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American Indian and Alaska Native (AI/AN) communities are at a critical juncture in 
health research, where combining participatory methods with advancements in artificial 
intelligence and machine learning (AI/ML) can promote equity. Community-based 
participatory research methods which emerged to help Alaska Native communities 
navigate the complicated legacy of historical research abuses provide a framework 
to allow emerging AI/ML technologies to align with their unique world views, 
community strengths, and healthcare goals. A consortium of researchers (including 
Alaska Native Tribal Health Consortium, the Center for Alaska Native Health Research 
at University of Alaska, Fairbanks, Stanford University, Southcentral Foundation, and 
Maniilaq Association) is using community-engaged AI/ML methods to address air 
medical ambulance (medevac) utilization in rural communities within the Alaska 
Tribal Health System (ATHS). This mixed-methods convergent triangulation study 
uses qualitative and quantitative analyses to develop AI/ML models tailored to 
community needs, provider concerns, and cultural contexts. Early successes have 
led to a second funded project to expand community perspectives, pilot models, 
and address issues of governance and ethics. Using the Ethical, Legal, and Social 
Implications of Research framework to address implementation of AI/ML in AI/
AN communities, this second grant expands community engagement, technical 
capacity, and creates a body within the ATHS able to provide recommendations 
about AI/ML security, privacy, governance and policy. These two projects have the 
potential to provide equitable AI/ML implementation in Alaska Native healthcare 
and provide a roadmap for researchers and policy makers looking to effect similar 
change in other AI/AN and marginalized communities.
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Introduction

Indigenous communities, and Alaska Native communities in 
particular, are at an exciting crossroads in health research. 
Participatory methods are converging with rapidly advancing 
technological in artificial intelligence and machine learning (AI/ML) 
and creating opportunities to advance equity. The equity benefits of 
AI/ML use for Alaska Native healthcare can be achieved through 
participatory research and implementation practices that account for 
accessibility in the human resources, connectivity, software and 
hardware needed within Alaska Native healthcare settings with 
upstream inquiry and attention in design and implementation to 
social and data biases (Prathomwong and Singsuriya, 2022).

Health research in Alaska Native 
communities

Alaska Native people come from a long history of strength and 
resilience, where communities have overcome unique challenges for 
millennia to thrive in their historical lands (Rasmus et  al., 2019; 
Williams, 2009). The remoteness and resilience of Alaska Native 
peoples made them a subject of medical study, but early medical 
research in Alaska was a troubling mix of violations of trust, lack of 
informed consent, and active harms (Foulks, 1989; Institute of 
Medicine and National Research Council, 1996; Lanzarotta, 2020). 
These past injustices created a pathway and precedence for extractive 
research relationships where outside researchers enter Alaska Native 
communities and collect data to address a problem or study a 
phenomenon at the researchers direction (Gaudry, 2011; Crouch 
et al., 2023).

Alaska Native and American Indian (AI/AN) federally 
recognized Tribes have implemented research policies reflecting 
their community values and requirements in the conduct of 
research with their citizens and in their lands and healthcare 
facilities (Carroll et al., 2022; Garba et al., 2023; Saunkeah et al., 
2021). Self-governing tribes are implementing processes and 
systems to support Indigenous data sovereignty, meaning the right 
of each Native nation to govern the collection, ownership, and 
application of the Tribe’s data (Carroll et al., 2019). Community-
based participatory research (CBPR) methods have concurrently 
evolved as a response to inequitable power structures in research 
with communities by using cyclical processes to build upon 
community strengths, facilitate partnerships, promote co-learning, 
and look at health from positive and ecological perspectives 
(Satcher, 2005). CBPR methods have revolutionized health research 
being done by Alaska Native communities looking at a wide range 
of health domains and shaping solutions to problems most highly 
prioritized among Alaska Native people living in the communities 
(LaVeaux and Christopher, 2009; Rasmus, 2014; Woodbury 
et al., 2019).

AI/ML in healthcare

Globally, a technological revolution is occurring surrounding AI/
ML applications in healthcare which have the potential to transform 
the efficiency and precision of care delivery and improve health 
outcomes (Bohr and Memarzadeh, 2020). However, equity concerns 
exist for AI/ML in regards to minority health and health disparities. 
Historically marginalized populations have been underrepresented in 
the datasets used in the training of AI/ML models and in the inclusion 
of end users providing healthcare to marginalized populations, which 
has negatively impacted real-world implementation and impeded 
health outcomes improvements (Obermeyer et al., 2019; Sharma et al., 
2022). AI/ML designers who create models which do not consider 
biases present in datasets and the social structures from which the 
data are derived (e.g., inequalities due to and at the intersections of 
race, class, gender, sexuality, disability, and coloniality) can reinforce 
or worsen existing health disparities (Green et al., 2024; Donia and 
Shaw, 2021).

