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Active Learning (AL) leverages the principle that machine learning models can
achieve high accuracy with fewer labeled samples by strategically selecting the
most informative data points for training. However, when human annotators
provide these labels, their decisions might exhibit a systematic bias. For example,
humans frequently rely on a limited subset of the available attributes, or even
on a single attribute, when making decisions, as when employing fast and
frugal heuristics. This paper introduces a mathematically grounded approach to
quantify the probability of mislabeling based on one attribute. We present a novel
dropout mechanism designed to influence the attribute selection process used
in annotation, effectively reducing the impact of bias. The proposed mechanism
is evaluated using multiple AL algorithms and heuristic strategies across diverse
prediction tasks. Experimental results demonstrate that the dropout mechanism
significantly enhances active learning (AL) performance, achieving a minimum
70% improvement in effectiveness. These findings highlight the mechanism’s
potential to improve the reliability and accuracy of AL systems, providing valuable
insights for designing and implementing robust intelligent systems.
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1 Introduction

Prediction models are integral to automating decision-making processes across diverse
industries, enabling organizations to make data-driven, efficient, and informed choices
instead of relying only on intuition or past experiences. In numerous practical settings,
obtaining labels for data instances is significantly more resource-intensive than acquiring
their input attribute values. For example, in healthcare, a hospital must identify which
patients require intensive care. In banking, financial institutions need to determine which
customers qualify for loan approvals. Similarly, in recruitment, IT firms aim to shortlist
candidates suitable for specific roles.

In each case, collecting attribute information (e.g., medical records, financial history,
or resume details) is relatively straightforward, while obtaining accurate labels (e.g.,
critical care necessity, loan eligibility, or applicant suitability) involves higher costs, effort,
or expertise.

Active Learning (AL) offers a powerful approach to address such challenges by
strategically selecting data points to be labeled. This enables benchmark predictive accuracy
to be achieved with significantly fewer labeled instances.
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The Active Learning (AL) cycle, depicted in Figure 1, generally
begins with a small set of labeled instances, referred to as L. This
initial set is used to train a standard supervised machine learning
model. Subsequently, one or more instances are strategically
sampled from the unlabeled pool U without replacement for
querying. The labels obtained from the oracle, along with the
information regarding the queries, are then used to augment the
labeled set. This updated set is employed to retrain the machine
learning model, continuing the cycle.

This approach enables predictive models to achieve better
performance more efficiently, using fewer labeled data points,
making it particularly valuable in scenarios where labeling is costly
or challenging (Settles, 2009; Monarch, 2021; Amin et al., 2023;
Robinson et al., 2024). Many previous studies in Active Learning
assume the oracle to be an unbiased annotator (Venugopalan and
Gupta, 2022; Arora et al., 2009; Guo and Schuurmans, 2007).

However, many of these applications rely on Human-in-the-
Loop (HITL) systems, where human annotators play a pivotal
role in labeling and decision-making processes. For instance,
medical diagnoses are made by doctors, while decisions on loan
applications are handled by bank managers, among other examples.
Consequently, the labels provided to an Active Learner may reflect
such biases, potentially reducing the performance of the trained
model (Agarwal et al., 2022a). More specifically, annotators may
rely on fast-and-frugal heuristics when providing labels to the
Active Learner (Todd et al., 1999). Psychological research has
shown that humans often exhibit bias when making decisions
(Ariely, 2010), even if ultimately the decisions might be as accurate
as those made by more complex and supposedly more rational
models (Gigerenzer et al., 2011; Katsikopoulos et al., 2020). The
work by Anahideh et al. (2022) introduced a fair active learning
framework that incorporates fairness into the sampling process,
selecting data points for labeling in a way that balances model
accuracy with algorithmic fairness. However, this approach does
not consider the heuristics involved in human decision-making and
only focuses on ensuring algorithmic fairness in predictions rather
than addressing fairness in the labels provided by the annotators.

In a management context, automating the decision-making
process of hiring managers often involves using an active learning

FIGURE 1

A typical active learning cycle as described by Settles (2009).

approach. In this setup, the active learner selects candidate
profiles (i.e., instances to be labeled) and queries an experienced
hiring manager for their hiring decisions (labels). However, hiring
managers frequently rely on heuristics, such as favoring candidates
from prestigious universities or prioritizing resumes with specific
key terms. While these features are easily recognizable, they
may not accurately predict job performance. This reliance on
heuristics can introduce bias into the provided labels, and when
such biased labels are used to train machine learning models,
they can compromise the overall quality and fairness of the
model’s decisions.

