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High-resolution digital elevation models (HRDEMs) from LiDAR and InSAR technologies 
have significantly improved the accuracies of mapping hydrographic features 
such as river boundaries, streamlines, and waterbodies over large areas. However, 
drainage crossings that facilitate the passage of drainage flows beneath roads are 
not often represented in HRDEMs, resulting in erratic or distorted hydrographic 
features. At present, drainage crossing datasets are largely missing or available 
with variable quality. While previous studies have investigated basic convolutional 
neural network (CNN) models for drainage crossing characterization, it remains 
unclear if advanced deep learning models will improve the accuracy of drainage 
crossing classification. Although HRDEM-derived geomorphological features have 
been identified to enhance feature extraction in other hydrography applications, 
the contributions of these features to drainage crossing image classification have 
yet to be sufficiently investigated. This study develops advanced CNN models, 
EfficientNetV2, using four co-registered 1-meter resolution geomorphological 
data layers derived from HRDEMs for drainage crossing classification. These layers 
include positive openness (POS), geometric curvature, and two topographic position 
index (TPI) layers utilizing 3 × 3 and 21 × 21 cell windows. The findings reveal 
that the advanced CNN models with HRDEM, TPI (21 × 21), and a combination of 
HRDEM, POS, and TPI (21 × 21) improve classification accuracy in comparison to 
the baseline model by 3.39, 4.27, and 4.93%, respectively. The study culminates 
in explainable artificial intelligence (XAI) for evaluating those most critical image 
segments responsible for characterizing drainage crossings.

KEYWORDS

GeoAI, drainage crossing, CNN, XAI, hydrography

1 Introduction

Detailed surface hydrological features are essential for environmental management, 
including habitat and ecological conservation, as well as flood mitigation and water quality 
preservation (Schultz et al., 2017; Good et al., 2015; Pringle, 2001; Dadson et al., 2017; Simley 
and Carswell, 2009). In recent decades, these features are often obtained from High-Resolution 
Digital Elevation Model (HRDEM) datasets, primarily being generated using Light Detection 
and Ranging (LiDAR) and interferometric synthetic aperture radar (InSAR) technologies 
(Sharma et al., 2016). The use of these HRDEMs has been found to improve the efficiency, 
accuracy, and consistency of hydrological features (Xu et al., 2021; Stanislawski et al., 2021; 
Edidem et al., 2025).
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However, the extraction of hydrological features from HRDEMs 
faces significant challenges due to anthropogenic barriers, such as 
roads and bridges, often referred to as “digital dams” (Duke et al., 
2006; Li et al., 2013; Sofia et al., 2014; Wu et al., 2024). For example, at 
drainage crossing locations, HRDEMs typically represent the elevation 
of the top surfaces of these barriers but miss the underlying culverts 
through which water flows (Poppenga and Worstell, 2016). This 
limitation presents a significant challenge for fine-scale hydrologic 
modeling in smaller watersheds. Digitally represented flow barriers 
without properly modeled drainage crossings can obstruct 
downstream flow, leading to the formation of extensive upslope 
artifact depressions (Van Nieuwenhuizen et al., 2021). The absence of 
accurately mapped drainage crossings such as culverts and bridges 
may cause simulated drainage flowlines to terminate prematurely or 
cross roads at incorrect locations (Poppenga and Worstell, 2016). As 
a result, simulated streams often show drainage crossing misalignment 
and disrupted hydrological connectivity (Li et al., 2013; Barber and 
Shortridge, 2005).

To ensure continuous surface flowline modeling and connectivity, 
HRDEM must be effectively free of depressions, resulting in their 
preprocessed “hydrologic” version. This preprocessing step often 
begins with enforcing continuous downslope drainage patterns by 
removing topographic sinks (Lidberg et  al., 2017; Lindsay, 2016; 
Reuter et al., 2009). Common techniques include depression filling 
methods (Wang and Liu, 2006; Wang et al., 2019), which involve filling 
depressions caused by embankments, ditches, or slopes, using various 
algorithms that yield comparable results. Depression filling can alter 
the original terrain, especially in low-lying areas with dense road 
networks and drainage crossings, resulting in erroneous flowlines 
(Schwanghart et al., 2013). An alternative approach is the breaching 
method, which involves cutting through barriers like roads or bridges 
to enforce flowlines (Sofia et  al., 2014), and stream burning (also 
known as hydrological enforcement), which uses drainage crossing 
linear segments to cut roads open to enhance hydrologic connectivity 
(Li et al., 2013; Lindsay and Dhun, 2015). However, both breaching 
and burning methods are ineffective at accurately removing flow 
barriers without precise drainage crossing locations (Lessard et al., 
2023). These limitations are particularly problematic for HRDEMs 
where fine-scale features are critical for accurate hydrological modeling.

Wu et al. (2024) demonstrated that effectively identifying and 
processing flow barriers within HRDEMs is critical for enhancing 
hydrography mapping accuracy at fine scales. Several previous studies 
have demonstrated that including drainage crossing locations can 
successfully breach flow barriers and improve the spatial precision of 
HRDEM-derived watershed boundaries and flowlines (Li et al., 2013; 
Aristizabal et al., 2018; Bhadra et al., 2021; Lindsay and Dhun, 2015). 
Despite this, datasets representing drainage crossing locations are 
often unavailable or of poor quality, making it challenging to obtain 
accurate and fully connected hydrological features. Current methods 
for obtaining culvert data such as manual on-screen digitization 
(Shore et al., 2013) or field surveys (Lessard et al., 2023; Hao et al., 
2011; Arsenault et  al., 2023; Açıl et  al., 2023), are costly and 
labor-intensive.

