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Mine ventilation and dust control systems are crucial for ensuring occupational 
safety and health during underground mining operations. Traditional long-pressure 
short-suction systems face challenges such as inefficient airflow organization, 
formation of vortex dead zones, high energy consumption, and inadequate 
adaptability to dynamic conditions in mining faces. This study addresses these 
limitations by proposing an optimized long-pressure short-suction ventilation and 
dust control system leveraging the Coandă effect. Through numerical simulations, 
experimental validation, and machine learning techniques, the study develops a 
comprehensive system to enhance dust control performance. The Coandă effect 
was employed to optimize the structural design of ventilation ducts, ensuring 
airflow attachment to tunnel surfaces, reducing dust dispersion, and achieving high-
efficiency airflow with lower power consumption. The key parameters optimized 
include the spacing between the air supply and exhaust ducts, the pressure-to-
suction ratio, and the height of the ventilation duct. The optimal pressure-to-suction 
ratio was found to be 2:3, which minimizes dust concentration at both the mining 
machine and downstream locations. Numerical simulations and experimental 
results demonstrated that the optimized system achieved dust concentration 
reductions of up to 84.12% in high initial dust conditions (800 mg/m3). These 
findings provide a solid foundation for intelligent and energy-efficient ventilation 
and dust control in mining operations, ensuring both safety and energy savings.
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1 Introduction

Ventilation and dust removal systems are crucial in underground mining operations, 
serving as a core means of ensuring occupational safety and health for workers (Yu et al., 
2025a; Nie et  al., 2024a; Nie et  al., 2024b). In fully mechanized heading faces, high 
concentrations of dust and harmful gases not only pose safety risks but also reduce productivity 
(Yu et al., 2025b; Dey et al., 2021). These challenges are particularly severe in regions with high 
mining intensity, where dust generation is continuous and localized, often exceeding 
permissible concentration levels. The inability to effectively control dust dispersion contributes 
to poor air quality, which increases the risk of respiratory diseases and accidents in 
underground operations. Studies have shown that traditional long-pressure-short-extraction 

OPEN ACCESS

EDITED BY

Milan Tuba,  
Singidunum University, Serbia

REVIEWED BY

Shiqiang Chen,  
Hunan University of Science and Technology, 
China
Guoming Liu,  
Shandong University of Science and 
Technology, China
Haiming Yu,  
Shandong University of Science and 
Technology, China
Wei Huang,  
China Jiliang University, China
Fang Chen,  
China Coal Technology and Engineering 
Group Chongqing Research Institute, China

*CORRESPONDENCE

Xinguo Wang  
 sdcck2025@163.com

RECEIVED 23 January 2025
ACCEPTED 06 March 2025
PUBLISHED 03 April 2025

CITATION

Wang X, Zhao J, Li Y and Li Z (2025) 
Optimized design and performance 
evaluation of long-pressure-short-extraction 
ventilation and dust removal system based on 
the Coanda effect.
Front. Artif. Intell. 8:1565889.
doi: 10.3389/frai.2025.1565889

COPYRIGHT

© 2025 Wang, Zhao, Li and Li. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 03 April 2025
DOI 10.3389/frai.2025.1565889

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1565889&domain=pdf&date_stamp=2025-04-03
https://www.frontiersin.org/articles/10.3389/frai.2025.1565889/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1565889/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1565889/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1565889/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1565889/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1565889/full
mailto:sdcck2025@163.com
https://doi.org/10.3389/frai.2025.1565889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1565889


Wang et al. 10.3389/frai.2025.1565889

Frontiers in Artificial Intelligence 02 frontiersin.org

ventilation and dust removal systems have significant shortcomings. 
Due to unreasonable airflow organization, vortexes and dead zones 
are likely to form, leading to low dust removal efficiency in local areas. 
Moreover, maintaining sufficient ventilation volume typically requires 
high-power fans, resulting in significantly increased energy 
consumption. This issue is particularly prominent during long-
distance airflow transportation or under complex operational 
conditions (Cai et al., 2021; Liu et al., 2022). Traditional systems also 
lack the ability to dynamically respond to the varying needs of fully 
mechanized heading faces, as airflow volume and pressure cannot 
adjust in real time based on changes in dust concentration and airflow 
velocity, further limiting system efficiency (Lu Y. et al., 2022; Zhou 
et al., 2022).

To address these issues, numerous researchers have conducted 
in-depth studies. Lu X. et  al. (2022) investigated the influence of 
different cutting orientations of roadheaders on the diffusion of 
disorganized dust and found that the cutting orientation significantly 
affects dust concentration distribution. High-concentration dust 
exhibits an asymmetric linear decreasing characteristic, with the 
minimum wind speed zone migrating with changes in cutting 
orientation. Lu X. et al. (2022) proposed a “blocking-sealing” dust 
removal method, which adjusts the distribution of airflow energy by 
setting dust-blocking plates and utilizes negative pressure to effectively 
control high-concentration dust zones. When the suction volume was 
600 m3/min, the high-concentration dust zone nearly disappeared, 
and the dust concentration in the roadway was reduced to below 
172 mg/m3 with an air volume ratio of 1:1.5. Lu X. et  al. (2022) 
developed a spray device based on the synergistic action of wind and 
spray, optimizing nozzle parameters through experiments and CFD 
simulations. In practical applications, this device reduced the total 
dust concentration at the driver’s position to 104.2 mg/m3 and 
respirable dust to 68.3 mg/m3, achieving dust removal efficiencies of 
88.31 and 83.45%, respectively.

Dust concentration and particle size distribution characteristics 
have also become key research areas. Lu et al. (2022) revealed the dust 
concentration distribution patterns on the leeward side of the New An 
Coal Mine’s 3,401 fully mechanized mining face. Within a 23-meter 
range on the leeward side of the front drum center, dust concentrations 
reached 1,220–2,620 mg/m3. The Coanda effect, as an important 
phenomenon in fluid mechanics, has wide applications in optimizing 
ventilation duct designs. Yu et  al. (2024) simulated the diffusion 
characteristics of cutting dust using the MRF method, demonstrating 
that the Coanda effect can significantly reduce dust dispersion and 
achieve more uniform airflow. A high-concentration dust belt 
approximately 10 meters in length was formed on the leeward side of 
the drum, closely matching real-world conditions. Optimized 
structures based on the Coanda effect can effectively improve airflow 
organization by ensuring airflow attachment along the tunnel wall, 
thereby reducing dust dispersion while lowering wind resistance and 
energy consumption. In fully mechanized mining faces, the optimized 
ventilation system can achieve efficient airflow at lower fan power, 
significantly enhancing system performance.