Ravichandran et al. (2024) explored the impact of human
heuristics on Active Learning algorithm performance and proposed
a novel query strategy that prioritizes points likely to yield
accurate labels.

Our work extends beyond reordering queries by introducing
a drop-out mechanism designed to mitigate mislabeling.
The approach involves first estimating the probability of a
data point receiving an incorrect label based on using one
attribute. The mechanism then identifies attributes with a high
likelihood of introducing bias and excludes their information
during querying. By preventing annotators from basing their
decisions on these attributes, the mechanism reduces the
chances of incorrect labeling and enhances the reliability of the
provided labels.

The proposed drop-out mechanism has broader implications
for human-in-the-loop systems. Effectively managing the
information presented to annotators not only enhances label
accuracy but also reduces the cognitive load on human oracles.
This approach can be applied in diverse domains where labeling
is inherently subjective or prone to bias, such as legal document
classification, financial risk assessment, and social media content
moderation, thereby improving the reliability of machine learning
models in these areas.

A preliminary version of this work was accepted as a short paper
in the Second Workshop on Hybrid Human-Machine Learning
and Decision Making at the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD’24), However this study has been
significantly expanded. The current version incorporates the Fast
and Frugal Tree heuristic alongside Take the Best, integrates the
information density query strategy with entropy sampling, and
extends experiments to ten datasets. Moreover, we also include a
detailed analysis of the mechanism’s relative effectiveness across
various heuristics and active learning algorithms. All sections have
been thoroughly revised and enhanced to provide deeper insights
into the study.

The paper is organized as follows: Section 2 reviews
related literature pertinent to our study. Section 3 outlines the
methodology, detailing the AL algorithms, the proposed drop-
out mechanism, and the fast-and-frugal heuristics considered.
This is followed by the Results and Discussion section, which
includes both the mathematical framework and experimental
findings supporting the proposed mechanism. The subsequent
section discusses the limitations of the study and outlines directions
for future research. The paper concludes with a summary of key
findings and contributions in the Conclusion section.
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2 Related work

Active learning (AL) algorithms in this study are restricted
to a pool-based sampling scenario, wherein a small set of labeled
data points exists, and the remaining unlabeled data is available
all at once. These algorithms can be broadly categorized into
two groups. The first group ranks data points uncertainty or
entropy metrics (Shannon, 1948). Labels are queried sequentially
based on the rankings generated across the pool of unlabeled
data points. Despite their apparent simplicity, such methods
often demonstrate competitive performance (Raj and Bach,
2022; Liu and Li, 2023). The second group extends beyond
ranking by incorporating spatial information of data points,
combining uncertainty with information density. Information
density measures how representative an unlabeled data point is of
the overall distribution, and the two measures are often combined
multiplicatively to enhance query effectiveness (Settles and Craven,
2008).

Many AL studies implicitly assume an oracle that is bias-
free (Hoi et al., 2006; Arora et al., 2009; Guo and Schuurmans,
2007). However, empirical evidence challenges this assumption. For
instance, Baum and Lang (1992) demonstrated that incorporating
human oracles in query learning can lead to a significant increase
in generalization errors, up to fortyfold. This underscores the
vulnerability of AL performance in the presence of biased or
erroneous human annotators. Furthermore, psychological research
has established that human decision-making often relies on
heuristics, which could lead to systematic bias in the labels provided
to active learners (Agarwal et al., 2022a).

Research on human biases in AL has shed light on their
adverse impact and proposed methods for mitigation. Behavioral
biases were found to reduce classification accuracy by at least
20% in specific datasets (Agarwal et al., 2022b). The study
Active Learning with Human-Like Noisy Oracle modeled human
oracles where noise levels varied with oracle confidence. Their
proposed algorithm effectively addressed example-dependent
noise, outperforming traditional uncertainty-based methods (Du
and Ling, 2010). Similarly, Groot et al. (2011) employed a Gaussian
Process framework to capture annotator expertise and manage
disagreements, significantly improving regression tasks involving
noisy, subjective labels.

Several studies have refined AL techniques by incorporating
user feedback or personalizing learning processes. For example,
repeated-labeling strategies demonstrated improvements in label
quality and model performance in noisy environments, while
personalized active learning for collaborative filtering tailored
queries to user preferences, thereby improving recommendation
accuracy (Harpale and Yang, 2008). Extensions to traditional AL
frameworks, such as incorporating feature importance feedback,
have shown promise in accelerating learning for applications like
news filtering (Raghavan et al., 2006). Additionally, evidential
uncertainty sampling strategies grounded in belief function
theory have effectively balanced exploration and exploitation,
outperforming traditional uncertainty sampling approaches
(Hoarau et al., 2024).