Recent advancements in software and hardware capabilities, along 
with the development of sophisticated deep learning (DL) algorithms, 
have accelerated the rapid expansion of GeoAI, a field that leverages 
artificial intelligence for geographic data analysis. The increasing 
availability of high-resolution geospatial data combined with the 

emergence of scalable computation platforms, continues to drive this 
advancement. DL has emerged as a powerful tool for predictive 
analytics and pattern recognition, particularly within environmental 
applications. For example, Xu et al. (2018) utilized a 3D CNN-based 
data fusion model to integrate 3D features from LiDAR and 
multitemporal images, achieving high-precision classification and 
extraction. Stanislawski et  al. (2018) trained a CNN to extract 
comprehensive road and stream valley features from HRDEMs using 
a combination of existing road and stream valley data. Li et al. (2020) 
employed a DL strategy to classify complex and transitional landforms 
in the Loess Plateau using integrated data sources, including DEMs, 
imagery, and terrain derivatives such as slope and aspect. Iqbal et al. 
(2022) developed CNN algorithms specifically for identifying debris-
related blockages in drainage culverts through the classification of 
HRDEMs. These examples demonstrate the versatility of DL in 
addressing complex geospatial challenges by leveraging diverse 
data sources.

More recently, advanced DL models have shown remarkable 
improvements in performance for specific geospatial tasks. Yin et al. 
(2022), for example, proposed the EfficientNetv2 model, for land-use 
classification. The results demonstrated improved performance 
compared to VGG, MobileNetV2, ResNet34, and EfficientNet-b0. 
Similarly, Jeba and Chitra (2023) utilized the EfficientNetv2 and Self-
AttentionNetv2 models, resulting in improved performance compared 
to ResNet-50 and CNN for the SEN12-FLOOD dataset. This dataset 
includes satellite images from both Sentinel 1 and Sentinel 2 satellites 
specifically for detecting floods. These advanced architectures 
demonstrated significant improvements in accuracy and reliability 
compared to earlier models like ResNet-50 and standard CNNs. Such 
advancements highlight the growing potential of DL to address 
increasingly complex and specialized geospatial problems, while 
leveraging its general strengths in accuracy, reliability, and consistent 
workflows across time and space (Xu et al., 2018).

In hydrography, the integration of CNNs combined with 
HRDEMs, and their geomorphological derivatives have demonstrated 
significant potential for detecting topo-hydric features. Geomorphic 
layers such as topographic position index (TPI), slope, curvature, and 
openness are frequently utilized to provide critical input data for DL 
models, enabling the classification of terrain types, hydrological zones, 
and other geospatial features. For instance, Stanislawski et al. (2018) 
demonstrated the utility of HRDEMs in identifying road and stream 
valley features, while Xu et  al. (2021) utilized geomorphological 
derivatives like topological curvature, TPI and positive openness for 
the detection of fine-scale hydrologic streamlines. In another studies, 
Barlow et al. (2022) found that slope and elevation were among the 
most influential features for mapping stream boundaries, highlighting 
their potential for classification models. These examples showcase how 
geomorphological layers derived from HRDEMs provide robust input 
data, underscoring their value in advancing classification tasks within 
geospatial analysis.

DL algorithms, particularly CNNs, have shown substantial 
promise in detecting drainage crossings, such as culverts, within 
HRDEMs. Talafha et al. (2021) demonstrated this capability within 
a specific watershed area, suggesting the approach could have 
broader geographic applicability. Building on this, Wu et al. (2023) 
investigated optimal data inputs for drainage crossing classification, 
testing a combination of HRDEM, Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Water Index 
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(NDWI), and National Agriculture Imagery Program (NAIP) aerial 
orthophotos. Their results showed that CNN models trained solely 
on HRDEM data achieved a notable accuracy of 93.33% and 
demonstrated excellent transferability across diverse geographical 
contexts. Edidem et al. (2025) further advanced this area by applying 
object detection models to HRDEMs in agricultural areas, 
demonstrating high accuracy and robustness across diverse 
watersheds. However, this study did not incorporate any HRDEM 
geomorphological derivatives. Despite these advancements, the 
potential impact of additional topographic features and the use of 
alternative or more complex DL algorithms remains an open 
question. This gap suggests further exploration could improve 
drainage crossing classification accuracy, especially by considering 
topographic intricacies and employing advanced DL techniques 
beyond traditional CNNs.