With the development of intelligent technologies, machine 
learning-based intelligent ventilation systems have become a research 
hotspot. Semin and Kormshchikov (2024) suggested that artificial 
intelligence (AI) technologies can effectively improve monitoring and 
control capabilities in complex ventilation networks, enabling rapid 
calculation of ventilation parameters and fault diagnosis, especially 

during emergencies such as underground explosions and fires. Wang 
et al. (2024) optimized airflow distribution in mine ventilation to 
reduce energy consumption. They developed a nonlinear 
optimization model, applied the minimum spanning tree method, 
and used a modified sooty tern optimization algorithm (mSTOA). 
The results showed a 35.06% reduction in energy consumption while 
maintaining ventilation constraints, improving mine safety and 
production. Hati (2022) studied intelligent airflow perception in 
metal mines using AI methods. They proposed a CNN-LSTM-based 
model to predict airflow at undisclosed locations using partial data 
from monitoring points. The model showed an average deviation of 
less than 5% between predicted and actual airflow parameters. This 
approach enhances ventilation safety, improves productivity, and 
reduces energy consumption. Furthermore, combining CNN-LSTM 
models allows for precise prediction of ventilation parameters. CNN 
extracts spatial features, while LSTM processes time-series data; the 
combination effectively captures dynamic relationships, supporting 
intelligent control of ventilation systems.

The optimized system based on the Coanda effect, combined with 
the CNN-LSTM intelligent control model, demonstrates significant 
innovation in the field of ventilation and dust control, as shown in 
Figure 1. The main objectives of this research are to optimize the long-
pressure-short-extraction ventilation and dust control system to 
enhance dust removal efficiency and reduce energy consumption. 
Through numerical simulations, experimental validation, and 
machine learning techniques, this study develops a comprehensive 
system to improve the performance of ventilation and dust removal in 
underground mining operations. The system uses the Coanda effect 
to ensure efficient airflow organization, effectively reducing dust 

FIGURE 1

Research workflow.
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dispersion while lowering wind resistance and energy consumption. 
Additionally, the CNN-LSTM model is employed to enable real-time 
intelligent control of ventilation system parameters, predicting and 
optimizing dust concentration levels with higher accuracy and 
adaptability. The expected outcomes include a significant reduction in 
dust concentrations, increased system efficiency, and a practical 
solution for dynamic adjustments to the ever-changing conditions of 
mechanized mining faces. This innovative approach aims to provide 
valuable insights into the development of intelligent dust control 
solutions, ensuring both occupational safety and energy-efficient 
operations in underground mining environments.

2 Theoretical basis

2.1 Optimization of ventilation and dust 
removal system structure based on the 
Coanda effect

Ventilation ducts are the core components of ventilation and 
dust removal systems. The traditional long-pressure-short-
extraction ventilation duct structure is shown in Figure 2. Due to 
the unreasonable arrangement of ventilation ducts and fan 
positions, the airflow organization often becomes complex, 
leading to vortexes or dead zones. These phenomena prevent the 
effective removal of dust and harmful gases, resulting in low dust 
removal efficiency in localized areas (Lu et al., 2022; Zheng et al., 
2023; Han et  al., 2024). To maintain sufficient ventilation, 
traditional systems typically require high-power fans, which 
significantly increase energy consumption. This issue is 
particularly pronounced in scenarios involving long-distance 

airflow transportation or complex working conditions. 
Furthermore, traditional ventilation systems lack adaptive 
regulation capabilities to respond to dynamic environmental 
changes, making them incapable of real-time adjustments based 
on the evolving ventilation needs of fully mechanized heading 
faces. Airflow volume and pressure are usually preset and cannot 
be dynamically adjusted according to real-time parameters such 
as dust concentration or airflow velocity, further reducing 
system efficiency.

The Coanda effect, a phenomenon in fluid mechanics, refers to the 
tendency of a fluid to adhere to a curved surface or obstacle and follow 
its contour. The optimized ventilation duct structure utilizing the 
Coanda effect is illustrated in Figure 3. In this design, the negative-
pressure duct and the exhaust duct are arranged in a nested 
configuration, allowing the airflow within the negative-pressure duct 
to generate the Coanda effect at the exhaust duct outlet. In traditional 
systems, airflow often deviates from the intended path, whereas the 
optimized structure ensures that the airflow remains attached to the 
tunnel wall, significantly reducing the dispersion of airborne dust. As 
a result, the ventilation and dust removal system achieves efficient 
airflow at lower fan power, substantially improving overall 
performance (Hou et  al., 2023). The Coanda effect significantly 
improves airflow organization by ensuring that the airflow adheres to 
the tunnel surface, which reduces dust dispersion and enhances 
airflow efficiency. Specifically, the Coanda effect ensures that the 
airflow remains attached to the tunnel wall at the exhaust duct outlet, 
preventing vortex formation and dead zones. This improves dust 
collection efficiency while reducing energy consumption. The 
proposed ventilation structure combines nested ducts and the Coanda 
effect, leading to significant improvements in system performance and 
dust removal.

FIGURE 2

Traditional long-pressure-short-extraction ventilation duct structure.
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2.2 CNN-LSTM model

2.2.1 CNN
Convolutional Neural Network (CNN) is one of the most popular 

and widely used deep learning models in recent years. It consists of 
convolutional layers, pooling layers, and fully connected layers (Wang 
et al., 2021; Li et al., 2024). Compared to traditional neural networks, 
CNN replaces general matrix operations with convolutional 
operations, achieving significantly higher computational efficiency, as 
shown in Equation 1. The general form of convolutional operations is:

 s x w= ∗  (1)

Where, s represents the feature map obtained after convolution, x is 
the input matrix, w is the weight matrix (i.e., the kernel function), and * 
denotes the convolution operator. Generally, as shown in Equation 2, the 
input for convolution operations is in a multi-dimensional form, so the 
weight matrix is also multi-dimensional. The number of convolution 
kernels determines the level of abstraction for feature extraction, and the 
kernel size can be adjusted according to the size of the input sequence data.
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In the formula, sp;q represents an element of matrix s, il;m is an 
element of the 2D input matrix I  with dimensions L × M, and 
kp + l;q + m is an element of the 2D convolution kernel K.

CNN operates using sparse connections and shared weights to 
directly extract effective feature information from raw data through 
the combined operations of convolutional and pooling layers. This 
process allows CNN to automatically extract local features from the 
data and form complete feature vectors.