In the realm of human decision-making, the concept of fast-
and-frugal heuristics is a central theme in behavioral science

literature. These heuristics describe how individuals rely on
a limited subset of attributes to make decisions quickly and
efficiently without considering all available information. Unlike
other approaches to studying heuristics, this approach has been
instrumental in developing mathematical models (Katsikopoulos
et al., 2020) that provide a structured framework for understanding
how people estimate quantities, choose between multiple options,
or classify objects into categories based on simplified decision rules.

The validity of these heuristics has been supported by extensive
empirical studies (Gigerenzer et al., 2011), which demonstrate
their applicability and robustness in real-world scenarios. For
instance, research by Katsikopoulos et al. (2020) highlights how
these heuristics can achieve remarkable accuracy across diverse
decision-making contexts, often rivaling more complex algorithms.
Furthermore, the work by Todd et al. (1999) underscores the
close alignment between heuristic-based decision-making and
actual human behavior, reinforcing the idea that these simplified
strategies are not only efficient but also deeply rooted in natural
human cognition.

These findings suggest that fast and frugal heuristics are not
just a compromise for limited cognitive resources but are adaptive
strategies optimized for various environments, enabling individuals
to make effective decisions with minimal effort. These heuristics
suggest that human annotators might focus on a particular set
of attributes, potentially neglecting others, when labeling data.
Despite its relevance, existing AL research largely overlooks the
implications of such heuristics for system design.

The study by Ravichandran et al. (2024) represents one
of the few efforts to address human heuristics in AL. They
proposed a novel query strategy that prioritizes data points
less susceptible to labeling bias. While this method reduces the
impact of biased labels on AL effectiveness, it does not mitigate
the bias inherent in the labels obtained for queried instances.
Raghavan et al. (2006) addressed the cognitive challenges faced by
annotators by simplifying queries through feature subsetting. Their
approach, which combines class label queries with feature feedback,
significantly improved classifier performance over soliciting class
labels alone.

In summary, while the influence of incorrect labeling by human
annotators on AL performance is increasingly recognized, notable
gaps remain. Limited research on human heuristics in active
learning primarily seeks to mitigate the effects of biased labels in AL
through modified data selection strategies or feedback mechanisms.
However, directly addressing and preventing the occurrence of
biased labels from human annotators continues to be a significant
challenge in AL research.

3 Methodology

As shown in Figure 2, the methodological framework includes a
standard active learning algorithm(entropy sampling) that chooses
the data point(xn) from a pool of unlabeled data points to
query(Xpool). From the data point chosen, the proposed drop-out
mechanism drops the attribute values that must not be presented
to the oracle. This results in xoracle

n , which contains a subset of
attributes present in xn that are to be sent to the oracle for labeling.
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FIGURE 2

Methodological framework.

In this study, we mimic the functionality of an oracle by using
fast and frugal heuristics, such as Take the best(TTB) and Fast and
Frugal Tree (FFT), as the decision strategies used by the oracle. The
heuristic finally provides the label(yn), which is then used to train
the underlying classifier.

We further explain the methodological framework using a use-
case scenario where a doctor is tasked with diagnosing the presence
of a disease on a pool of patient records. We now aim to build a
prediction model that automates this decision. Typically, an active
learning (AL) algorithm chooses the most uncertain or informative
record from the pool to query the doctor.

Once the record (xn) is selected, the novel drop-out mechanism
proposed in this study removes certain attributes before presenting
the record to the doctor (the oracle). These dropped attributes may
be important, but they are excluded to prevent the doctor from
making an incorrect diagnosis.

The doctor then provides a label (yn), which is used to update
the classifier. After receiving the label, the classifier is retrained
using all the attribute information, including both the newly labeled
data and the existing records. This cycle is repeated.

The following subsections provide an overview of the proposed
dropout mechanism and active learning algorithms, along with a
description of the heuristics used to model the synthetic oracle.

3.1 Overview of the proposed mechanism

The quality of a label assigned to a query depends on the
attribute selected by the heuristic for labeling. This selection
process can be influenced by deliberately concealing certain
attribute information during querying. Drawing inspiration from
the dropout technique in deep learning, which involves randomly
dropping nodes to prevent overfitting (Srivastava et al., 2014), we
propose a similar approach where attributes are selectively excluded
during querying.

