore semi-supervised learning techniques to reduce

annotation efforts and improve scalability. Furthermore, we intend

to evaluate the model on multi-center datasets from diverse

geographic regions to improve generalizability.
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TABLE 2 Inference times (in milliseconds) for YOLOv5-PBB and

YOLOv8-PBB on various images, measured before (Tbefore) and after (Tafter)

integration.

Image file Image size YOLOv5-PBB YOLOv8-PBB

Tbefore Tafter Tbefore Tafter

bl_100.jpg 320× 256 9.0 28.8 9.2 44.0

bl_103.jpg 320× 256 9.1 33.0 8.6 42.0

bl_115.jpg 320× 256 8.8 29.0 8.5 45.8

bl_117.png 320× 288 14.3 39.3 48.1 69.9

bl_118.png 320× 256 9.8 34.4 9.2 42.4

bl_121.png 230× 256 8.7 26.6 8.5 44.0

bl_123.jpg 230× 256 8.8 29.0 8.6 42.2

bl_125.png 230× 256 9.2 31.2 13.4 44.0

bl_128.png 288× 320 15.2 40.4 47.1 66.0

bl_129.jpg 230× 256 8.9 28.4 9.3 44.2

bl_14.png 256× 320 10.0 33.1 9.5 42.0

bl_15.png 256× 320 9.1 31.6 8.6 43.0

bl_16.png 320× 288 10.1 34.0 10.3 47.0

bl_19.png 320× 256 8.9 27.8 10.5 43.6

bl_21.png 224× 320 8.9 27.6 8.7 41.7

bl_24.png 320× 288 10.0 33.2 10.4 45.6

bl_26.png 256× 320 9.0 32.0 9.4 42.9

bl_29.png 256× 320 9.0 32.0 8.7 43.0

bl_3.png 256× 320 9.0 31.7 8.7 43.0

bl_31.png 256× 320 10.1 34.0 8.7 45.2

bl_36.png 256× 320 8.9 29.4 8.7 42.6

bl_37.png 288× 320 10.0 35.0 10.0 46.0

bl_39.png 288× 320 10.0 35.1 9.9 46.6

bl_42.png 320× 320 10.0 36.0 10.5 64.6

bl_43.png 320× 320 10.0 32.2 9.3 51.3

bl_6.png 288× 320 11.0 37.3 10.0 50.9

bl_60.png 320× 288 12.0 38.8 10.6 53.0

bl_95.png 320× 320 12.9 39.2 10.1 55.0

bl_97.jpg 320× 256 10.2 36.2 9.3 50.1

bl_99.jpg 320× 256 10.1 35.8 9.5 48.9

Average 10.0 33.1 12.1 47.7

Bold values indicate the highest performance in each dataset category.
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