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Background: The body of toxicological knowledge and literature is expanding

at an accelerating pace. This rapid growth presents significant challenges for

researchers, who must stay abreast with latest studies while also synthesizing

the vast amount of published information.

Goal: Our goal is to automatically identify potential hepatoxicants from over

50,000 compounds using the wealth of scientific publications and knowledge.

Methods: We employ and compare three distinct methods for automatic

information extraction from unstructured text: (1) text mining (2) word

embeddings and (3) large language models. These approaches are combined

to calculate a hepatotoxicity score for over 50,000 compounds. We assess the

performance of the di�erent methods with a use case on Drug-Induced Liver

Injury (DILI).

Results: Weevaluated hepatotoxicity for over 50,000 compounds and calculated

a hepatotoxicity score for each compound.Our results indicate that textmining is

e�ective for this purpose, achieving an Area Under the Curve (AUC) of 0.8 in DILI

validation. Large language models performed even better, with an AUC of 0.85,

thanks to their ability to interpret the semantic context accurately. Combining

these methods further improved performance, yielding an AUC of 0.87 in DILI

validation. All findings are available for download to support further research on

toxicity assessment.

Conclusions: We demonstrated that automated text mining is able to

successfully assess the toxicity of compounds. A text mining approach seems to

be superior to word embeddings. However, the application of a large language

model with prompt engineering showed the best performance.

KEYWORDS

toxicology, hepatotoxicity, text mining, artificial intelligence (AI), large language model

(LLM)

1 Introduction

Drug toxicity refers to the adverse effects or harmful reactions that occur in the body

as a result of exposure to a pharmaceutical drug or substance. While drugs are designed

to elicit therapeutic effects to treat or manage various medical conditions, they may also

have unintended and undesirable consequences that can be harmful to the patient. Toxicity

can be rather systemic, involving widespread impact throughout the entire organism
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(e.g. cytotoxicity or genotoxicity) or localized to a specific organ or

tissue in the body. (e.g. hepatotoxicity or cardiotoxicity).

There is a vast amount of literature published in the area

of toxicology (e.g. searching pubmed for ‘hepatotoxicity OR

cardiotoxicity OR cytotoxicity OR genotoxicity’ results in almost

350k publications between 2003 and 2024 - status 2024-08).

It is practically impossible for an individual to keep up with

the vast amount of information available, even for a specific

topic. Scientific literature, including research papers, articles, and

conference proceedings, often present information in a narrative,

textual format. Although these texts are human readable they are

not per se machine-interpretable.

Different workflows and tools have been published trying to

assess toxicity based on literature data. Limtox (Canada et al.,

2017) tries to characterize adverse hepatobiliary effects induced by

chemical compounds. AOP-helpFinder is a tool that helps in the

construction of adverse outcome pathways (AOPs) by examining

large collections of scientific literature based on concept tagging

and integrative systems biology (Carvaillo et al., 2019; Jornod et al.,

2022; Jaylet et al., 2023). In a recent investigation, we assessed the

relation between a selected list of anti-cancer drugs and different

tumor types based on the available literature (Bauer et al., 2021).

These workflows and tools require a transformation of text into

machine-interpretable data. There are at least three conceptually

different approaches to make unstructured text accessible to

machine learning algorithms.

1. Concept taggers aim to recognize (bio)concepts (e.g.

genes, compounds, diseases, etc.) in unstructured text. They

are conceptually relatively easy and transparent. They have a

comparably long history and were constantly enhanced over

the last decades. Concept taggers are typically working locally

considering only one word, sentence or paragraph. There is no

real semantic text interpretation. Two widely used concept taggers

are: TaggerOne (Leaman and Lu, 2016) which uses semi-Markov

models to detect and normalize bioconcepts such as chemicals

and diseases and GNormPlus (Wei et al., 2015) aiming to tag

and normalize genes and proteins in scientific literature. The

tool PubTator (Wei et al., 2019) integrates different taggers and

provides bioconcept annotations in full text biomedical articles

for genes/proteins, genetic variants, diseases, chemicals, species

and cell lines. One of the most advanced tagger is BERN2 (Sung

et al., 2022; Lee et al., 2020), employing a neural network with

transformer architecture (which is also used for large language

models) for concept tagging and normalization. To assess the

relation between two entities (e.g. a compound and a toxicity type),

further association statistics (e.g. based on a Fisher test) can be used.

2. Word embeddings are conceptually different and have been

proposed a decade ago. They are designed to transform the text

into machine interpretable numeric vectors. They are working also

locally in a text assessing the proximity of words. They allow

to directly assess the relation between words (e.g. a compound

and a toxicity type) by comparing the word vectors. The two

most common implementations are Global Vectors for Word

Representation (Glove) (Pennington et al., 2014) and Word2Vec

(Mikolov et al., 2013). Word2Vec uses a relatively simple classical

two-layer neural network to assess the relation between co-occuring

words. Although the neural network is a black box, the algorithm

and the results are relatively transparent.