2.2.2 LSTM
LSTM, as a variant of Recurrent Neural Networks (RNN), 

leverages gate units for logical control to manage data operations. It 
provides a solution to the issues of insufficient long-term sequence 
information memory, gradient vanishing, and gradient explosion that 
commonly occur in RNNs. LSTM is capable of retaining information 
from time steps significantly distant from the current time step, 
making it better suited for processing time series data with extended 
time spans (Jianping et al., 2021).

The structure of each unit in an LSTM neural network is shown 
in Figure 3, which includes an input gate, a forget gate, an output 
gate, and a memory cell. The logical control of the memory cell 
determines how data is processed, effectively addressing the impact 
of weights on network training and allowing for better convergence 
(Kumari et  al., 2021; Huang et  al., 2022; Zhang et  al., 2024). In 
Figure 4, xt represents the input value at the current time t, ht − 1 is 
the output value of the hidden layer at the previous time step, ct is 
the state information at the current time t, and σ denotes the 
sigmoid function.

The forget gate is responsible for determining the extent to which 
the output information from the previous time step t − 1 should 
be retained. The output of the forget gate, ft, is calculated using xt and 
ht − 1 as shown in Equation 3, where ft ∈ [0; 1]. Its expression is 
as follows:

 [ ]( )f 1 f,t t tσ −= +f W h x b  (3)

In the equation: Wf represents the weight matrix of the forget 
gate, and bf is the bias term of the forget gate. When the output of 
the forget gate is 0, it indicates that all output information from 
the previous time step is forgotten. Conversely, when the output 
is 1, all output information from the previous time step is 
fully retained.

The input gate, on the other hand, controls the output to allow 
only the useful information at the current time step to be input into 
the network, as shown in Equation 4.

 [ ]( )i 1 i,t t tσ −= + W h x bf
 (4)

In the equation, Wi represents the weight matrix of the input gate, 
and bi is the bias term of the input gate.

The memory cell is used to compute the state information ct at the 
current time step t. The state information from the previous time step 
ct − 1 is multiplied by the output of the forget gate to retain information 
from the previous step. The state information 

˜
c at the current time step 

is multiplied by the output of the input gate to obtain the memory 
information for this time step. These two components are then combined 
to form the new state information ct. The computation process is as 
shown in Equations 5, 6:

 [ ]( )c 1 ctanh ,t t t−= + W h x bc
 (5)

 1t t t t tc f c f c−= +    (6)

In Equations 5, 6, Wc represents the weight matrix of the memory 
cell, and bc is the bias term of the memory cell. The output gate 
processes ct through a nonlinear function to obtain the output ot of 
the LSTM network:

 [ ]( )o 1 o,t t tσ −= +o W h x b  (7)

FIGURE 3

Optimized ventilation duct structure utilizing the Coanda effect.
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 tanht t t=h o c  (8)

In Equations 7, 8, Wo represents the weight matrix of the output 
gate, and bo is the bias term of the output gate.

2.2.3 Optimization framework of CNN–LSTM for 
ventilation and dust removal system parameters

In this study, the CNN-LSTM hybrid model is proposed to 
optimize ventilation and dust removal system parameters. The LSTM 
model has limitations in handling multi-dimensional factors, while 
CNN excels in feature extraction but cannot capture temporal 
dependencies. By combining the strengths of both, the CNN-LSTM 
hybrid model is constructed. The framework uses convolutional layers 
to extract significant spatial features and LSTM layers to model time-
dependent relationships, addressing the challenges in optimizing 
complex ventilation systems.

The CNN-LSTM model includes several components: an input 
layer, convolutional layers for feature extraction, pooling layers for 
down-sampling, LSTM layers for temporal pattern modeling, and 
fully connected layers for output generation. The inclusion of Dropout 
layers helps mitigate overfitting by discarding certain network units 
during training, thereby improving model generalization. The Flatten 
layer ensures that data is appropriately formatted for the LSTM layers, 
as shown in Figure 5.

3 System design and optimization

3.1 Structural design of the long-pressure 
short-suction ventilation and dust removal 
system based on the Coandă effect

Using the 22,106 working face of Shangwan Coal Mine as the 
research object, the dimensions of the roadway and the dust removal 
devices were adjusted according to the actual conditions of the 
excavation working face. A simulated roadway measuring 
50 m × 5.0 m × 4.0 m (length × width × height) was constructed to 
simulate and analyze the movement patterns and concentration 
distribution of dust particles. The main component dimensions of the 
model are listed in Table 1.

The optimized geometric model of the ventilation and dust 
removal system was imported into mesh generation software for 
structured meshing. The geometric structure and mesh distribution 
are shown in Figure 6. The final mesh consisted of 1,265,417 nodes, 

with an average mesh element quality of 0.842. The mesh quality 
distribution is illustrated in Figure 7.

From Figure  6, the orthogonal skewness (0.89) and skewness 
factor (0.18) indicate that the overall shape of the mesh is regular, with 
minimal geometric distortion, making it suitable for simulating 
complex phenomena such as flow fields. The surface degradation 
metric (0.015) demonstrates high surface smoothness, which 
facilitates the accurate application of boundary conditions. The 
volumetric change rate of adjacent elements (0.22) is small, ensuring 
high simulation accuracy in regions with steep gradients. Mesh 
adjacency (4.2) reflects the acceptable elongation of mesh elements, 
with no significant distortion observed.

The mesh was imported into the Fluent solver for simulation. The 
turbulence model was configured as a realizable two-equation model. 
The inlet boundary was set to “velocity inlet,” the outlet boundary to 
“pressure outlet,” and all walls were defined as “no-slip solids.” The 
fluid type was specified as “air.” The Discrete Phase Model (DPM) was 
enabled, with parameters detailed in Table 2.

A mesh independence study was conducted to verify the 
reliability of the simulation results by testing variations in flow field 
parameters across different mesh densities from coarse to fine. The 
key performance indicators analyzed include flow velocity, dust 
concentration, and pressure distribution, as illustrated in Figure 8. 
The results demonstrate that, once the mesh node count reaches 
1,265,417, further refinement of the mesh has negligible impact on 
the simulation results, confirming that this mesh density is sufficient 
to accurately capture the physical phenomena (Hao et al., 2024; 
Zhang et al., 2021).