To determine which attributes to drop for each query, we use
the following formulation, which calculates the probability that
a queried data point would receive an incorrect label based on
the absolute deviation of the data-points attribute values from the
population median (a, b):

Pmislabelling(a, b) = 0.5 − 1
90

tan−1 min(a, b)
max(a, b)

(1)

The derivation of this formulation is elaborated upon in the
subsequent section. The proposed algorithm is designed to refine a
queried instance Xn by systematically dropping attributes based on
their likelihood of contributing to mislabelling. The process begins
by initializing an empty list DropList to store the attributes to be
removed and another list to record the mislabelling probabilities
for all candidate attribute pairs. These probabilities reflect the
likelihood of mislabelling when an attribute is utilized in decision-
making. All possible attribute pairs from Xn are considered
for evaluation.

For each pair, the absolute differences between the values of
the attributes in Xn and their respective medians in the entire
dataset X are calculated. Using these differences, the likelihood of
mislabelling for each pair is computed based on Equation 1. For
each pair, the attribute with a smaller deviation from its median is
identified as a candidate for removal if the mislabelling probability
exceeds a threshold of 0.3.

Once all pairs have been evaluated, the mislabelling
probabilities are sorted in descending order, and the corresponding
attributes are updated in DropList. After removing duplicates,
the first two attributes in DropList are selected for removal
from the queried instance, resulting in the refined query
Xoracle. This refinement ensures that the heuristic is prevented
from relying on the removed attributes during the decision-
making process, thereby improving the overall robustness of
the system. The pseudo-code of the mechanism is followed
(Algorithm 1).

3.2 Active learning algorithms

In this study, we examine two active learning (AL)
algorithms: Entropy Sampling and Information Density. Each
algorithm represents one of the two categories outlined in
Section 2, covering the key variations in widely used standard
AL algorithms.

Entropy Sampling selects the data point with
the highest uncertainty(E(x)), as measured by the
following expression:

x∗ = arg max
x∈XU

−
K∑

i=1

pC(yi/x) log(pC(yi/x)) (2)

In this equation, pC(yi/x) denotes the probability that data
point x belongs to class yi, considering K possible label assignments.

On the other hand, the Information Density algorithm takes
into account the spatial position of each data point in the feature
space. It computes the average Euclidean similarity between the
data point in question and all other points, which leads to the
following optimization problem:

x∗ = arg max
x∈XU

⎡
⎣E(x) · 1

U

∑
xu∈XU

sim(x, xu)

⎤
⎦ (3)
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Input:
X: Attribute information of the entire
dataset
Xn: Queried Instance at nth query

1 Initialize DropList (list of attributes to drop)
and ProbList(list to store both probabilities and
attributes) as empty lists;

2 Let attributes ← All possible pairs of attributes
in Xn;

3 foreach (att1,att2) ∈ attributes do

4 Compute a ← absolute difference between the
value of att1 in xn and the median of att1 in
X;
Compute b ← absolute difference between the
value of att2 in xn and the median of att2 in
X;

5 if a ≥ b then

6 prob ← 0.5− 1
90 tan

−1 b
a

att ← att1;

7 else

8 prob ← 0.5− 1
90 tan

−1 a
b

att ← att2;

9 if prob > 0.3 then

10 Append (prob,att) to ProbList

11 Sort ProbList in descending order of
probabilities;

12 foreach (prob,att) ∈ ProbList do

13 DropList.add(att)

14 Remove duplicates from DropList
if |DropList| > 2 then

15 Keep only the first 2 attributes in DropList,
discarding the rest;

16 Xoracle ← Xn after attributes in DropList are
dropped;

17 return Xoracle;
Output: Modified query Xoracle.

Algorithm 1. Proposed drop-out mechanism

3.3 Synthetic oracles mimicking human
heuristics for labeling queries with dropped
attributes

Behavioral science research has identified various heuristics
that humans employ when making decisions. For our study,
we focus on two widely used and effective heuristics: Take-the-
Best (TTB) and Fast-and- Frugal Tree (FFT). These methods are
valued for their simplicity, efficiency, and adaptability, making
them well-suited for decision-making scenarios. We further explore
how these heuristics can serve as the foundation for synthetic
oracles designed to label data points, even in the presence of
missing attributes.

The TTB heuristic operates by prioritizing the most influential
attribute, which humans often perceive as the most decisive.
When a data point is queried, TTB evaluates a single feature and

assigns a label if its value exceeds the population median. In our
implementation, we measure the decision accuracy of each attribute
to identify the best-performing one. If the queried instance lacks
the most predictive attribute, TTB uses the next best alternative,
enabling the oracle to provide labels even when some features
are missing. The possibility of information loss due to dropping
attributes is factored in by the decrease in quality of labels provided
by the human heuristic-based annotator, which picks sub-optimal
attributes while providing labels.