3. Large Language Models (LLMs) are transformer-based neural

networks which semantically encode passages. They are relatively

new and conceptually complicated and aim to build up a semantic

text understanding. They are computationally highly demanding

since they require a large pre-training, but can be employed in a

wide range of tasks given their remarkable reasoning capabilities.

Due to the complexity, the algorithm is a complete black box

and the results are not transparent. A common task for LLMs is

Q&A (Question and Answer—chat bot), but the use cases are very

diverse, some of which are knowledge-intensive Q&A, constructive

feedback, etc. Prompting techniques have shown to significantly

improve accuracy on several Q&A benchmarks, even surpassing

smaller expert models (Nori et al., 2023; Singhal et al., 2023),

which depend on large fine-tuning datasets. The top performing

LLMs have hundreds of billions of parameters, making them

highly demanding for large scale analysis. While smaller models

lack core knowledge, they can compete with larger models in

terms of language skills in multi-turn dialogues (Bai et al., 2024;

Chiang et al., 2024). LLMs can be augmented with relevant context

for knowledge-intensive tasks, maintaining much faster inference

speed compared to larger models.

In this manuscript, we aim to automatically assess

hepatotoxicity of more than 50,000 drugs using biomedical

publications and common knowledge as represented indirectly in

the LLM. We apply three different text mining methods, firstly

a supervised approach with text mining strategies, secondly

an unsupervised approach based on the calculation of word

embeddings and thirdly a semantic large language model.

To assess the toxicity of the compounds we used more than 16

million publications (with at least one compound or hepatotoxicity

term) and computed hepatoxicity scores for each of the different

approaches as well as a final consensus score for all compounds.

All results are available for download in Supplementary Table 1. To

validate and compare the approaches we used a drug list ranked by

the risk for inducing liver injury (DILI) (Chen et al., 2016).

2 Materials and methods

An overview on the entire workflow is given in

Supplementary Figure 1.

2.1 Selection of compounds

We included all MeSH terms (Medical Subject Headings) for

compounds identified by PubTator’s Named-Entity Recognition

(NER) in the available literature (all MeSH terms identified by

PubTator—see file “chemical2pubtatorcentral”). We removed very

rare terms found in less than 5 publications. Finally, we included

more than 50,000 MeSH terms.

2.2 Confidence scoring

If there is only limited information available for a compound,

the output of the different mining approaches can be unreliable.

We calculated a confidence score for each compound representing
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FIGURE 1

Flowchart for computing confidence and hepatotoxicity scores. (A) The confidence score for each compound represents the generation probability

of the token ‘A’ in response to the confidence prompt. (B) The LLM outputs a probability distribution across risk classes, which is used to calculate the

toxicity score by applying predefined class weights: 0, 0.25, 0.5, 0.75, and 1 for classes 0–4, respectively. The retriever stores articles (documents) and

their relevance scores as key-value pairs, combining scores for duplicate documents. Initially, 20 articles are retrieved per query (k = 20). These

articles are reranked using a Cross-Encoder to enhance relevance to the specific task. Finally, the top 5 reranked abstracts are selected to generate

the response.

the automatic accessibility of the compound. The confidence score

provides a measure how well a compound is known or described

by the literature. The main motivation here is to detect and filter

noisy and unreliable compounds in order to increase reliability of

the results.

For the confidence assessement we employ a large language

model. We used 8-bit quantized Llama-3-8B-Instruct to compute

confidence scores between 0 and 1, reflecting the LLMs knowledge

on each compound. We generated a single token with the Q&A

prompt shown in Figure 1A.

The log-probability of generating the single token ‘A’ was

converted to a standard probability and used as the confidence

score.

2.3 Text mining

The text mining approach was based on PubTator (export in

2023-08).

We extracted all relevant publications for hepatotoxicity and

all compounds using the provided NER files from PubTator

(e.g. disease2pubtatorcentral and chemical2pubtatorcentral). The

association of a publication with hepatotoxicity was done based

on textual occurrences of any of the following terms in the

PubTator data: “hepatotoxicity”, “hepatotoxic”, “liver toxicity”, or

“hepatic toxicity”. The most frequent MESH terms annotated by

PubTator are: “Chemical and Drug Induced Liver Injury” (MESH:

D056486) in more than 95% of the publications; “Kidney Diseases”

(MESH: D007674) in 1% of the publications and “Drug-Related

Side Effects and Adverse Reactions” (MESH: D064420) in 0.2% of

the publications. For the association between a compound and a

publication we only used the MESH term of the compound. This

resulted in more than 16 million publications. In order to calculate

a toxicity score for one compound with respect to hepatotoxicity,

we computed the co-occurrence by calculating an odds-ratio and an

over-representation p-value using the hypergeometric distribution.

As an example, N-acetyl-4-benzoquinoneimine

(MESH:C028473), a toxic metabolite of acetaminophen, was

found in 1,651 publications. 1,232 of these 1,651 publications

mentioned also hepatotoxicity (total number of hepatotoxicity

related publications: 77,046). 419 publications for N-acetyl-4-

benzoquinoneimine are other publications (total number of other

publications: 16,440,105). This gives an odds-ratio of:

OR =
1232/77046

419/16440105
= 627.4096 (1)

The -log10 p-value using the hypergeometric distribution for this

example is 5699. A final toxicity score is calculated by multiplying

-log10 p-value and the odds-ratio.