From Figure 8, it can be observed that as the mesh node count 
increases, key performance parameters such as flow velocity, dust 
concentration, and pressure distribution gradually stabilize, 
indicating diminishing influence of mesh density on simulation 
results. Regarding flow velocity, the variation significantly 
decreases with increasing mesh density. At 1,265,417 nodes, the 
velocity stabilizes at approximately 2.11 m/s, with further mesh 
refinement showing minimal impact. Dust concentration exhibits 
considerable fluctuations at lower mesh densities but becomes 
increasingly uniform as the mesh density improves, ultimately 
stabilizing at the current density, accurately reflecting dust 
distribution patterns. Pressure distribution, on the other hand, 
shows minimal variations throughout, demonstrating low 
sensitivity to mesh refinement and achieving stability quickly, 
even at lower mesh densities. This suggests high computational 
accuracy for pressure distribution with modest mesh 
requirements. These findings validate that a mesh density of 
1,265,417 nodes is sufficient to provide accurate results, balancing 
simulation precision and computational efficiency. In the 
simulation stage, we selected four pressure-to-suction ratios (4:5, 
1:1, 4:3, and 2:3), and these selections were based on the analysis 
of the actual ventilation needs of the mine and the effects of 
different airflow organizations on dust control efficiency. Each 
ratio represents a different operating condition of the ventilation 
system. The primary reason for selecting these ratios was to 
evaluate the dust removal performance of the system under 
different airflow configurations and air volumes, and to identify 
the optimal operating parameters. This approach ensures the 
reliability and applicability of the simulation results.

FIGURE 4

Structure of LSTM neural network unit.
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3.2 CNN-LSTM intelligent dust removal 
model

3.2.1 Parameter determination
After determining the overall structure of the ventilation and 

dust removal system and the pressure-to-suction ratio, optimizing 
key parameters becomes essential for enhancing dust 
removal efficiency.

Distance Between the Ventilation Duct and Dust-Producing 
Surface (d): This parameter significantly influences the flow field 
coverage and suction performance. When the duct is positioned 
closer to the dust-producing surface, suction efficiency improves 
but coverage is limited, reducing control over large-scale dust 
dispersion. Conversely, positioning the duct too far results in a 
sharp decline in suction efficiency. Therefore, a well-defined 
distance is critical to balance coverage and suction performance.

Height of the Ventilation Duct from the Ground (H): This 
determines the primary region of airflow movement and affects 
the spatial scope of dust removal. When the duct height is lower, 
the airflow primarily concentrates near the ground, effectively 
capturing surface dust but potentially disrupting airflow 
organization above the working surface. Conversely, increasing 
duct height expands the airflow coverage, aiding in capturing 
more dispersed dust but reducing control over ground-level dust. 
Given the complex dust distribution in mining environments, 
reasonable adjustment of duct height is critical to ensure effective 
dust removal under diverse operational conditions.

Spacing Between Pressure and Suction Ducts (h): This 
parameter significantly impacts the generation of the Coandă 
effect and airflow stability. If the spacing is too small, the airflow 

attachment ability diminishes, leading to localized turbulence and 
destabilized flow, reducing dust removal efficiency. Excessive 
spacing, on the other hand, weakens the wall-attachment 
capability of the Coandă effect, destabilizing inner vortex flow and 
impairing overall system performance. Proper spacing optimizes 
the Coandă effect, enhancing airflow stability and uniformity, and 
improving the overall performance of the ventilation and dust 
removal system.

Based on this analysis, d, H, and h were selected as the key 
control parameters for optimization. Coupled with the Coandă 
effect, these parameters were used to construct a more stable and 
efficient flow field structure, as depicted in Figure 9 (Brodny and 
Tutak, 2021). Precise tuning of these parameters enables fine-
grained control over airflow characteristics, maximizing the 
potential of the Coandă effect, and significantly improving the 
efficiency and reliability of the ventilation and dust 
removal system.

3.2.2 Dataset collection for control parameters
The tunnel dimensions were set as 3.2 m × 1.6 m × 1.6 m 

(length × width × height). Laser dust detection methods were used 
to measure the average dust concentration at the roadheader 
position, and dust concentration measuring instruments were 
utilized to measure dust concentration at the downwind 
pedestrian breathing zone, as shown in Figure 10.

Based on the 22,106 working face, the control parameters were 
set as follows:

Distance between ventilation duct and dust-producing surface 
(d): Adjustment step size 0.05 m, range 0.3–0.5 m.

Height of the ventilation duct centerline from the ground (H): 
Adjustment step size 0.05 m, range 0.45–0.55 m.

Spacing between pressure and suction ducts (h): Adjustment 
step size 0.2 m, range 0–0.2 m.

A full-factorial experiment was conducted, resulting in 45 
parameter adjustment schemes, as listed in Table 3.

To ensure the reliability and robustness of the model, 25 
experiments were conducted for each adjustment scheme under 
different initial dust concentrations, allowing for a total of 45 
adjustment schemes. The dust concentrations were measured at 
two key locations: the roadheader position and the downwind 
position. Each experiment took into account varying parameters 
such as the distance between the ventilation duct and 

FIGURE 5

Structure of CNN–LSTM forecasting model.

TABLE 1 Main component dimensions of the model.

Component name Dimensions

Pressurized air duct ϕ0.65 m

Exhaust duct ϕ0.50 m

Pressurized air duct nozzle ϕ1.8 m

Exhaust duct nozzle ϕ1.5 m

Dust-generating surface ϕ0.8 m

Roadheader 6.5 m × 2.0 m × 1.0 m (L × W × H)
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dust-producing surface (d), the height of the ventilation duct (H), 
and the spacing between the pressure and suction ducts (h), as 
shown in Table 4. The data summarized in Table 4 illustrates the 
impact of these control parameters on dust removal efficiency 
across a range of initial dust concentrations, which varied from 
relatively low levels to much higher concentrations. At the 
roadheader position, the dust concentrations showed substantial 
reductions after the ventilation system was applied. For example, 
with an initial dust concentration of 547 mg/m3, the dust 
concentration at the roadheader was reduced to 135 mg/m3, 
representing a significant reduction. Similarly, the dust 
concentration at the downwind position also exhibited notable 
reductions, confirming the effectiveness of the ventilation system 
in controlling dust dispersion. In total, the table provides detailed 
experimental results across all 45 schemes, highlighting how 
different parameter combinations influence dust concentration 
levels in the system. These results are critical for understanding 
the role of each control parameter and for optimizing the system’s 
performance in real-world applications. The dataset not only 
helps in evaluating the system’s dust removal capabilities but also 
lays the foundation for refining the model to improve its 
predictive accuracy.

FIGURE 6

Optimized geometric model of the ventilation and dust removal system.

FIGURE 7

Mesh quality distribution.

TABLE 2 Fluent parameter settings.