For example, consider a loan approval task where the most
predictive attribute is the applicant’s credit score. If the credit score
exceeds the median value, TTB will approve the loan. If the credit
score is unavailable, TTB would use the next most informative
feature, such as the applicant’s annual income, to make the decision.

The FFT heuristic operates using a decision tree structure,
where attributes are binarized through median splits. When an
attribute required by the FFT is missing in a query, the tree skips
that feature and instead uses the remaining attributes to make a
decision. Figure 3 demonstrates an example of this process, where,
if a person’s BMI is unavailable, the decision is based solely on the
Insulin and Age attributes.

The above methodologies ensure that the synthetic oracle
remains functional and robust, accurately mimicking human
decision-making even when attributes are dropped during the
querying process.

4 Results and discussion

This section begins with a derivation of the mathematical
formulation underlying the proposed mechanism. It then presents
an extensive empirical evaluation of the mechanism’s effectiveness
across active learning algorithms and human heuristics, applied to
various prediction tasks spanning multiple domains.

4.1 Derivation of the mathematical
framework behind the dropout mechanism
design

Fast-and-frugal heuristics enable human oracles to make
decisions based on one or more attributes. Consider a prediction
task involving attributes A and B, as depicted in Figure 4. The origin
represents the median values, and the Heuristic Decision Boundary
(HDB) will align with the A-axis if the heuristic uses attribute A
and with the B-axis if attribute B is used. Since the true decision
boundary is inherently unknown, we rely on the below assumptions
to characterize it:

Assumption 1: The two classes are assumed to be linearly
separable, meaning that they can be perfectly separated by a
straight line in a 2-dimensional space (or a hyperplane in higher
dimensions). Given two attributes, A and B, the true decision
boundary (TDB) is mathematically represented by the linear
equation w1A + w2B + w3 = 0, where w1, w2, w3 ≥ 0. A point
(a, b) lies on one side of this line if it belongs to one class and on the
opposite side if it belongs to the other class.

Assumption 2: The true decision boundary (TDB) is assumed
to pass through the median values of the attributes, i.e., the origin

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1562916
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ravichandran et al. 10.3389/frai.2025.1562916

in Figure 4. It forms an angle θTDB with one of the attribute
axes, where θTDB is equally likely to take any value between
π
4 and π

2 .
In Figure 4 (left), let x be a datapoint, making an intercept of a

and b with Axes A and B, respectively. Here, θx is the angle made
by datapoint x with axis A. θTDB is the angle made by True decision
boundary with axis A that ranges between π

4 and π
2 . The probability

of an oracle mislabelling a data point based on the angle it forms
with the A-axis (Pmislabelling(θx)) can be expressed as follows:

Pmislabelling(θx) =
{

1, if θTDB < θx,

0, otherwise.
(4)

As shown in Figure 4 (Right), data point x1 will be misclassified
if the TDB is one of the boundaries TDB1 or TDB2. However, x2
would only be misclassified if the TDB aligns with TDB2, meaning
x1 is more prone to misclassification compared to x2. This behavior
is mirrored for data points with the key attribute value less than the
splitting value. Thus the probability of misclassification for a data
point depends on the number of TDB scenarios where the point
lies between the TDB and HDB. Hence Equation 3 can be modified
as follows:

FIGURE 3

Fast and frugal tree for diabetes prediction.

Pmislabelling(θx) =
∫ π

4
θx

dθ

π
2

(5)

We must note that θx = tan−1 b
a , we rephrase the above

equation using attribute values:
The above can thus be shown as:

Pmislabelling(a, b) = 0.5 − 1
90

tan−1 a
b

(6)

To bound the equation within 0 and 1:

Pmislabelling(a, b) = max
(

0, min
(

1, 0.5 − 1
90

tan−1 a
b

))
(7)

It must be noted that Equation 6 is valid only when the HDB
is along B (Attribute A is used by the heuristic). When HDB is
along A (Attribute B is used by the heuristic), the a

b will be replaced
by b

a . This enunciates that when the heuristic picks attribute A
in decision-making, the error probability is 0 for data points with
b > a and vice versa.

Since the attribute picked by the heuristic is not known to
the active learner, we take the worst-case scenarios to compute
the probabilities:

Pmislabelling(a, b) = 0.5 − 1
90

tan−1 min(a, b)
max(a, b)

(8)

Figure 5 illustrates the variation in label error probability
based on the values of attributes a and b. To provide a clearer
understanding of how the probability values change, we fix the
values of each attribute and reduce the plot to two dimensions, as
shown in Figure 6.