Although CNNs are prominent as a deep learning approach due 
to their exceptional ability to extract meaningful patterns from 
complex data, their intricate structures often render them as “black 
boxes,” limiting the understanding and transparency in their decision-
making processes and raising concerns about the scientific reliability 
of their predictions (Kedron et al., 2021; Li and Arundel, 2022). This 
opacity in GeoAI research presents a barrier to reproducibility and 
understanding (Goodchild and Li, 2021). Explainable Artificial 
Intelligence (XAI) addresses these issues by revealing the factors 
influencing model, fostering trust and comprehension of AI systems. 
For example, Li (2022) compared XGBoost’s ability to capture spatial 
effects with traditional statistical approaches like the spatial lag model 
and multi-scale geographically weighted regression, employing 
SHapley Additive exPlanations (SHAP) for interpretability. The study 
found that XGBoost’s results were on par with those of traditional 
spatial models, suggesting that advanced machine learning methods 
can provide spatial insights comparable to conventional approaches.

Two primary XAI approaches have been developed for deep 
learning: global and per-decision explainable AI algorithms (Phillips 
et al., 2020). Global methods such as Testing with Concept Activation 
Vectors (TCAV) (Kim et al., 2017), approximate model behavior to 
identify influential concepts. Per-decision methods focus on 
explaining individual predictions, identifying patterns and concepts 
often using saliency maps, which visualize the importance of different 
regions in the input image influencing the final decision. For 
hydrography applications, XAI has significant potential to clarify how 
specific topographic features influence drainage crossing 
identification, making model predictions more interpretable for 
experts. By enhancing transparency, these methods can also improve 
confidence in AI-driven geospatial insights, supporting better-
informed decision-making in environmental and 
geographical analysis.

This study aims to improve the accuracy of drainage crossing 
classification by evaluating the effectiveness and explainability of 
advanced DL models. The selection of input geomorphological 
features is based on their recognized utility for landform classification 
and feature extraction, as highlighted in various studies (Xu et al., 
2021; Stanislawski et al., 2021). XAI method is integrated to ensure 
that the model predictions correspond to human-understandable 
concepts, improving both interpretability and trustworthiness. The 
results contribute to the best practices of hydrographic feature 
extraction, thereby increasing the precision and reliability of models 
for next-generation hydrographic mapping.

2 Materials and methods

2.1 Study area

This research focuses on the West Fork Big Blue Watershed, which 
is located in Nebraska and is depicted in Figure  1. Spanning 
approximately 3,471 km2, the region consists of a gently undulating 
loess plain with elevations ranging from 627 meters to 351 meters and 
is primarily utilized for row crop agriculture. The West Fork Big Blue 
watershed, predominantly situated in Seward County, Nebraska, is 
characterized by rolling hills and extensive row crops, with the Big 
Blue River flowing southeast. The diverse terrain of the watershed 
includes flat lands and moderate slopes, with elevations ranging from 
352 meters to 627 meters, and it is marked by numerous depressional 
wetlands due to an underdeveloped drainage system (Stutheit et al., 
2004). The watershed is also marked by a dense road network, which 
disrupts natural water flow and emphasizes the need for effective 
hydrologic feature management, particularly at culverts and bridges 
in HRDEMs. Additionally, the complexity of the terrain underscores 
the necessity of strategically breaching drainage barriers to maintain 
hydrological connectivity.

2.2 Datasets

This study leveraged the distinctive topographic patterns of 
elevated roads intersecting low-lying drainage channels (Gelder, 2015; 
Poppenga et al., 2010). These patterns serve as a crucial guide for 
manual digitization of flow barriers. Drainage crossings were 
designated as areas where natural streams or artificial canals intersect 
roads through underpass hydraulic structures such as bridges or 
culverts. By overlaying high-resolution aerial orthophotos, 
we identified and manually digitized drainage crossing locations, as 
shown in Figure 1. The model’s inputs comprise of individual image 
patches sampled from five different feature maps, each with a 
resolution of 1 meter. These feature maps are normalized versions of 
the five raster data layers, where each floating-point dataset within the 
study area is converted to a corresponding unsigned integer value 
scaled between 0 and 255 using Equation 1. Normalization ensures 
consistency across features, eliminating range disparities ranges (as 
shown in Table  1) while preserving relative differences and 
information integrity. For each identified drainage crossing, a 
100-meter square bounding box was used to clip five-band samples of 
identical dimensions (100 m x 100 m pixels) as True samples. The 
dataset contains 4,044 image samples with an equal distribution of 
true and false samples. The five co-registered 1- meter resolution 
raster data layers are utilized for training, validation, and testing. This 
layer selection stems from a comprehensive literature review 
comparing elevation derivatives and nationwide-coverage optical 
imagery across various landscapes and utilization of such topographic 
layers in extracting hydrologic and geomorphic features (Xu et al., 
2021; Stanislawski et al., 2021; Li et al., 2020).

 

−
= ∗

−
min

max min
255X XXnorm

X X  
(1)

The raster layers include: an HRDEM and four layers are 
derived from the HRDEM to capture specific topographic features 
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relevant to the classification task. Two Topographic Position Index 
(TPI) layers, calculated using window sizes of 21×21 and 3×3 cells, 
identify ridges, valleys, and flat areas (Deumlich et al., 2010). TPI 
emphasizes local elevation extremes in a DEM relative to nearby 
topographic features, highlighting ridges and valleys (De Reu et al., 
2013). Zenith Angle Positive Openness (POS) with a 10-meter 
radius emphasizes drainage patterns and small streams (Doneus, 
2013). Finally, Geometric curvature measures the curvature of a 
surface by combining curvatures in both the x and y directions and 
provides a detailed characterization of the surface’s shape by 
integrating the curvature values from multiple directions (Pirotti 
and Tarolli, 2010; Cazorzi et  al., 2013). For instance, the mean 
curvature is often used and is calculated as the average of the 
maximum and minimum curvature at specific cells, or even as the 
mean value over all cells in a grid (Wood, 1996). In the context of 
DEMs, geometric curvature can be  determined using various 
software tools. GeoNet, for example, applies a non-linear diffusion 
Perona-Malik filter to DEMs to reduce noise and enhance channel 
localization, subsequently calculating geometric curvature for the 
filtered DEM (Passalacqua et al., 2012; Sangireddy et al., 2016). The 
statistics of each raster layer are presented in Table 1.