Parameter category Settings

Interaction with continuous phase On

DPM iteration interval 200

Injection type Surface

Particle TYPE Inert

Material Coal-hv

Diameter distribution rosin-rammler

Total flow rate/(kg · s一1) 0.002 5

Min diameter/μm 1 × 10−6

Max diameter/μm 1 × 10−4

Mean diameter/μm 1 × 10−5

Spread parameter 3.5

Number of diameters 15

Injection velocity/(m·s−1) 10

Boundary condition for particles Reflect

Drag law Spherical

Turbulence interaction Enabled

Particle heat transfer Enabled

Gravity/(m·s−2) 9.81
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4 Experiment and simulation results 
analysis

4.1 Numerical simulation analysis

4.1.1 Determination of the optimal 
pressure-to-suction ratio

The dust removal efficiency of the ventilation and dust removal 
system is primarily influenced by the airflow field within the tunnel. 
By altering the pressure-to-suction ratio, the airflow direction within 
the field can be  controlled, leading to different dust movement 
patterns and, consequently, varying dust removal efficiencies. For the 
simulated airflow field matching the dimensions of the simulated 
tunnel, the supply airflow rate of the suction duct was fixed at 240 m3/
min. When the pressure-to-suction ratio was set to 1:1, and the 
improved pressure-suction ducts were employed, a rotational airflow 
wrapping inward was generated at the duct opening, thereby 
expanding the dust removal area. The airflow distribution at the 
suction duct opening is illustrated in Figure 11.

By fixing the suction airflow at 240 m3/min, pressure-to-suction 
ratios of 4:5, 1:1, 4:3, and 2:3 were simulated. The simulation analyzed 
the dust concentration distribution at the roadheader position 
(coordinates: y = 2.0 m, x = 2.5 m, z = 7 m), as shown in Figures 12–
14 (time-weighted average). The key parameters such as flow velocity 
and dust concentration were measured at specific locations within the 
ventilation system. Flow velocity measurements were taken at critical 
points, including the inlet, outlet, and key positions along the tunnel. 
Dust concentration was measured at two critical locations: at the 
roadheader position and at the downwind pedestrian breathing zone. 
These locations were selected to capture the full range of airflow and 
dust dispersion, ensuring a comprehensive analysis of the system’s 
performance. These measurements are vital for validating the 
effectiveness of the optimized ventilation and dust removal system.

Figure 11 illustrates the airflow distribution at the suction pipe 
opening, showing the characteristics of the turbulent regions and 
velocity distribution. The velocity magnitude is represented by the 
color legend, with red areas indicating high velocity (close to 5 m/s) 
and blue areas representing low velocity (near zero). It can be observed 
that a distinct high-velocity region forms near the suction pipe 
opening, while farther from the opening, the velocity gradually 
decreases, forming a low-speed flow area. In the high-speed flow 
region near the suction pipe opening, the airflow is significantly drawn 
in, with concentrated flow direction and dense streamlines, indicating 
a strong suction effect.

Figure  12 shows the dust concentration distribution at cross-
section x = 2.5 m under different pressure-to-suction ratios. The dust 
concentration variation is analyzed qualitatively using the color legend 
to interpret the impact of different pressure-to-suction ratios on 
dust distribution.

Pressure-to-suction ratio 1:1: Under this condition, the dust 
concentration distribution exhibits a large high-concentration area, 
especially near the roadheader. The red and orange regions indicate 
high dust concentrations, suggesting insufficient airflow to effectively 
control dust diffusion. In this case, the airflow organization is unstable, 
making it difficult to form an effective dust collection effect.

FIGURE 8

Mesh independence validation.

FIGURE 9

Ventilation and dust removal system control parameters.
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Pressure-to-suction ratio 2:3: When the ratio is adjusted to 2:3, the 
high-concentration dust areas are significantly reduced, and the dust 
concentration distribution becomes more uniform. Dust is effectively 
directed into the suction pipe, indicating that the airflow organization 
under this ratio is more reasonable, effectively controlling dust 
diffusion and improving dust removal efficiency.

Pressure-to-suction ratio 4:2: Under the ratio of 4:2, the high-
concentration dust areas increase again, particularly near the 
roadheader, with more red and orange regions. This suggests that 
while the pressure airflow is larger, it fails to form a synergistic effect 
with the suction, leading to an increased dust diffusion range.

Pressure-to-suction ratio 4:5: With this ratio, the dust diffusion 
range is large, and the high-concentration regions are more 
concentrated. Although the suction airflow increases, the airflow 
organization may be disrupted, failing to effectively remove dust and 
resulting in significant dust residue.

Figure 13 illustrates the dust distribution at cross-section y = 2.0 m 
under different pressure-to-suction ratios, revealing the variation 
patterns and effects of dust concentration with changes in the ratio.

Pressure-to-suction ratio 1:1: Under this ratio, the figure shows a 
wide range of dust concentration distribution, particularly near the 
roadheader, with noticeable high-concentration dust (red regions 
occupying a large proportion). This indicates poor airflow organization 
under this ratio, making it difficult to effectively control dust diffusion 
and resulting in dust accumulation over a large spatial area.

Pressure-to-suction ratio 2:3: When the ratio is adjusted to 2:3, the 
high-concentration dust regions are significantly reduced, and the 
dust concentration distribution becomes more uniform. Most areas 
show reduced dust concentration to green or blue levels. This 
demonstrates that this ratio optimizes airflow organization, effectively 
guiding dust to the suction pipe and improving dust removal efficiency.

Pressure-to-suction ratio 4:2: Under the ratio of 4:2, the high-
concentration dust regions expand, especially near the roadheader 
and downstream areas, with more red and orange regions. This may 
result from excessive pressure airflow causing turbulence and 
exacerbating dust diffusion.

Pressure-to-suction ratio 4:5: With a ratio of 4:5, the dust 
distribution characteristics are similar to those under the ratio of 1:1. 
Although the suction airflow increases, the overall high-concentration 
regions remain large, and the dust diffusion range increases, indicating 
that this ratio does not effectively improve airflow organization or dust 
removal efficiency.

Figure  14 shows the dust concentration distribution at cross-
section z = 7.0 m under different pressure-to-suction ratios.

Pressure-to-suction ratio 1:1: Under this ratio, the overall dust 
concentration is relatively low, with the cross-section primarily 
showing blue regions and a small number of green areas near the 
center. This indicates relatively uniform airflow organization under 
this ratio, with a smaller dust diffusion range. However, it does not 
completely concentrate the dust towards the suction pipe.

Pressure-to-suction ratio 2:3: When the ratio is adjusted to 2:3, the 
dust concentration distribution within the cross-section becomes 
more concentrated. The red and orange regions are significantly 
reduced, and the dust is mainly concentrated near the center, with the 
overall concentration decreasing. This demonstrates that this ratio 
optimizes airflow paths, guiding more dust towards the suction pipe 
and enhancing dust removal efficiency.