When the deviation of attribute values from the median is null,
i.e., when either a or b is 0, the probability of mislabeling is at its
maximum. This observation aligns with the hypothesis empirically
validated in Ravichandran et al. (2024), where they demonstrate
that data points are more likely to be misclassified when the key
attribute values are closer to the population median. Furthermore,
as illustrated in the figures, the probability of mislabeling decreases
as the attribute values deviate further from the median, i.e., as a or

FIGURE 4

Left: figure describing the notations used in the study. Right: figure showing the intuitive reason behind x1 having more chances of being mislabeled
by heuristic.
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b increases. This probability reaches zero when the deviations of
both attributes under consideration are equal. Notably, points with
this configuration lie along a 45◦ line with respect to the attribute
axes, implying that no plausible heuristic decision boundary- true
decision boundary combination can exist to misclassify such points.

When a < b, the error probability is influenced by the
likelihood of decisions being made based on Attribute A, and
conversely, when a > b, the error is driven by Attribute B. This
behavior is governed by the interaction between the minimum and
maximum terms in the equation. As a or b increases beyond a
certain threshold (e.g., 5), the probability of mislabeling gradually
rises from zero, reflecting the shifting influence of the relative
magnitudes of the attributes on the classification decision.

We further explain the above using a practical scenario, where
a and b represent deviations from standard benchmarks: a denotes
the deviation of a project’s budget from the median budget for
similar projects, and b represents the deviation of the timeline from
the median timeline. When both a and b are close to zero, the
project’s attributes align closely with the median values, creating
ambiguity in labeling the project as “on track” or “at risk”. This

FIGURE 5

A three-dimensional plot depicting the probability of a data point
being misclassified as a function of the deviation values a and b of
the attributes from their median, where a and b range from 0 to ∞.

leads to the highest probability of misclassification, as the lack of
significant deviations obscures clear decision-making. Conversely,
as either a or b increases, the probability of misclassification
decreases. For example, a moderate budget deviation (a = 3)
with a fixed timeline deviation (b = 5) provides additional clarity,
indicating whether the project is manageable or at risk. Similarly,
larger deviations offer more decisive information for classification.

When a and b are equal (e.g., both deviations are 10), the project
reflects a balanced trajectory of deviations, leading to minimal
ambiguity for the heuristic used by the annotator. This symmetry
ensures a clear understanding of the project’s risk level.

Conversely, when there are disproportionate deviations (a >

b), the focus of classification shifts to the dominant attribute. For
instance, a substantial deviation in the budget (a = 10, b = 2)
reduces the likelihood of misclassification based on the budget
attribute itself. In this case, any misclassification is more likely
to occur due to decisions based on the timeline attribute when
assigning labels.

As mentioned in Algorithm 1, the proposed drop-out
mechanism removes attributes when the probability of error
exceeds 30%, which corresponds to data points that are inclined
within 18◦ of the A or B axis. For example, if data point x1 is
inclined within 18◦ of the B-axis, attribute A would be dropped
during querying, thereby forcing the heuristic to rely on other
attributes for decision-making.

Hence, this section provides the derivation of the key
formulation behind the design of the proposed dropout
mechanism, supporting its relevance.

4.2 Experimental evaluation of the
mechanism’s effectiveness

To assess the effectiveness of the proposed drop-out
mechanism, we conducted extensive experiments involving
two active learning (AL) algorithms, two fast-and-frugal heuristics,
and ten diverse datasets.

All datasets were sourced from the UCI ML Repository (Kelly
et al., 2023), spanning multiple domains. A detailed summary
of the datasets used has been provided in Table 1. It is worth
mentioning that all datasets used in this study have been referenced

FIGURE 6

Labeling error probabilities for fixed values of a and b while varying the other attribute.
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TABLE 1 Description of datasets used for the study.

Sr. No. Dataset
name

No. of
attributes

No. of
data-points
(class ratio)

Prediction task

1 Raisin 7 900 (0.5) Predict type of raisin (Kecimen or Besni) based on their morphological features

2 Wholesale
customer

7 440 (0.67) Predict customer purchase channel based on annual spending on various products

3 Breast cancer 9 569 (0.63) Predict the recurrence of tumor based on relevant health information

4 Maternal health 6 200 (0.6) Predict the risk level of maternal mortality based on Age, BP measures, etc.

5 Car Condition 6 400 (0.5) Predict the condition of a Car based on its structural features, maintenance, and
buying price

6 Diabetes 8 765 (0.65) To predict whether a patient has diabetes based on patient diagnostic measurements

7 Wine 12 178 (0.67) Predict the class of Wine based on the quantity of their constituents

8 Chronic Kidney 24 200 (0.63) Predict the presence of Chronic kidney disease based on Age, RBC count, etc.

9 Audit risk 26 777 (0.61) To predict whether a firm is fraudulent based on the present and historical risk
factors.

10 Algerian Forest 9 244 (0.55) Predict occurrence of forest fire weather data observations

and analyzed in multiple published works (Jalali et al., 2017; Xie and
Braga-Neto, 2019).