Additionally, to assess the model’s spatial generalizability and 
sensitivity to positional bias, a subset of the true sample dataset, 
hereafter referred to as the off-center dataset was constructed by 
randomly shifting the image clipping polygons. This curated subset 
comprises 50 validated samples in which the drainage crossings are 
deliberately positioned away from the image center. This adjustment 
was necessary because, in the original training dataset, drainage 
crossings were consistently centered within sample images. By varying 
the spatial locations of drainage crossings, the off-center dataset allows 
a more rigorous evaluation of the model’s adaptability to different 
target positions and its capability to generalize beyond its 
training conditions.

2.3 Model development

EfficientNetV2, an advanced CNN architecture, was chosen for its 
ability to achieve both high accuracy and efficiency training. 
EfficientNetV2 utilizes a series of convolutional and pooling layers to 
optimize depth, width, and resolution for optimal performance (Tan 
and Le, 2021). Notably, EfficientNetV2 incorporates Fused-MBConv 

FIGURE 1

Topography of West Fork Blue Watershed in Nebraska with Culverts distribution.

TABLE 1 Summary statistics of raster images for the West Fork Blue Watershed, Nebraska.

Raster image name Minimum Maximum Mean Standard Deviation Range

Digital elevation model (meters) 351.45 627.02 521.08 43.18 275.57

Geometric curvature −24.26 53.96 −1.47 0.57 78.21

Topographic position index (3 × 3 window) −131.24 16.43 −9.29 0.02 147.67

Topographic position index (21 × 21 window) −147.22 15.98 −4.11 0.12 163.19

Openness (R10, D32) degrees 1.77 155.80 89.72 2.11 154.03
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layers, which combine depthwise and pointwise convolutions for 
improved computational efficiency without sacrificing feature 
extraction. The architecture is shown in Figure  2. Additionally, 
squeeze-and-excitation blocks are integrated to dynamically focus on 
informative features within the network. Standard Conv3x3 and 
Conv1x1 layers are also employed for initial feature extraction and 
dimensionality reduction (Tan and Le, 2021).

The model takes images as input (100 × 100 x channels) and 
outputs a feature vector. The feature extractor is trained from 
scratch, with all layers set as trainable. This approach ensures that 
the model learns feature representations solely from the specific 
dataset without relying on pre-trained weights. By customizing the 
training process, the EfficientNetV2 architecture is tailored to the 
dataset, demonstrating a robust and flexible framework for feature 
extraction and task-specific learning.

Pooling layers play a vital role in extracting key features and 
reducing noise, leading to a more robust learning process. Global 
Average Pooling (GAP) 2D is particularly effective in reducing the 
dimensionality of feature maps by averaging the values within each 
map. This process retains critical information while minimizing the 
number of parameters. Dropout layers further enhance the model’s 
generalizability by randomly deactivating neurons during training, 
compelling the model to learn more robust features. A dropout rate 
of 0.5 indicates that half of the neurons are deactivated at random. 
This technique, along with learning rate adjustments, contributes to 
a more refined learning process for accurate hydrographic mapping. 
The final layer of the network is a dense layer with SoftMax activation. 
This fully connected layer transforms the outputs into a probability 
distribution for two classes (culvert and non-culvert). The SoftMax 
function ensures that the outputs sum to one, providing a probability 
interpretation. This layer signifies the final output of the network, 
where culvert presence is predicted. An Adam optimizer with an 
initial learning rate (LR) of 0.0001 was employed to update model 
parameters during training. The learning rate is reduced if validation 
accuracy stagnates, and training is halted if no improvement is 
observed after a predefined number of epochs. Backpropagation is 
utilized to calculate gradients and update weights iteratively 
throughout the training process. The Nebraska dataset (4,044 images) 
was divided into training (60%), validation (20%), and test (20%) sets 
for model training and evaluation. Callbacks like TensorBoard, 
Model Checkpoint, and Reduce LR On Plateau were employed to 

monitor training progress, save the best performing model, and 
adjust the learning rate, respectively. The training set  allows the 
model to learn, the validation set is used to fine-tune hyperparameters, 
and the test set provides an unbiased measure of generalization to 
unseen data.

Our model development was based on Python 3.9, with 
TensorFlow 2.15. We integrated various Python libraries, including 
GDAL 3.5.0 and Rasterio 1.3.8, to support our geospatial data 
processing needs. Computationally, we  employed Nvidia GeForce 
A100 40GB on google cloud for model training.