Pressure-to-suction ratio 4:3: Under the ratio of 4:3, the high-
concentration dust regions slightly expand, with an increase in green 
and yellow areas. This indicates that excessive pressure airflow may 
cause further dust diffusion within the cross-section, reducing the 
suction pipe’s dust control efficiency.

Pressure-to-suction ratio 4:5: When the ratio is 4:5, the high-
concentration dust regions within the cross-section expand 
significantly, with large areas of red and orange regions appearing. 
This suggests that excessive suction airflow leads to turbulence, 
causing more severe dust diffusion within the cross-section, making 
it difficult to concentrate dust effectively and reducing dust 
removal efficiency.

From the analysis of Figures 11–13, when the inflow rate is 
less than the outflow rate (pressure-to-suction ratios of 4:5 and 
1:1), insufficient inflow leads to substantial dust accumulation at 
the front-end of the working face near the roadheader and 
operator. When the inflow rate exceeds the outflow rate (pressure-
to-suction ratios of 4:3 and 2:3), sufficient inflow can scatter the 
dust accumulating at the working face and direct it into the 
suction pipe. When the pressure-to-suction ratio is 2:3, the dust 
concentration distribution at cross-sections x = 2.5 m and 
y = 2.0 m is optimal. However, under pressure-to-suction ratios of 
4:5 and 1:1, the dust concentration at cross-section z = 7.0 m is 
extremely high, while the ratio of 2:3 achieves the lowest dust 
concentration at this cross-section. In conclusion, the optimal 
pressure-to-suction ratio for the ventilation and dust removal 
system is 2:3.

FIGURE 10

Working face 22,106.
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4.2 Intelligent control of ventilation and 
dust removal system parameters based on 
CNN-LSTM

To ensure the reliability and accuracy of the CNN-LSTM model 
in predicting dust concentration, a rigorous parameter selection 
process was implemented. The selection of key hyperparameters was 
guided by both empirical testing and optimization techniques:

Kernel size and number of filters in CNN layer: The CNN 
component extracts spatial features from the input data, and its kernel 
size was optimized to (2,1), ensuring a balance between feature 
resolution and computational efficiency. The number of filters was set 
to 64 to capture sufficient spatial correlations.

LSTM hidden units: The LSTM layer was used to process time-
series dependencies in dust concentration data. Based on multiple 
trials, 64 hidden units were chosen to provide a trade-off between 
model complexity and training efficiency (Lu et al., 2023).

Activation function and optimizer: The rectified linear unit 
(ReLU) activation function was used in convolutional layers, while the 
Adam optimizer was selected for efficient gradient updates.

Training-validation split: The dataset was split into 80% for 
training and 20% for testing to ensure generalization.

For real-time application, the trained CNN-LSTM model was 
integrated into the ventilation control system. It receives continuous 
real-time input of environmental parameters, including airflow 
velocity, duct position, and initial dust concentration. Based on the 
predicted dust distribution patterns, the system automatically adjusts 
key parameters such as the duct positioning to optimize dust removal 
efficiency. This adaptive control mechanism ensures that the system 
can dynamically respond to varying operational conditions, reducing 
energy consumption while maintaining high dust removal efficiency.

4.2.1 Training and performance comparison of 
CNN-LSTM model

To achieve intelligent control of the parameters in the ventilation 
and dust removal system, the CNN-LSTM model was adopted to 
predict and optimize the system’s operational parameters. The CNN 
module was designed with a single convolutional layer, where the 
convolution kernel size was set to (2, 1), and the number of kernels 
was 64, ensuring the extraction of multi-level feature information. 
After feature extraction by the convolutional layer, the extracted 
feature sequence was input into the LSTM module for time series 
modeling and capturing long-term dependencies. The LSTM module 
was implemented with a two-layer stacked structure, each layer 
containing 64 units. Through a gating mechanism, it effectively 
avoided gradient vanishing and explosion issues commonly found in 
long-term dependency problems, thereby improving the model’s 
dynamic response capability and prediction accuracy in controlling 
ventilation and dust removal parameters. After processing in the 
LSTM module, the feature sequence was fed into a fully connected 
layer with 64 neurons for regression prediction, where the activation 
function used in the fully connected layer was ReLU. The CNN-LSTM 
hybrid model was employed for predicting dust concentrations in the 
ventilation and dust removal system. The model’s input features 
include the control parameters of the ventilation system, such as the 
distance between the duct and the dust-producing surface (d), the 
height of the ventilation duct (H), and the spacing between the 
pressure and suction ducts (h). Additionally, initial dust concentration 

TABLE 3 Control parameter schemes.

No. d/m h/m H/m

1 0.30 0.2 0.50

2 0.30 0.0 0.50

3 0.30 0.1 0.50

4 0.35 0.2 0.50

5 0.35 0.0 0.50

6 0.35 0.1 0.50

7 0.40 0.2 0.50

8 0.40 0.0 0.50

9 0.40 0.1 0.50

10 0.45 0.2 0.50

11 0.45 0.0 0.50

12 0.45 0.1 0.50

13 0.50 0.2 0.50

14 0.50 0.0 0.50

15 0.50 0.1 0.50

16 0.30 0.2 0.55

17 0.30 0.0 0.55

18 0.30 0.1 0.55

19 0.35 0.2 0.55

20 0.35 0.0 0.55

21 0.35 0.1 0.55

22 0.40 0.2 0.55

23 0.40 0.0 0.55

24 0.40 0.1 0.55

25 0.45 0.2 0.55

26 0.45 0.0 0.55

27 0.45 0.1 0.55

28 0.50 0.2 0.55

29 0.50 0.0 0.55

30 0.50 0.1 0.55

31 0.30 0.2 0.45

32 0.30 0.0 0.45

33 0.30 0.1 0.45

34 0.35 0.2 0.45

35 0.35 0.0 0.45

36 0.35 0.1 0.45

37 0.40 0.2 0.45

38 0.40 0.0 0.45

39 0.40 0.1 0.45

40 0.45 0.2 0.45

41 0.45 0.0 0.45

42 0.45 0.1 0.45

43 0.50 0.2 0.45

44 0.50 0.0 0.45

45 0.50 0.1 0.45
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values and other environmental variables were used to train the 
model. The model predicts dust concentrations at the roadheader and 
downwind positions, which are the key performance indicators that 
we aim to optimize. The CNN-LSTM hybrid model consists of CNN 
layers for spatial feature extraction and LSTM layers to capture 
temporal dependencies in the data. The model was trained using the 
Adam optimization algorithm, with 80% of the dataset used for 
training and the remaining 20% used for testing. The model’s 
performance was evaluated using metrics such as Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), and the coefficient 
of determination (R2). To ensure the accuracy and consistency of the 
dataset, the training data was standardized to ensure all features were 
on the same scale, aiding the model’s convergence. Missing or 
inconsistent data points were addressed using interpolation or 
imputation techniques. For model validation, the evaluation metrics 
MAE, RMSE, and R2 were utilized to assess prediction accuracy. The 
results demonstrated that the CNN-LSTM model outperformed the 