The score is normalized (divided by the highest value) in order

to obtain a value between 0 and 1. The normalization is needed to

better compare the three approaches.

2.4 Word embeddings

We trained aWord2Vec skip-gram neural network on the same

16 million PubMed abstracts as above with training parameters

shown in Table 1. Specifically, the training script is based on

gensim 4.3.2 and python 3.10.13. We only selected

publications mentioning both a drug and a disease according

to PubTator central annotations. Furthermore, we split the
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TABLE 1 Hyperparameters for training Word2Vec skip-gram neural network.

Epoch(s)
trained

Number of negative
samples

Minimum
word count

Initial learning
rate

Window size Embedding
dimension

10 5 5 0.025 5 1000

abstracts into 50 million sentences total, which were consequently

preprocessed to remove noisy tokens and apply lower casing. To

further improve the relevance of extracted information, sentences

that mention only a single entity of type drug, disease or gene were

removed. Since Word2Vec is based on words, it is necessary to

consider synonyms and multi-word descriptions of compounds.

As an example the compound: “Carbon Tetrachloride” would be

treated as two word without a proper normalization. To this end,

BERN2 was employed, an efficient biomedical text mining tool for

multi concept recognition and normalization (Sung et al., 2022).

For calculating the word embeddings the compounds were replaced

by the corresponding MeSH terms.

In summary, we generated normalized word embeddings for

about 50,000 compounds, 15,000 diseases and 35,000 genes. Since

the neural network inherently learns from co-occurrence patterns,

we measure cosine similarity as a form of association strength. We

computed cosine similarity relationships across hepatotoxicity and

the 50,000 compounds (for further investigating of the arithmetic

properties we also used 14 other toxicity types (Tran et al., 2023)).

Identical to correlation metrics, cosine similarity ranges from -1

to 1, where 0 conveys no association and positive values indicate

positive association. However, given Word2Vec’s design, negative

similarity values shouldn’t be interpreted as antonyms, but rather

as unrelated.

2.5 Large language model

We employed the two pre-trained large language models

Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct using the

Fireworks API.1

The training of the models most probably included also openly

available full text publications (Meta did not explicitely publish the

sources).

For inferencing, we designed a chat-prompt comprising the

following elements:

1. Instruction set defining the model behavior.

2. Multiple choice task with definitions for each risk category.

3. Context information for the example drug based on two-stage

retrieval.

a. Retrieve: Encode articles and multiple queries, then compute

cosine similarities for article-query pairs to calculate

cumulative relevance score.

b. Rerank: Compute new relevance scores with cross-encoder

model to rerank results.

4. Specific task to be performed with inputs for drug name and

context placeholders.

1 https://api.fireworks.ai/inference/v1/chat/completions.

The user message of the chat-prompt instructs the LLM

to generate a hepatotoxicity score, including probabilities for

all multiple task options (Logprobs), by leveraging provided

context. Figure 1B conveys the overall computation processes

for a single compound. The multiple choice task is similar to

the class descriptions from LiverTox, which groups compounds

into five likelihood classes (from A to E) or associated cases

into five severity classes (1-5) in terms of their potential to

cause hepatotoxicity (Hoofnagle, 2013). LiverTox is an open-

access website that provides up-to-date, unbiased and easily

accessed information on the hepatotoxicity of drugs including

clinical course, diagnosis, patterns, outcomes, severity scales, and

causality grading systems for drug-induced liver injury. In our

experiments, the LLM sees a risk scale from 0 to 4 that focuses

on severity over likelihood with rather simple descriptions of

harm. The prompt format of user-assistant interactions is shown

in Figure 2.

2.5.1 Context information
Providing the LLM with relevant contextual information, a

technique known as Retrieval-Augmented Generation (RAG), has

been shown to significantly enhance performance (Petroni et al.,

2020). We used an advanced retrieval pipeline to include title

and abstracts of the five most relevant publications retrieved

for each prompt. The pipeline consists of two main stages

which are processed at inference. Firstly, we encode all PubMed

publications which mention both the compound and DILI

in their full text by using bge-base-en-v1.5 to embed

respective titles and abstracts. In total, roughly 230K publications

were encoded this way. We selected 20 publications based on

cosine similarity by combining the results for three retrieval

questions:

Q1 Does [compound] cause liver damage?

Q2 Does [compound] induce hepatotoxicity?

Q3 Does [compound] have hepatic effects?

This retrieval stage results in 20 publications

with the highest cumulative relevance

scores.

Secondly, a cross-encoder, bge-reranker-base, re-ranked

previous results with respect to a more specialized query: “Does

[compound] cause fatigue, jaundice, nausea or other liver toxicity

symptoms?” Each of the top five re-ranked publications was

truncated at 100 words before incorporating into the chat-prompt

for more consistent behavior.