The performance of AL algorithms is commonly evaluated
using learning curves, which plot the number of queried data
points against the classification accuracy of a base classifier on
a test set. The entire dataset with ground truth labels were used
in our study as the test set. The Train set is at first initialized
with a small subset of datapoints that are labeled by the heuristic.
Later, after every query, the heuristic-labeled datapoint is added to
the training set, which is then used to re-train the base classifier
after every query. This process is continued until every datapoint
is queried.

In this study, we chose logistic regression as the base
classifier due to its simplicity and widespread adoption. While
more advanced classifiers could potentially achieve benchmark
accuracy more quickly, they may significantly shorten the
learning phase. This would make it challenging to analyze the
differences in learning curves with and without dropout. Moreover,
since the primary objective of this study is to facilitate the
acquisition of more accurate labels from the oracle–ultimately
enhancing model performance—the proposed mechanism remains
agnostic to the choice of the base classifier or performance
metric considered. Therefore, we limit our experiments to
logistic regression.

Figure 7 presents the learning curves for each heuristic-
AL algorithm combination on the Car dataset under both
conditions. While existing AL algorithms sometimes underperform
compared to random sampling, integrating the proposed drop-
out mechanism significantly enhances their performance. Most
notably, this improvement is reflected in a substantial increase in
the area under the learning curve throughout the majority of the
querying process.

Table 2 presents the average area under the learning curve
across ten iterations for ten different datasets, highlighting the
variation in the impact of the drop-out mechanism across various
active learning algorithms, datasets, and heuristics.

The proposed mechanism led to a significant improvement
in approximately 15 out of 20 dataset-heuristic combinations,
regardless of the active learning algorithm used. From a heuristic
perspective, the mechanism was effective in 15 scenarios when the
TTB heuristic was applied, compared to 13 scenarios with the FFT
heuristic. It is important to note that, even in cases where the
mechanism did not show a significant improvement–such as in the
audit risk scenario–the decrease in performance was minimal.

To provide a comprehensive overview of our analysis, we
present Table 3, which averages the performance across all datasets.

We conducted paired t-tests to evaluate the impact of the
dropout mechanism on the area under the learning curves
(AULC) for both sampling strategies across 10 datasets. For
Entropy Sampling, there was a statistically significant improvement
in performance when the dropout mechanism was applied
(mean AULC = 365.54) compared to when it was not (mean
AULC = 361.11), t(19) = 2.66, p = 0.0077. A similar trend
was observed for Information Density Sampling, where the
application of the dropout mechanism also resulted in a statistically
significant performance gain (mean AULC = 365.09 vs. 361.83
without dropout), t(19) = 2.32, p = 0.015. These results
indicate that incorporating the dropout mechanism consistently
enhances the model’s learning performance across datasets and
sampling strategies.

It is evident that the proposed mechanism consistently led to a
significant improvement in performance, irrespective of the active
learning algorithm or human heuristic employed.

The effectiveness of an active learning (AL) algorithm is
typically measured as the difference between the performance of
the AL algorithm and that of random sampling. Following this
approach, the increase in effectiveness can be computed using the
formula below:

Increase in effectiveness

= Avg.AUCwithdropout − Avg.AUCwithoutdropout

Avg.AUCwithoutdropout − Avg.AUCRandom
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FIGURE 7

Learning curves showing the effectiveness of dropout mechanism on car dataset. The x-axis represents the number of data-points queried and y axis
represents the classification accuracy on the hold-out set.

TABLE 2 Area under the learning curves showing the effectiveness of the drop-out mechanism.

Dataset Heuristic Random sampling Entropy Information density

w/o mech. w/ mech. w/o mech. w/ mech.