2.4 Model evaluation

In evaluating the EfficientNet model performance, a 
comprehensive set of metrics were employed, including accuracy, 
precision, recall, F1 score, and cross entropy loss (Equations 2–6). To 
effectively represent these metrics, a binary confusion matrix was 
utilized, distinguishing positive samples (containing flow barriers) 
from negative samples (without barriers). A perfect model would 
ideally generate only true positives and true negatives, while 
minimizing false positives and false negatives. True positives denote 
accurately identified positive predictions, false positives indicate 
incorrect positive predictions, true negatives represent correctly 
identified negative predictions, and false negatives are actual positives 
incorrectly marked as negative. Let , ,TP FP TN , and FN  denote the 
numbers of true positives, false positives, true negatives, and false 
negatives, respectively.

Accuracy is calculated by the following equation:

 
+

=
+ + +
TP TN

TP TN FP FN
Accuracy

 
(2)

which measures the overall effectiveness of the model.
Precision assesses the accuracy of the model’s positive predictions 

by calculating the ratio of true positives to all positive predictions, 
that is,

 
=

+
TP

TP FP
Precision

 
(3)

FIGURE 2

Architecture of EfficientNetV2 for classifying drainage crossings.
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Recall evaluates the model’s capability to correctly identify actual 
positives, determined by the ratio of true positives to the total of true 
positives and false negatives, i.e.,

 
=

+
TP

TP FN
Recall

 
(4)

The F1 Score, which is the harmonic mean of precision and recall, 
offers a balance between these two metrics, calculated by

 
×

= ×
+

Precision Recall1 2
Precision Recall

F Score
 

(5)

Cross entropy loss is a key metric in classification tasks, measuring 
the performance of a model whose output is a probability between 0 
and 1. It quantifies the difference between two probability 
distributions: the actual labels and the predictions made by the model. 
A lower cross entropy loss indicates better model performance; that 
is, predictions are closely aligned with the actual labels. The formula 
for cross entropy loss is:

 
( )

=
= −∑

n

i I
i 1

y log p ,Loss
 

(6)

where n is the number of categories, Iy  is the truth label, and Ip  is 
the SoftMax probability for the ith class.

To assess the efficacy of our method, we  used a recently 
published CNN model for classifying images containing culverts 
(Wu et  al., 2023) as our baseline. That study employed a CNN 
model, which consists of four convolutional layers, one flattening 
layer, and two fully connected layers. The model also incorporates 
batch normalization between the convolution operations and the 
average pooling layers. The dataset’s train-test split ratio is 
consistent with this study.

2.5 CNN interpretability through XAI

Gradient-weighted Class Activation Mapping (Grad-CAM), 
introduced by Selvaraju et al. (2020), builds upon the original Class 
Activation Mapping (CAM; Zhou et al., 2016) by leveraging gradients 
from the final convolutional layer to generate saliency maps. These 
maps highlight important regions for class predictions and do not 
require the addition of a Global Average Pooling (GAP) layer or 
model retraining. In CAM the class prediction score cS  for a given 
class c is determined by the weighted sum of the GAP outputs, as 
shown in Equation 7:

 
=∑ ck k

c
k

S w g
 

(7)

where ckw indicates the weight for the k-th feature map related to 
class c and kg  represents the GAP output for the k-th feature map. 
Grad-CAM generalizes this approach by using the gradients of the 
class prediction score cS  with respect to the feature maps from the last 

convolutional layer. The feature map values are denoted as ,
k
i jA  at 

location (i, j) in the k-th feature map. The weight ckw  is derived from 
the gradients of cS  with respect to the feature maps kA  as defined in 
Equation 8:

 

∂
=

∂
∑

,,

1ck c
k
i ji j

Sw
Z A  

(8)

where Z  represents the total number of pixels in the feature map 
kA . The saliency map ,

c
i jGradCAM  is then computed by aggregating 

the weighted feature map values and applying a ReLU operation to 
capture only positive influences as shown in Equation 9:

 

 
=   

 
∑, ,

c ck k
i j i j

k
GradCAM ReLU w A

 
(9)

This saliency map highlights the importance of each pixel in 
predicting the class c based on the class prediction score cS  and the 
final feature map A at each channel k. Thus, no architecture changes 
to the model are required. Since Grad-CAM generates a saliency map 
with lower resolution compared to the original input image, it can 
be  upsampled to enhance visual clarity. Grad-CAM provides an 
effective XAI approach for visualizing model decisions, allowing the 
generation of saliency maps without the need for architectural 
modifications or extensive retraining of CNN models.

3 Results

3.1 Model performance

In accordance with the methods outlined, the EfficientNetV2s 
model was initially trained using HRDEMs for the West Fork Big 
Blue Watershed, Nebraska. To optimize the training, various 
hyperparameters were examined, such as batch sizes and values 
for dropouts. Among these, a batch size of 64 was found to be the 
most effective batch size, and 0.5 the most effective dropout value. 
However, it was observed that all models plateaued in performance 
improvements, even with adjustments in the learning rate, at 
approximately 75 epochs. The test accuracy of each single layer 
model is detailed in Table 2, suggesting that the model with TPI 
21 has the highest testing accuracy (97.28%) and F1 score (97.16).