2.5.2 Calculation of the final toxicity score
The formatted task description invokes the generation of the

hepatotoxicity score, i.e. the probabilities across all multiple choice
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FIGURE 2

Chat-history and input prompt for LLM. Left side shows system (blue), user (orange) and assistant (green) messages. Right side describes employed

strategies.

options (Logprobs). Logprobs are the generation probabilities for

each multiple choice label and can be used to quantify model

confidence.

To derive a toxicity score, we compute the expected value,

i.e. utilize a weighted sum approach, where each class weight is

multiplied by the corresponding probability from the distribution

of the generated choice token. Since we are using numerical labels,

a mapping to predefined weights is not necessary. The scaling

function applied to each risk label k, shown in Equation 2, simply

normalizes the score to the range [0, 1].

f (k) = 0.25 · k, k ∈ {0, 1, 2, 3, 4}. (2)

While this formulation reflects linearly scaled risk classes, the final

score does not account for the LLM’s inherent bias toward each

option. The outcome represents a continuous toxicity score.

E.g. the hepatotoxicity score for cysteine was computed as

0 · 0+ 0.74 · 0.25+ 0.26 · 0.5+ 0 · 0.75+ 0 · 1 ≈ 0.315 (3)

where each choice label has generation probabilities

P(X = x) =















0.74 if x = 1,

0.26 if x = 2,

0 if x ∈ {0, 3, 4}.

(4)

3 Results

3.1 Confidence score

For each compound we calculated a knowlegde based

confidence score using an LLM as described in the methods

section. The top results with the highest knowlegde confidence

are acetaminophen, caffein and magnesium (see Table 2). Most

of the high confidence compounds also show a high number of

publications while the number of publications for compounds

with low confidence scores are often limited. The Spearman

correlation coefficient between the confidence score and the

number of publications is 0.86. However, there are exceptions,

e.g. the compound “trimethoprim, sulfadoxine drug combination”

(MESH: C000301) has a high confidence score but a rather

low number of publications. The confidence score reflects

the LLM knowlegde but not necessarily the frequency of

scientific publications.

For the primary analyses in the paper, we focus on the

compounds with high confidence (confidence score ≥ 0.9).

3.2 Text mining

Using the pre-processed PubTator databases we assessed

the relation between all compounds and the hepatotoxicity as

described in the Methods section. The top hepatotoxic compounds
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TABLE 2 Table with the top 10 compounds with highest or lowest confidence score.

MESH Name Confidence N pub all

D000082 Acetaminophen 1.00 80029.00

D002110 Caffeine 1.00 76229.00

D008274 Magnesium 1.00 186908.00

D011054 Poliovirus vaccine, inactivated 1.00 2112.00

D011055 Poliovirus vaccine, oral 1.00 3004.00

D014807 Vitamin D 1.00 119538.00

D022542 Measles-Mumps-Rubella Vaccine 1.00 1886.00

C000006 Insulin, neutral 0.99 267.00

C000179 N-acetylaspartate 0.99 11165.00

C000301 Trimethoprim, sulfadoxine drug combination 0.99 58.00

C588086 1,10,10-trimethyl-2-(3,4,5-trimethoxyphenyl)-1,2,2a,4,10,10a-hexahydro-3H-cyclobuta(4,5)pyrano(3,2-

c)quinolin-3-one

0.05 7.00

C577626 24,25,26,27-tetranor-apotirucalla-(apoeupha)-1-senecioyloxy-3,7-dihydroxy-14,20,22-trien-21,23-epoxy 0.05 13.00

C514449 22-O-acetyl-21-O-(4’-O-angeloyl)-beta-d-fucopyranosyl theasapogenol B 0.05 8.00

C502982 9-(benzoyloxy)-2-(3-furanyl)dodecahydro-6a,10b-dimethyl-4,10-dioxo-2H-naphtho(2,1-c)pyran-7-carboxylic

acid methyl ester

0.05 70.00

C068231 Trisphenylcarbamoylcellulose 0.05 15.00

C045331 Bromoacetylalprenololmenthane 0.05 72.00

C477956 3-O-rhamnopyranosyl-1-2-xylopyranosyl oleanolic acid

28-O-rhamnopyranosyl-1-4-glucopyranosyl-1-6-glucopyranosyl ester

0.04 15.00

C505284 1,1,2,2-tetrahydroheptadecafluorodecanol-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanol 0.03 7.00

C486444 4-zido-5-isobutyrylamino-2,3-didehydro-2,3,4,5-tetradeoxyglycerogalacto-2-nonulopyranosic acid 0.03 26.00

C085636 GpenGRGDSPCA 0.03 7.00

Column “N Pub All” gives the number of publications found using the literature mining approach (in general without focus on hepatotoxicity).

include: silymarin (MESH: D012838), carbon tetrachloride

(MESH: D002251), acetaminophen (MESH: D000082),

thioacetamide (MESH: D013853), bilirubin (MESH: D001663) and

malondialdehyde (MESH: D008315) (see Table 3). The compound

‘N-acetyl-4-benzoquinoneimine’ (MESH: C028473) showing the

highest hepatotoxicity score of 1 is not listed since the confidence

score is only 0.79.