Raisin FFT 619.36 616.97 620.12 617.47 619.27

TTB 621.66 623.63 625.47 623.67 620.47

Wholesale customer FFT 361.73 346.10 368.48 361.89 366.35

TTB 346.15 370.94 369.13 361.57 361.89

Breast cancer FFT 468.25 474.80 472.04 474.97 474.97

TTB 506.54 508.13 508.74 507.97 508.63

Maternal health FFT 183.81 178.76 177.74 179.99 179.51

TTB 189.99 185.28 191.81 190.17 188.57

Car condition FFT 301.27 297.09 305.50 298.29 310.85

TTB 274.25 274.03 293.01 273.82 292.13

Diabetes FFT 510.37 515.16 534.11 518.01 536.33

TTB 525.15 524.20 530.44 524.52 531.33

Wine FFT 144.15 143.94 151.08 143.76 150.49

TTB 164.74 166.15 166.62 165.69 165.78

Chronic kidney FFT 138.60 140.89 140.90 140.43 140.95

TTB 137.39 140.78 140.79 140.41 140.50

Audit risk FFT 677.44 688.49 688.49 688.81 688.49

TTB 657.44 660.59 660.59 660.42 660.42

Algerian forest FFT 180.75 190.87 190.35 189.58 189.63

TTB 167.78 175.38 175.49 175.26 175.31

The best-performing values are highlighted in bold.
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TABLE 3 Average area under the learning curves across datasets depicting the effectiveness of the drop-out mechanism.

Heuristic Random sampling Entropy Information density

w/o mech. w/ mech. w/o mech. w/ mech.

FFT 385.57 359.30 364.88 361.32 365.68

TTB 359.16 362.91 366.21 362.35 364.50

Bold represents the best performing scenario.

The effectiveness of the information density algorithm
increased by 113%, while for entropy sampling, this improvement
was more than three times greater. Similarly, the proposed
mechanism resulted in a 78% improvement when the TTB heuristic
was used to provide labels, and this increase was sixfold when the
Fast and Frugal Tree heuristic was applied.

Although the frequency of cases where the proposed
mechanism showed an improvement was relatively consistent
across active learning algorithms and labeling strategies, the
magnitude of the improvement was notably higher under entropy
sampling and the Fast and Frugal Tree conditions. This further
emphasizes the potential benefits of using these algorithms in
such scenarios.

5 Limitations and scope of future
work

This study is conducted under specific conditions and
assumptions, such as linear separability and uniform distribution
of decision boundaries. While these constraints limit the theoretical
generalizability of the proposed mathematical formulation, they
serve to motivate future work aimed at relaxing these assumptions.
Importantly, despite these theoretical limitations, the proposed
mechanisms have been evaluated on well-established real-world
datasets and have demonstrated significant improvements in
performance across a majority of scenarios. This empirical
success suggests the potential applicability of our methods in
broader contexts.

However, the current study focuses on modeling the fast
and frugal heuristics that annotators may use while labeling,
and designs dropout-based mechanisms to address their effects.
We deliberately avoid human-in-the-loop experiments in
this work to maintain scope and control, as introducing
human participants would add considerable stochasticity
due to the unpredictability of heuristic usage. In practice,
it is often impossible to know which specific heuristic an
annotator uses for each query, given the wide range of possible
strategies.

Future work can explore incorporating human-in-the-
loop experiments to capture this uncertainty in heuristic
behavior and to design robust mechanisms that generalize
across diverse human annotation strategies. Moreover, the
applicability of the proposed dropout mechanisms in more
complex scenarios, such as multi-class classification or cases
where annotators employ highly efficient heuristics, remains an
open question. In such settings, the mechanisms may not yield
similar gains and could potentially lead to a decline in active
learning performance, thereby providing another avenue for
further investigation.

6 Conclusion

Building on the intuitive understanding that human-provided
labels for active learning can sometimes be influenced by biases,
we model the oracle’s behavior using fast-and-frugal heuristics.
To address the challenges posed by such heuristics, this study
introduces a novel drop-out mechanism that shifts the focus of
active learning from querying strategies to directly influencing the
labeling process. By selectively presenting attributes to the oracle,
this mechanism effectively reduces the likelihood of incorrect
labels, thereby improving overall label quality.

The mathematical framework derived for the proposed
mechanism enables the computation of the probability of incorrect
labeling in a two-dimensional space when one attribute is used. This
formulation not only validates the design of the mechanism but also
demonstrates its potential to enhance active learning performance
significantly, as evidenced by experimental results. The integration
of this approach leads to a notable improvement in the quality of
labeled data and the efficiency of the learning process.

Looking ahead, this study opens new directions for advancing
active learning by exploring extensions of the derived framework
to higher-dimensional spaces. It also highlights the potential for
deeper integration of human and algorithmic decision-making,
paving the way for innovative strategies in labeling tasks and
adaptive learning systems.
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