Based on the single feature model performance the TPI 21 appears 
to be the most significant feature for accurately identifying images that 
contain under-road drainage crossings. This outcome highlights the 
effectiveness of EfficientNetV2s architecture in performing classification 
tasks for this problem. To quantify the individual contributions of TPI 
21, HRDEM, and Positive Openness (POS) to model accuracy, a 
two-pronged approach is employed. First, the most influential 
individual features (TPI 21, HRDEM, and POS) were combined into a 
model for training. Second, the model utilizing all five features was 
trained and its performance was compared across all configurations. 
Table  3 demonstrates that the three-feature combination yields a 
superior model compared to the single best feature (Table 2). However, 
incorporating all five features did not lead to further improvement, 
conversely resulting in a decrease in model performance. Being 
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corroborated by the results in Table 3, these findings suggest that a 
model utilizing only the three most impactful features (TPI 21, 
HRDEM, and POS) can effectively classify drainage crossing locations. 
Notably, the single most important feature (TPI 21) also demonstrates 
a high degree of accuracy in identifying these drainage crossing 
locations. This implies that TPI 21, HRDEM, and POS contribute 
comparably to the classification of drainage crossing images.

3.2 Model explainability

The HRDEM model was employed to investigate how 
EfficientNetV2 identifies and distinguishes various topographic 
signatures during image analysis. To understand the model’s decision-
making processes, the Grad-CAM technique (Selvaraju et al., 2020) 
was applied to generate saliency maps that visualize the model’s 
attention patterns. Grad-CAM was applied to test examples from each 
identified class to assess the model’s ability to recognize drainage 
crossings and differentiate topographic features.

Figures  3, 4 illustrate the model’s performance and decision-
making process. Each figure contains four image sets, organized into 
two columns. The first column displays the actual (ground-truth) 
label, predicted label, and image identifier. The second column 
presents a composite image, overlaying the original image with its 
corresponding saliency map to highlight important regions identified 
by the model. In the saliency maps, regions rendered in darker shades 
of red and brown indicate areas with a greater influence on the model’s 
prediction. These visualizations provide insights into the model’s 
attention patterns and contribute to understanding its decision-
making rationale.

In Figure 3, the highlighted regions (activations) are primarily 
concentrated on intersections of streams and roads, indicating the 
regions most relevant for identifying true culvert or drainage 
crossing locations. These visualizations provide valuable insights 
into the EfficientNetV2 model’s interpretability, highlighting the 
focused areas for accurately classifying drainage crossings. Figure 4 
shows some instances of misclassification when the contrast 
between the target area and the background is minimal and 
unclear. In such cases, the model struggles to differentiate between 
drainage crossings and non-crossings, as evidenced by scattered 
activation patterns. The saliency maps across these figures offer 
insights into the model’s decision-making process, pinpointing 
areas that may benefit from refinement for improved 
classification accuracy.

3.3 Evaluation of model robustness

To further evaluate the model’s robustness, the off-center dataset 
was used for inferencing. This was necessary to investigate whether 
the model might be trained to ‘memorize’ the feature’s center location. 
In other words, the model should correctly detect a drainage crossing 
being positioned off the center of an image. The inferencing results 
(Figure 5) on this off-center dataset indicated that the model could 
detect drainage crossings at any position off the image center, 
demonstrating its flexibility and robustness.

4 Discussion

4.1 Multi-feature integration and model 
performance in drainage crossing 
classification

The findings from the EfficientNetV2 classification model, which 
leverages HRDEM-derived geomorphological features, demonstrate the 
effectiveness of combining multiple features for accurate deep learning-
based drainage crossing detection. The model achieved the highest 
accuracy (97.9%) by incorporating the three most impactive input 
features (HRDEM, POS, and TPI21) compared to models with only 
single feature input. This aligns with the well-established principle of 
feature complementarity; that is, data from diverse sources provides a 
more comprehensive representation of the object of interest, ultimately 
leading to enhanced model performance (Xu et al., 2021; Stanislawski 
et al., 2021; Li et al., 2020; Barlow et al., 2022; Garcia et al., 2020).

In the DL model, each feature input contributes uniquely to 
drainage crossing identification. HRDEMs provide detailed elevation 
information, crucial for identifying potential drainage crossing 
locations (Bhadra et al., 2021; Talafha et al., 2021; Wu et al., 2023). 
POS emphasizes ridges and crests, aiding in delineating drainage 
pathways (Doneus, 2013). Meanwhile, TPI21 reflects broader 
topographic variations important for representing drainage patterns 
(Deumlich et al., 2010). By integrating these complementary features, 
the model is capable of characterizing nuanced terrain details at the 
location of drainage crossings.

Notably, the EfficientNetV2 models trained on individual input 
features also demonstrate classification accuracies comparable to the 
best-fit model that utilizes three feature inputs. For instance, models 
trained solely on TPI21, HRDEM, POS, and Curvature achieved 
accuracies at 0.9703, 0.9679, 0.9629, and 0.9555, respectively. These 
results indicate that each feature has an outstanding capability of 
classifying drainage crossing images, albeit with slight variations in 
accuracy. Among these feature inputs, TPI21 proves particularly 

TABLE 2 Testing accuracies derived from the models with HRDEM and its 
derivatives.