3.3 Word embeddings

We computed cosine similarities between all compounds

and hepatotoxicity. The top compounds with the highest

score for hepatotoxicity (closest to the term “hepatotoxicity”)

include carbon tetrachloride (MESH: D002251), galanin (MESH:

D019004), thioacetamide (MESH: D013853), acetaminophen

(MESH: D000082) and silymarin (MESH: D012838). Carbon

tetrachloride, thioacetamide, acetaminophen and silymarin are also

the top 4 hits of the literature mining results. See Table 4 for more

results.

To further emphasize the encoding’s inherent arithmetic

potential, we explored its capabilities through arithmetic

operations. We performed a PCA of the word embeddings using

general word ‘toxicity’, single toxicity types (beside hepatotoxicity

we also used 14 other toxicity types) and the corresponding

organs/tissues (see Figure 3).

Remarkably, the vectors for the different toxicity types were

rather similar even in the 2D projection. The averaged toxicity

vector and the vector of the general toxicity term were highly

simliar. This emphasizes the arithmetic properties of the word

vectors (e.g. “heart” + “toxicity”∼ “cardiotoxicity”).

3.4 Large language model

Openly available pre-trained LLM models Llama-3-8B and

Llama-3-70B were instructed to generate predictions for all

compounds as described in the methods. Among the compounds

with the highest toxicity scores are: nimesulide (MESH: C012655),

bromfenac (MESH: C053083), agatoxins (MESH: D060848) and

crizotinib (MESH: D000077547) with very high scores for both

models. polonium-210 (MESH: C000615141) had a score of 1 from

the LLM70B but only 0.79 for LLM8B. Table 5 shows most top

scoring compounds.
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TABLE 3 Table with the top 15 compounds with the highest hepatotoxicity score for the literature mining (column “Score LM”).

MESH Name N Pub Hepa Odds ratio P-value (-log10) Score LM Confidence

D012838 Silymarin 2153 78.25 6956.04 0.77 0.99

D002251 Carbon tetrachloride 7341 51.38 21289.53 0.77 0.99

D000082 Acetaminophen 11896 37.26 31458.93 0.75 1.00

D013853 Thioacetamide 1480 65.74 4558.98 0.74 0.97

D001663 Bilirubin 9275 22.55 20141.80 0.72 0.99

D008315 Malondialdehyde 6289 17.74 12167.67 0.71 0.98

D000111 Acetylcysteine 4389 18.78 8671.83 0.70 0.99

D011794 Quercetin 4352 18.69 8578.48 0.70 0.99

D005688 Galactosamine 1396 41.29 3731.41 0.70 0.96

C029684 Thiobarbituric acid 2392 27.50 5528.12 0.70 0.93

D005978 Glutathione 13705 14.80 24891.57 0.70 0.99

D001647 Bile acids and salts 5081 15.49 9170.80 0.69 0.99

D003474 Curcumin 4268 17.14 8074.41 0.69 0.99

D005609 Free radicals 6565 13.22 10964.70 0.69 0.99

D059808 Polyphenols 5198 13.81 8846.15 0.69 0.99

We include only compounds with confidence score ≥ 0.9.

TABLE 4 Table with the top 15 compounds with the highest hepatotoxicity score (cosinde similarity) for the Word2Vec approach (column “Score W2V”).

MESH Name Score W2V Confidence

D002251 Carbon tetrachloride 0.49 0.99

D019004 Galanin 0.42 0.98

D013853 Thioacetamide 0.42 0.97

C002614 Liv 52 0.41 0.97

C038266 Silybin dihemisuccinate 0.41 0.92

D000082 Acetaminophen 0.40 1.00

C034499 Allyl formate 0.40 0.94

C588038 Lonicerae flos 0.40 0.91

C056076 Acetaminophen, butalbital, caffeine drug combination 0.39 0.99

C493903 Cep290 protein, human 0.38 0.92

C461320 Shosaiko-to 0.38 0.93

C006463 Allyl alcohol 0.37 0.99

D011619 Psychotropic drugs 0.36 0.99

D012838 Silymarin 0.35 0.99

C043819 Somatostatin, cyclic hexapeptide(Phe-Phe-Trp-Lys-Thr-Phe)- 0.34 0.99

We include only compounds with confidence score ≥ 0.9.

3.5 Method comparison

The toxicity scores from the three different approaches,

literature mining, Word2Vec and large language models, were

compared by pairwise correlation and scatter plots in Figure 4.

The average Spearman correlation coefficient ranged from 0.17

for the comparison of literature mining and Word2Vec to 0.28

for the comparison of literature mining versus LLM 8B. The

two LLMs were similar with a Pearson correlation coefficient

of 0.81. In general the correlations between the methods were

relatively lowwhichmay suggest that the threemethods were rather

complementary.