baseline BP neural network model in predicting dust concentrations. 
Furthermore, the predicted dust concentrations were compared with 
actual measurements, confirming the model’s accuracy and reliability. 
To verify the superiority of the CNN-LSTM model, the BP neural 
network was chosen as a benchmark model for comparison. The BP 
network architecture was configured as 5–13 − 2, meaning it 
contained 5 nodes in the input layer, 13 nodes in the hidden layer, and 
2 nodes in the output layer. The hidden layer utilized the tanh 
activation function. During model training, both the CNN-LSTM 
model and the BP neural network employed the Adam optimization 
algorithm, with the number of training steps set to 1,000. The training 
dataset accounted for 80% of the total samples, while the remaining 
20% was used for testing.

After training was completed, the performance of the 
CNN-LSTM model was compared with that of the BP neural 
network. The results are shown in Figure  15. The comparative 
analysis indicates that the CNN-LSTM model, by extracting spatial 

TABLE 4 Experimental data on the influence of control parameters on dust removal efficiency.

No. Initial dust concentration/(mg·m−3) d/m h/m H/m Post-ventilation dust 
concentration/(mg·m−3)

Roadheader 
position

Downwind 
position

Roadheader 
position

Downwind 
position

1 547 521 0.35 0 0.45 135 289

2 384 374 0.35 0.2 0.45 205 352

3 601 521 0.35 0.1 0.45 245 182

4 951 947 0.40 0.2 0.45 290 300

5 857 978 0.40 0 0.45 247 225

: : : : : : : :

1,121 678 654 0.35 0 0.55 183 125

1,122 548 571 0.35 0.1 0.55 197 168

1,123 228 231 0.30 0.2 0.55 170 255

1,124 471 482 0.30 0 0.55 235 179

1,125 412 401 0.30 0.1 0.55 280 290

FIGURE 11

Airflow at the suction pipe opening.
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features via convolution operations and modeling time 
dependencies with LSTM, demonstrated significantly higher 
accuracy and stability in parameter prediction for the ventilation 
and dust removal system. This robust performance highlights the 
technical support provided by the CNN-LSTM model for the 
intelligent control of system parameters.

As shown in Figure  15, the CNN-LSTM model demonstrates 
significantly superior performance in predicting parameters for the 
ventilation and dust removal system compared to the BP neural 
network. Specifically, for predictions at the roadheader, the R2 values 
of the CNN-LSTM model for the training and testing datasets were 

0.9783 and 0.9752, respectively, compared to 0.9124 and 0.9018 for the 
BP neural network. This indicates that the CNN-LSTM model 
effectively captures nonlinear relationships in the data and achieves 
higher fitting accuracy.

The MAE and RMSE values for CNN-LSTM at the roadheader 
were also significantly lower. For the training dataset, the MAE 
decreased from 10.8965 to 5.2347, and the RMSE decreased from 
14.2053 to 7.5346. For the testing dataset, the MAE and RMSE 
decreased from 11.5642 and 15.4267 to 5.8972 and 7.8659, respectively. 
These improvements highlight the enhanced precision and stability of 
the CNN-LSTM model.

FIGURE 12

Dust distribution at cross-section x = 2.5 m.

FIGURE 13

Dust distribution at cross-section y = 2.0 m.
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At the downwind side, the CNN-LSTM model again showed 
superior performance, with R2 values of 0.9682 and 0.9594 for the 
training and testing datasets, compared to 0.8923 and 0.8951 for 
the BP neural network. Similarly, the MAE and RMSE decreased 
significantly, with the training dataset MAE reducing from 
13.7842 to 6.5428 and RMSE reducing from 19.2346 to 10.7623. 
The testing dataset saw reductions in MAE from 14.9278 to 7.5236 
and RMSE from 20.0425 to 13.4271. These results demonstrate the 
CNN-LSTM model’s superior ability to capture long-term 
temporal dependencies and the dynamic variations of complex 
features in time-series data.

4.2.2 Validation of CNN-LSTM model accuracy
To validate the accuracy of the CNN-LSTM model in predicting 

dust concentration, 15 parameter control schemes were selected from 
the optimized parameter experiment platform. A comparative analysis 
was conducted between the measured data and the model’s 
predicted results.

At the roadheader, the error range between the actual and 
predicted dust concentrations was 0.39–6.01%. The predicted results 
exhibited high consistency with the actual values. Figure 16A shows 
that the data points closely align with the regression line, indicating 
the model’s strong responsiveness to changes in dust concentration at 
the roadheader. This accuracy can be attributed to the stability of the 
ventilation and dust removal system parameters and the enhancement 
of airflow optimization through the Coandă effect.

For the downwind side, the prediction error range was 0.05–
9.15%. Figure 16B shows that while most data points are near the 
regression line, some deviations were observed, potentially due to 

turbulence and dust diffusion uncertainties under actual working 
conditions. Nevertheless, the model maintained high prediction 
accuracy under complex flow field conditions.

In summary, the prediction errors for both the roadheader and 
the downwind side were minimal. The CNN-LSTM model effectively 
captured the nonlinear relationships between key parameter changes 
and dust concentration distributions. Combined with the optimized 
long-pressure, short-suction ventilation and dust removal system 
based on the Coandă effect, the model exhibited excellent 
performance. It provides robust technical support for intelligent 
system regulation, showcasing high prediction accuracy and 
generalization capability in practical engineering applications.

4.2.3 Optimization of ventilation and dust 
removal system parameters

The initial dust concentrations were set to 200, 400, 600, and 
800 mg/m3, and the trained CNN model was used to predict the dust 
concentrations after applying 45 parameter control schemes. The 
results are shown in Figure 17. The analysis indicates that higher initial 
dust concentrations result in higher dust concentrations after removal, 
demonstrating a significant impact of the initial concentration on the 
overall dust removal efficiency. Dust concentration at the downwind 
side was consistently higher than at the roadheader, particularly at 
higher initial concentrations, likely due to dust accumulation 
downstream in the airflow.