Feature 
input

Accuracy Precision Recall F1 Loss

HRDEM 0.9679 0.9679 0.9678 0.9679 0.1042

Curvature 0.9555 0.9556 0.9554 0.9555 0.1744

POS 0.9629 0.9699 0.9556 0.9629 0.1490

TPI 21 0.9728 0.9716 0.9716 0.9716 0.1150

TPI 3 0.9580 0.9581 0.9579 0.9581 0.1925

The total sample is 4,044 (50% False, 50% True), samples are 2,426 (60%), validate samples 
are 809 (20%), and test samples are 809 (20%).

TABLE 3 Result of testing accuracy using three HRDEM-derived features 
and all HRDEM derived features.

Feature 
input

Accuracy Precision Recall F1 Loss

3 Features 0.9790 0.9791 0.9790 0.9791 0.0844

All Features 0.8974 0.8974 0.8972 0.8973 0.3973

The total sample is 4,044 (50% False, 50% True), samples are 2,426 (60%), validate samples 
are 809 (20%), and test samples are 809 (20%).
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effective due to its representation of elevation relative to neighboring 
cells which captures terrain features in a larger context a, emphasizing 
distinctive topographic patterns such as narrow valleys, lateral ridges, 
and drainage crossings. Importantly, a TPI window size of 21 × 21 
outperformed a 3 × 3 window for drainage crossing detection. Smaller 
windows highlight minor elevation changes, accentuating fine 

topographic details. In contrast, larger windows like the 21 × 21 size 
emphasize broader topographic patterns, such as ridges and valleys, 
while smoothing minor variations (De Reu et al., 2013). These larger 
windows are advantageous for identifying extensive landscape 
features, thus making them more effective for drainage crossing 
detection. In essence, TPI21 provides a more holistic representation 

FIGURE 3

Saliency maps generated by the EfficientNetV2s model using Grad-CAM, showcasing the model’s attention patterns for correctly identified drainage 
crossings. In these examples (a–d), the true class label is set as 1, representing the drainage crossing class. The first column displays the original 
grayscale images, while the second column shows the saliency maps overlaid on the original images. In the saliency maps, warmer colors (e.g., red 
and yellow) indicate the regions of higher importance or stronger attention by the model, suggesting areas that contribute more significantly to the 
classification decision. Conversely, cooler colors (e.g., blue) represent the regions with lower importance. This visualization highlights the model’s 
ability to focus on the key features of the drainage crossing structures during prediction.

FIGURE 4

Saliency maps produced by the EfficientNetV2s model through Grad-CAM, illustrating the areas of focus when the model encounters 
misclassifications in drainage crossing recognition (a–d). The first column displays the unaltered original image, and the second column shows a 
composite with the saliency map overlaid, highlighting regions where the model’s attention may have contributed to classification errors. In this 
visualization, true drainage crossings are labeled as class 1, while non-crossings are labeled as class 0.
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of the terrain’s morphology, potentially leading to more accurate 
identification of drainage crossings. The additional information 
embedded within TPI21 appears to be particularly beneficial for the 
EfficientNetV2 model’s learning process, resulting in superior 
performance compared to models trained on other individual 
input features.

4.2 Advancements in architecture and 
feature integration for improved model 
classification

The results obtained in this study were comparable to similar 
findings by Wu et al. (2023). That study developed CNN models with 
four convolution layers, a flatten layer, and two fully connected layers 
for classifying drainage crossing based on HRDEMs, aerial 
orthophotos, and HRDEM-derived spectral indices such as NDVI and 
NDWI. The model trained with a single elevation input achieved 
approximately 93% accuracy. In contrast, this study employed an 
advanced CNN model, EfficientNetV2, which demonstrated 
significant improvements in classification accuracy through the 
integration of multiple HRDEM-derived geomorphological features. 
The best-fit model achieved accuracy of 97.9%, underscoring the 
advantage of incorporating relevant complementary features to refine 
the model’s predictive capabilities. The findings suggest that 
integrating HRDEM with geomorphological features such as TPI21 
and POS can improve the model’s ability to identify drainage crossings 
more effectively than HRDEM alone, highlighting the potential of 
advanced CNN architecture combined with feature diversity.

Furthermore, this study highlights the superiority of advanced DL 
architectures, specifically EfficientNetV2, over basic CNN models for 
drainage crossing classification tasks. EfficientNetV2’s advanced 
structure helps identify and characterize complex patterns within the 

drainage crossing dataset. Its scalable depth, width, and resolution 
facilitate more intricate feature extraction, capturing subtle terrain 
variations that basic CNN models may overlook. This ability to learn 
nuanced features results in improved performance. This advantage is 
further amplified by incorporating multiple geomorphological 
features (HRDEM, TPI21, and POS) within the EfficientNetV2 model. 
This combination of geomorphological features enables a more 
comprehensive terrain representation, underscoring the importance 
of both model architecture and feature diversity for enhanced 
performance in geospatial classification tasks.

4.3 XAI-based insights into model 
performance and misclassified image 
samples

Our Grad-CAM visualization analysis provided valuable insights 
into potential confounding regions that may influence the model’s 
decision-making processes. Notably, in regions where there is a low 
contrast between streams and roads, the model tends to focus on the 
road edges, as shown in Figures  4c,d. Additionally, the model 
successfully detected drainage patterns in images with confirmed true 
cases, as illustrated in Figure 3. These highlight the model’s ability to 
accurately capture relevant patterns, even under challenging conditions.