Among the top 100 results with the highest hepatotoxicity score

4 compounds were found with all methods: carbon tetrachloride
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FIGURE 3

First and second principle components of the PCA (prinicpal component analysis) using the word embeddings including general word “toxicity”, all

single toxicity types and the corresponding organs/tissues. The arrow connect the terms for the toxicity types with the corresponding organ/tissue

and reflects the toxicity vector (in 2D projection). The blue arrow is the projected vector of the general “toxicity” term. The orange arrow is the mean

vector of all black arrows.

(MESH: D002251), galactosamine (MESH: D005688), isoniazid

(MESH: D007538) and thioacetamide (MESH: D013853) (see

Figure 5).

3.6 Hepatotoxicity combined score

We observed only a limited correlation between the different

methods. The reason for this limited correlation may be that the

three methods rather complement each other and include different

aspects of toxicity. Thus, in order to calculate a final toxicity

score we combined all three approaches using a weighted mean

(weights: 2 for LLM8B, LLM70B and literature mining and only

1 for Word2Vec since the performance of Word2Vec seemed to

be lower). The table with the 15 most hepatotoxic compounds

is shown in Table 6. The full table is available for download in

Supplementary Table 1.

3.7 Validation

To validate and compare the three different approaches for

assessing hepatotoxicity, we used as ground truth a published drug

list that ranks compounds for their risk to induce liver injury

(DILI) (Chen et al., 2016). To this end we calculated single value

ROC curves for the prediction of the highest DILI severity class

(class 8) vs. the rest (see Figure 6). More detailed performance

measures are displayed in Table 7. As before, we focussed on the

compounds with high confidence values (confidence score ≥ 0.9).

The Word2Vec approach showed the lowest performance with an

AUC of 0.7 [CI: 0.64–0.75]. The literature mining approach was

significantly better (Delong p-value: 0.00028) with an AUC of 0.8

[CI: 0.75–0.84]. The more complex 8B large language model was

marginally better (Delong p-value: 0.057) with an AUC of 0.84

[CI: 0.8–0.88]. The best performance was obtained for the most

complex model, the LLM 70B with an AUC of 0.85 [CI: 0.81–

0.89] (Delong p-value compared to LLM8B: 0.5; Delong p-value

compared to literature mining 0.044). The combined score showed

an AUC of 0.87 [CI: 0.83–0.9] which is marginal better compared

to the LLM70B (Delong p-value: 0.07) and significantly better than

the literature mining (Delong p-value: 0.0008).

3.8 Influence of the RAG component

In order to investigate the benefit of the RAG component

(additional context provided to the LLM query), we run the

LLM70B without providing additional context. Without the

RAG component, the LLM70B resulted in an AUC of 0.82 [CI:

0.78–0.86]. The RAG component does not increase the validation
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TABLE 5 Table with the top compounds with the highest hepatotoxicity score derived from the top 10 of the two large language models (columns

“Score LLM8B” and “Score LLM70B”).

MESH Name Score LLM8B Score LLM70B Confidence

C012655 Nimesulide 1.00 0.99 0.95

C053083 Bromfenac 1.00 1.00 0.94

C075975 Oil of chenopodium 0.99 0.96 0.95

C011007 Methyl ethyl ketone peroxide 0.99 1.00 0.91

D060848 Agatoxins 0.99 1.00 0.93

C093607 Microcystin LL 0.98 0.98 0.98

D000077547 Crizotinib 0.98 1.00 0.99

C023470 Perhexiline maleate 0.98 1.00 0.92

C033158 Sulfuric acid 0.98 0.85 0.99

D012966 Sodium Cyanide 0.98 0.85 0.98

C000615141 Polonium-210 0.79 1.00 0.94

C029227 Aflatoxin D1 0.96 1.00 0.91

C072611 Aflatoxin B1-DNA adduct 0.82 1.00 0.97

C522419 Catumaxomab 0.93 1.00 0.93

D000077867 Tolcapone 0.96 1.00 0.97

D000348 Aflatoxins 0.98 1.00 0.99

We include only compounds with confidence score ≥ 0.9.

performance significantly (Delong p-value: 0.15) but the missing

context leads to a high increase of indecisive compounds. 36.6% of

the DILI compounds have a hepatotoxicity score of 0.5 when no

additional context is provided (a score of 0.5 can be interpreted

as if the LLM is indecisive). When providing additional context

only 14.2% of the DILI compounds have a hepatotoxicity

score of 0.5. A scatterplot comparing the hepatotoxicity

scores with and without the additional context is shown in

Figure 7.

4 Discussion

We performed a comprehensive assessment of hepatotoxicity

with more than 50,000 compounds based on published biomedical

literature and common knowledge. We calculated combined

hepatotoxicity score for all compounds with four conceptually

different methods which can be used as a repository for further

analysis. The validation using DILI underlines the usefulness of the

approaches.

Especially the combined hepatotoxicity score seems to be

capable to predict DILI for compounds not included in the DILI

set with high accuracy. The main results are available for download

and further investigations.