For an initial dust concentration of 200 mg/m3, parameter control 
schemes 15, 20, and 32 achieved ideal dust removal effects with 
relatively low dust concentrations, while schemes 10 and 11 resulted 
in relatively high dust concentrations. At an initial dust concentration 

FIGURE 14

Dust distribution at cross-section z = 7.0 m.
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of 400 mg/m3, schemes 11 and 27 provided better dust removal 
efficiency. This demonstrates that the optimal parameter control 
combinations vary under different initial dust concentrations, 
necessitating appropriate control schemes tailored to specific working 
conditions to achieve optimal dust removal efficiency.

The optimal parameter control schemes and their respective dust 
removal efficiencies for initial dust concentrations ranging from 200 
to 800 mg/m3 at both the roadheader and downwind side are 
presented in Table 5.

From Table  5, it can be  observed that for an initial dust 
concentration of 200 mg/m3, scheme 30 achieved the best dust 
removal effect, reducing the dust concentration at the roadheader by 
49.88% and at the downwind side by 55.67%. For an initial dust 

concentration of 800 mg/m3, scheme 8 provided the optimal effect, 
reducing the dust concentration at the roadheader by 78.90% and at 
the downwind side by 86.18%. The reasonable optimization of control 
parameters significantly improves the performance of the ventilation 
and dust removal system. Particularly at high initial dust 
concentrations, the optimized schemes achieve a more substantial 
reduction in dust concentration, fully validating the effectiveness and 
applicability of the optimized control schemes.

Several potential error sources were identified and analyzed:
Environmental Variability: Despite efforts to maintain stable 

ventilation conditions, minor fluctuations in airflow due to external 
factors such as machinery operation and worker movement may have 
influenced dust concentration readings.

FIGURE 15

Performance comparison between bp neural network and CNN-LSTM model.
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Data Processing Errors: Data collection and processing involved 
multiple steps, and while outliers were removed systematically, minor 
inconsistencies in recorded values could still affect statistical results.

5 Conclusion

5.1 Performance of the optimized 
ventilation system

The optimized system based on the Coandă effect significantly 
reduces dust dispersion and enhances energy efficiency. By employing a 
nested duct structure and leveraging the Coandă effect, airflow is 

directed more effectively along the tunnel walls, minimizing dust 
concentration in key locations. The system achieves optimal performance 
under a pressure-to-suction ratio of 2:3, resulting in dust concentration 
reductions of up to 78.90% at the mining machine location and 86.18% 
downstream when the initial dust concentration is 800 mg/m3.

5.2 Intelligent parameter control with 
CNN-LSTM

The integration of a CNN-LSTM hybrid model for intelligent 
parameter adjustment demonstrates superior accuracy and 
adaptability compared to traditional models. The CNN-LSTM model 

FIGURE 16

Model prediction vs. actual values. (a) Roadheader position. (b) Downwind position.
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outperforms BP neural networks in predictive accuracy, achieving an 
R2 of 0.9783 at the mining machine and 0.9682 downstream. This 
intelligent prediction framework enables real-time system 
optimization by adjusting ventilation system parameters, improving 
the overall efficiency and adaptability of the ventilation and dust 
control system under varying working conditions. The model’s 
predictions have been instrumental in guiding the real-time 
optimization of key system parameters, ensuring enhanced dust 
removal performance while reducing energy consumption.

5.3 Implications for energy efficiency and 
safety

The optimized long-pressure short-suction system enhances energy 
efficiency by eliminating the need for high-power fans, achieving high 

dust removal efficiency while reducing power consumption. 
Furthermore, the system’s adaptability to dynamic working conditions 
ensures enhanced worker safety and operational efficiency. The findings 
validate the broad applicability of the system across various mining 
conditions, providing a robust foundation for future advancements in 
intelligent ventilation and dust control solutions.

5.4 Limitations and future work

The optimized long-pressure-short-suction ventilation and dust 
removal system based on the Coandă effect demonstrates significant 
advantages in dust suppression efficiency and energy savings. 
However, its applicability may vary depending on different mining 
conditions, requiring specific adjustments for optimal performance. 
The system was designed and validated for a fully mechanized mining 

FIGURE 17

Predicted results of dust concentration under different initial dust concentrations.

TABLE 5 Dust removal efficiency of optimal control schemes under different initial dust concentrations.

Initial dust 
concentration/
(mg·m−3)

Optimal 
control 
scheme

d/m h/m H/m Dust 
concentration at 

roadhead/
(mg·m−3)

Dust 
concentration at 
downwind side/

(mg·m−3)

Average dust 
removal 

efficiency/%

200 30 0.50 0 0.55 150.25 128.67 52.13

400 12 0.45 0 0.50 95.43 125.12 76.85

600 22 0.40 0.2 0.55 158.67 90.34 80.24

800 8 0.40 0.0 0.50 170.78 110.56 84.12
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face with standard tunnel dimensions. In environments with narrower 
or wider tunnels, the airflow characteristics and dust diffusion patterns 
may differ, necessitating adjustments to the spacing between the air 
supply and exhaust ducts, as well as the pressure-to-suction ratio, to 
maintain optimal dust removal efficiency. In deeper mining operations 
or complex underground structures, ventilation resistance tends to 
increase due to longer airflow paths and potential obstructions, which 
may affect the effectiveness of the optimized design. To adapt to such 
conditions, the pressure distribution of the air supply system should 
be dynamically adjusted to ensure effective airflow attachment along 
the tunnel surfaces.

Furthermore, while the study primarily focused on the 
suppression of fine dust particles commonly found in coal mining, 
different mining environments—such as metal ore or hard rock 
mining—may present dust particle sizes and compositions that differ 
significantly, which could impact system efficiency. Therefore, further 
testing and modifications to the Coandă effect-based duct design may 
be required to ensure optimal dust capture and removal for varying 
dust types. Additionally, some underground mining environments 
may impose specific constraints, such as low clearance heights, limited 
space for ventilation infrastructure, or varying ambient humidity 
levels, all of which may influence the airflow attachment effect and 
dust transport efficiency. Computational simulations and field tests 
under these specific working conditions would be helpful to refine the 
system’s adaptability for different mining applications.

Overall, while the proposed ventilation and dust removal 
system has demonstrated robust performance in standard mining 
environments, targeted modifications may be  necessary when 
applied to specific underground conditions. Future research will 
focus on expanding the model’s adaptability to a wider range of 
mining conditions through field validation and real-time 
optimization techniques. Despite the promising results, the study 
has some limitations. The numerical simulations and experimental 
validations were conducted under specific mining conditions, and 
further research is needed to evaluate the system’s adaptability to 
different tunnel geometries and dust concentration levels. 
Additionally, future work could explore real-time adaptive control 
strategies to further improve system responsiveness under 
fluctuating environmental conditions.
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