Figures  6, 7 exhibit the model’s capability of diagnosing the 
model’s behaviors in the cases of image misclassification. In Figure 6, 
the model’s activations appear concentrated along the boundaries of 
roads and streams. This suggests that the model may struggle to make 
correct classifications in regions where intersections are less distinct 
or where low contrast exists between the road and its surroundings. 
Such instances indicate potential limitations in the model’s reliance on 
road edge detection for accurate identification of drainage crossings. 
When a strong contrast exists between the road and adjacent features, 

FIGURE 5

Saliency maps from the EfficientNetV2s model using Grad-CAM, showing drainage crossing detection results with varied spatial locations of targets 
within the images (a–d). The first column in each row displays the original grayscale images, while the second column presents saliency overlays 
highlighting the model’s focus areas.
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the model is better suited to discern the presence of a drainage 
crossing. These findings highlight the critical role of feature 
enhancement techniques in improving classification accuracy. 
Techniques that could enhance contrast between roads and their 
surroundings, such as histogram equalization, adaptive contrast 
enhancement, or band-pass filtering, can substantially improve the 

model’s ability to accurately distinguish drainage crossings, 
particularly under low-contrast conditions.

Interestingly, in Figure 7, similar activation patterns are observed, 
where the model focuses on key intersections within the road network. 
However, misclassifications often arise in areas where 
road  intersections resemble drainage crossings due to similar 

FIGURE 6

Saliency maps generated by the EfficientNetV2s model using Grad-CAM, illustrating areas of focus in cases of misclassification during drainage 
crossing recognition (a,b). The first row shows aerial orthophotos with red boxes indicating the region of interest. In the second row, the first column 
shows the original grayscale image, while the second column presents a composite image with the saliency map overlaid. True drainage crossings are 
labeled as class 1, and non-crossings are labeled as class 0.

FIGURE 7

Saliency maps generated by the EfficientNetV2s model using Grad-CAM, highlighting focus areas during drainage crossing recognition (a,b). The first 
row shows aerial orthophotos with red boxes indicating the region of interest. In the second row, the first column presents the original grayscale 
image, while the second column overlays the saliency map on the original. True drainage crossings are labeled as class 1, and non-crossings are 
labeled as class 0.
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structural layouts. These saliency maps suggest that while the model 
effectively captures spatial patterns indicative of drainage crossings, it 
may also be  confounded by complex intersections that lack the 
necessary hydrological characteristics, resulting in false positives. This 
reveals an area where the model’s sensitivity to road structures might 
need refinement, especially in cases where road-only intersections 
mimic the appearance of drainage crossings.

The misclassifications highlighted in these figures emphasize the 
need for incorporating additional contextual features that could aid 
the model in distinguishing true drainage crossings from similar-
looking structures. For example, integrating geomorphological 
features such as positive openness (POS), and TPI could provide more 
clues for the model, helping it differentiate between visually similar 
but functionally different structures. Additionally, enhancing the 
model’s ability to understand texture and context beyond road edges 
could reduce its reliance on boundary-focused activations, leading to 
more accurate classifications.

The model’s consistent identification of drainage crossings across 
diverse spatial locations, as demonstrated by our Grad-CAM 
visualizations, confirms that the learned patterns are indeed predicated 
based on the distinctive topographic features associated with elevated 
roads intersecting drainage channels instead of geographic 
coincidence. These findings not only validate the model’s 
generalizability but also underscore the utility and reliability of XAI 
in offering comprehensive and transparent framework for accurately 
interpreting the model’s decision-making processes.

5 Conclusion

Drainage crossings are essential hydrological features with 
significant implications for water management, environmental 
planning, and infrastructure maintenance. Accurate mapping of these 
features is crucial for accurate hydrographic delineation and effective 
environmental management strategies. In this study, we applied deep 
learning-based image classification to identify drainage crossing 
locations automatically using HRDEMs combined with 
geomorphological features. We  trained the EfficientNetV2 model, 
labeling images as “true” (containing a drainage crossing) or “false” 
(without a drainage crossing), and evaluated its performance across 
various feature combinations. Additionally, we applied XAI techniques 
to analyze the model’s attention areas, providing insights into the 
decision-making process for identifying drainage crossings. Key 
findings include:

 1) The EfficientNetV2 model, utilizing HRDEM, TPI21, and POS 
features, achieved high accuracy (97.9%), outperforming 
single-feature models and highlighting the effectiveness of 
feature complementarity. Adding more features beyond these 
three led to a performance decrease, indicating an optimal 
balance of feature selection.

 2) Grad-CAM visualizations revealed the model’s focus on key 
topographic features, though low-contrast areas occasionally 
led to misclassifications.

 3) The model demonstrated robustness in identifying off-center 
drainage crossings, underscoring its adaptability for diverse 
geographic contexts.

 4) Comparisons with prior studies confirm that the feature 
diversity and advanced CNN architectures result in improved 
classification accuracy.

In conclusion, this study shows the utility of integrating 
advanced deep learning models with carefully chosen 
geomorphological features for improved drainage crossing 
classification across various geographic contexts. Future research 
may be directed to refine the model further by including additional 
contextual features and enhancing its ability to distinguish visually 
similar but functionally distinct structures for improved 
model performance.
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