For the association between a publication and hepatotoxicity

(or a publication and a compound) we used NER

provided by PubTator. The overall hepatotoxicity score

(Supplementary Table 1) aligns with published studies or

assessments of hepatotoxins, for example, with the US DILIN

prospective study (Chalasani et al., 2015): here, 1257 patients

were investigated longitudinally for DILI in the presence of

drug usage. Resulting compounds identified in that study mostly

affecting DILI in the patients were reflected by our DILI ranking,

for example azithromycin (rank 251 in our combined score list,

score = 0.61), nitrofurantoin (rank 76, 0.69), minocycline (rank

143, 0.65) among others. However, it should be emphasized

that our associations are related to NER and disease terms, and

there are many hepatic endpoints that might not be associated

with a disease term. For example, the dataset in CAMDA 2022

(https://bipress.boku.ac.at/camda2022/) showed that it was

complex and non-trivial to accurately identify DILI-(un)related

publications. An interesting, more general approach here

would be to incorporate the concept of key characteristics for

the toxicity under study, allowing for further chemically and

biologically motivated associations. In the context of DILI such

key characteristics could be Causes apoptosis/necrosis of liver cells

or disrupts transport function as have been recently demonstrated

(Rusyn et al., 2021). Strong hepatotoxins reported in this study

based on 12 key characteristics are also highly ranked in our

assessment such as acetaminophen (rank 165, 0.64) or amoxicillin

(2,554, 0.42), however, there are also discordant cases in particular

with respect to chemicals or environmental contaminants which

are not targeted by our approach.

Textmining based on PubTator performs much better than

word embeddings based on the same set of publications (DeLong p-

value for comparing ROC curves 0.00028). A reason might be that

the text mining approach is superwised and uses only pre-defined

information on compounds and toxicity types. In contrast, word

embeddings are unsuperwised and contain more noise. However,

for compounds with a very high association to hepatotoxicity, the

correspondance between both methods increases strongly (14% of

the top 100 of both methods are overlapping).
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FIGURE 4

Pairwise corralation and scatter plot of the three di�erent approaches: text mining, Word2Vec and large language model. Upper diagonal shows

scatterplots including a linear regression line in blue. The vertical lines for the LLM 70B result from a very sharp distribution of the probability scores

(see Methods section). The lower diagonal shows Pearson correlation coe�cients and correlation p-values. On the diagnoal we show histograms of

the scores. We include only compounds with confidence score ≥ 0.9.

Large language models (both 8B and 70B) seem to be

superior compared to literature mining. One reason for this is

certaintly that literature mining is restricted to PubMed while

LLMs have a broader set of input information. In addition,

LLMs are capable of considering the semantic relation while the

literature mining approach only uses co-occurrence. The missing

directionality for literature mining results in higher scores also

for hepatoprotective drugs. E.g. drugs like acetylcysteine (MESH:

D000111) are hepatoprotective with DILI severity class = 0. Due to

themissing directionality the hepatotoxicity score for acetylcysteine

is high in the literature mining approach (hepatotoxicity scores:

literature mining = 0.7; Word2Vec = 0.26; LLM8B = 0.14;

LLM70B = 0). The same can also be true for the word embeddings.

E.g. the compound shosaiko-to (MESH: C461320) is a chinese

herbal supplement, believed to enhance liver health and is among

the top 10 hepatotoxic compounds fromWord2Vec (hepatotoxicity

scores: literature mining = 0; Word2Vec = 0.38; LLM8B = 0.54;

LLM70B = 0.5).
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Interestingly the performance of the 70B LLM is comparable

to the performance of the 8B LLM. The main reason for this is

most probable the multi-step workflow. We first retrieve and re-

rank drug related context information and provide this context to

the LLM prompt. So the highly relevant context information is the

same for the 8B LLM and the 70B LLM which may by the reason

for the similar performance.

FIGURE 5

Venn diagram showing the overlap of the top 100 compounds (with

the highest hepatotoxicity score) for the di�erent methods.

The performance of Word2Vec for the toxicity assessment

is weaker compared to the other methods but the arithmetic

properties are interesting and helpful. An experiment using word

vectors showed that the word embedding neural network organizes

the vectors in a way that allows for arithmetic operations.

Interestingly, the direction vectors connecting the position vectors

FIGURE 6

ROC curves for the prediction of DILI class comparing the di�erent

approaches.

TABLE 6 Table with the top results with the highest final hepatotoxicity score derived from the all methods.

MESH Name Final LM W2V LLM 8B LLM 70B Confidence

D002251 Carbon tetrachloride 0.84 0.77 0.49 0.94 0.99 0.99

C029227 Aflatoxin D1 0.80 0.45 0.96 1.00 0.91

D013853 Thioacetamide 0.80 0.74 0.42 0.90 0.94 0.97

D000077288 Troglitazone 0.79 0.67 0.23 0.98 0.99 0.97

D005688 Galactosamine 0.78 0.70 0.32 0.92 0.96 0.96

D000348 Aflatoxins 0.78 0.64 0.19 0.98 1.00 0.99

D000077867 Tolcapone 0.76 0.61 0.22 0.96 1.00 0.97

C012655 Nimesulide 0.76 0.56 0.20 1.00 0.99 0.95

D007538 Isoniazid 0.75 0.67 0.28 0.96 0.87 0.99

C053083 Bromfenac 0.75 0.54 0.17 1.00 1.00 0.94

D000431 Ethanol 0.75 0.64 0.20 0.88 1.00 0.99

D052998 Microcystins 0.74 0.67 0.18 0.93 0.91 0.99

D004221 Disulfiram 0.74 0.54 0.27 0.98 0.94 0.99

D000438 Alcohols 0.74 0.63 0.13 0.93 0.97 0.99

D003606 Dacarbazine 0.74 0.51 0.21 0.96 1.00 0.98

We include only compounds with confidence score ≥ 0.9.
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TABLE 7 Classification performances from single value ROC curves for the prediction of the highest DILI severity class (class 8) vs. the rest.

Method Threshold tp tn fp fn ppv npv Sensitivity Specificity BACC AUC Lower
CI AUC

Upper
CI AUC

Word2Vec 0.15 524 50 45 159 0.92 0.24 0.77 0.53 0.65 0.70 0.64 0.75

Literature

mining

0.46 529 66 30 165 0.95 0.29 0.76 0.69 0.72 0.80 0.75 0.84

LLM8B 0.51 530 75 20 162 0.96 0.32 0.77 0.79 0.78 0.84 0.80 0.88

LLM70B 0.48 475 85 10 217 0.98 0.28 0.69 0.89 0.79 0.85 0.81 0.89

LLM70B

no RAG

0.47 388 88 7 303 0.98 0.23 0.56 0.93 0.74 0.82 0.78 0.86

Summary

score

0.44 555 76 20 139 0.97 0.35 0.80 0.79 0.80 0.87 0.83 0.90

FIGURE 7

Scatterplot comparing the hepatotoxicity scores of the LLM with

and without the RAG component (with and without additional

context to the query). Spearman correlation coe�cient is shown on

top left side of the plot.

of toxicity type and body part highly correlates with the direction

vector of the term “toxicity” (even in this 2D projection). An

advantage of this arithmetic is, that it could also be applied to less

common toxicities, e.g. to get the vector of “pancreatic toxicity”.

LLM selection significantly influences the classifier’s

performance. An absence of refined reasoning capabilities

can hinder the effectiveness of prompting strategies. We

noticed that our employed LLM is influenced by the provided

context. Although the context does not incease the validation

performance significantly (Delong p-value: 0.15) without

the additional context the LLM seem to be more indecisive.

Therefore we highly believe that the RAG component is well

suited to increase the power of the predictions. However,

the provided context may distract the LLM from the acutal

task. For some compounds we saw a high mismatch between

the DILI rank and the prediction. E.g. balsalazide (MESH:

C038637) with the highest DILI severity score and a LLM

confidence score of 0.93 has a toxicity score of 0.15 with

the LLM70B (so it should be well known and highly toxic).

None of the publications in the context is mentioning a direct

relation between the compound and hepatotoxicity. For a

more comprehensive assessment a PDF file is available in the

supplement showing context for querying the DILI compounds

(Supplementary material 1).

Opting for a larger model enables better reasoning and

evaluation of the context but comes with more demanding system

prerequisites. If the system’s capacity is large enough, such a choice

can be advantageous, given that only a single token is generated per

inference.

The purpose of our study was to compare different approaches

for automated information retrieval and its application to

characterize hepatotoxins at a general level. In particular, LLMs

performed well and might have the potential to be utilized

for more complex tasks such as risk or hazard assessment

(Ma and Wolfinger, 2024). However, this task would require

gathering domain-specific texts, including scientific literature,

regulatory documents, safety data sheets and further chemical

databases to fine-tune the LLM on these specific tasks. Data

could include chemical properties of compounds such as

molecular structure, reactivity and persistence in the environment

among others, knowledge on exposure pathways, toxicological

information, regulatory standards, risk assessment frameworks,

for example dose-response assessments, hazard identification and

many other factors.

4.1 Limitations

The results for the text mining and for word embeddings

are “undirected” and reflect only co-occurrence. This means top

results are not necessarily most toxic compounds but e.g. also

compounds used to treat toxicities. Examples are acetylcysteine

(MESH: D000111) or vitamin E (MESH: D014810) found with

higher scores in the text mining and Word2Vec.

All approaches are based on the published literature or

common knowledge. We can only unravel hidden information or

summarize and reorganize already existing information. But using

the existing literature, we can not assess or predict toxicity of novel

compounds directly.
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In order to predict DILI for completely unknown compounds

we would need additional layers of information such as physico-

chemical properties of compounds, information onmodes of action

or molecular targets. These could be used to predict toxicity for

the unknown compounds with the help of known compounds with

similar properties.

Finally, validating LLMs poses challenges due to their extensive

training process. In addition, validation informationmay have been

included in the training process (directly or indirectly). This means

that the LLM could have seen the FDA DILI rank labels during

training and identified the dataset patterns during inference. This

eventually leads to artificially high performance.
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