However, an emerging body of scholarship is exploring ways in 
which AI/ML can be  used to actively address and reduce health 
disparities (Chen et al., 2020; d’Elia et al., 2022; Berdahl et al., 2023). 
AI/ML development to address health disparities should adhere to 
several key principles: (a) be  built from equitable datasets that 
represent marginalized groups, (b) considerations of equity must 
occur at all stages of algorithm development, (c) development teams 
need to be more diverse in terms of stakeholders and backgrounds, 
and (d) ethical standards must be established (Green et al., 2024). 
While frameworks and a few participatory cases in AI/ML exist, the 
practical implementation of AI/ML in AI/AN healthcare systems is 
almost entirely missing from the literature (Birhane et al., 2024). A 
scoping review showed that only 0.2% of over 1,000 AI healthcare 
publications mention community involvement, and only a single study 
has been published describing stakeholder involvement in application 
development (Loftus et al., 2024). To date, no studies or frameworks 
have been published with community engagement throughout the 
design and implementation process, nor any involving AI/AN 
health systems.

Practical implementation of AI/ML in 
rural AI/AN healthcare

A consortium of academic and community-based researchers is 
now looking at how to leverage the successes of CBPR within Alaska 
Native communities to build equitable AI/ML models within the 
Alaska Tribal Health System (ATHS) that could benefit Alaska Native 
patients, be rooted in Alaska Native community beliefs, recognize the 
unique local healthcare environment, and be built using Alaska Native 
health data. This team includes researchers from the Alaska Native 
Tribal Health Consortium, the Center for Alaska Native Health 
Research at University of Alaska, Fairbanks, Stanford University and 
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two Tribal health organizations (THO): Southcentral Foundation, and 
Maniilaq Association. Our research consortium has received funding 
from the National Institute of Minority Health and Health Disparities 
to attempt to use CBPR approaches in a mixed-methods convergent 
triangulation design to study air medical ambulance (or “medevac”) 
utilization in rural Alaska. Over 80% of Alaska’s communities are in 
frontier locations, unconnected to a road system. Without roads, 
medevacs are required to transfer medical emergencies from rural 
village-based health clinics with healthcare delivered solely by 
Community Health Aides and Community Health Practitioners 
(CHA/Ps) to a referral hospital to receive a higher level of care (Sherry, 
2004; Chernoff and Cueva, 2017; Trout et al., 2018). With medevacs 
representing a critically limited resource which carry not just high 
financial costs but also substantial crash risks, the question of how and 
when to medevac a patient is the most challenging clinical task facing 
clinicians in rural Alaska (Rice et al., 2020).

Medevac utilization provides an ideal pilot for “community-
engaged AI” as it is: (a) a clear priority for patients and providers 
within the ATHS, (b) an issue unique to rural Alaska and thus 
requiring the use of data from rural Alaska, (c) an extraordinarily 
complex problem involving weighing many clinical (e.g., current and 
potential patient conditions, vital signs, patient complaints, provider 
exam) and non-clinical (e.g., provider training, resource availability, 
weather, aircraft availability) determinants, and (d) a health service 
that is Tribally managed.

AI/ML models represent a technical solution to deciphering this 
complex decision-making process. While AI/ML models are notorious 

for requiring a large amount of data, these needs can be adequately 
met despite the relatively small population in rural Alaska by using the 
comprehensive health records encompassing a patient’s lifespan and 
inclusion of medical, dental, and behavioral health services, that the 
ATHS has maintained for decades (Carroll et al., 2011). Furthermore, 
the ATHS is a closed system where final outcomes for every patient 
can be accounted for, greatly improving the quality of the overall data. 
Quantitative analysis will connect medevac patients to their final 
outcomes and attempt to isolate which archetypes of patients have 
time-sensitive conditions which most benefit from medevac 
prioritization (Rice et al., 2020). Qualitative analysis of interviews with 
hospital-based physicians and the CHA/Ps who staff remote village 
health clinics will establish how and why both provider groups make 
their medevac decisions. This information will allow researchers to 
identify and weigh variables to include in their final models. A 
community advisory board will provide guidance and assist 
researchers with interpretation. Importantly, our project occurs within 
the structural socio-political setting of AI/AN communities where 
Alaska Native people operate and govern the ATHS. Our community-
engaged AI/ML project is grounded by Alaska Native values. Beyond 
the community advisory board, key personnel of our research team 
work in research departments based at THOs and are AI/AN 
community members and health researchers. The proposed 
concurrent triangulation mixed-methods design is visualized in 
Figure 1.

The integrative stage will incorporate the qualitative and 
quantitative analyses to establish to build a final AI/ML classification 

FIGURE 1

Concurrent triangulation mixed-methods design.
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model for medevac appropriateness. By associating the output of this 
model with patient-level mortality and mortality outcomes, the 
impact of medevac utilization on patient outcomes can be determined. 
The features of this model that are associated with better or worse 
patient outcomes can be  incorporated into ongoing training. This 
model in turn will be the basis for further work to provide clinical 
decision support for this complex challenge faced by patients and 
providers throughout rural Alaska.

Expansion of AI/ML implementation 
efforts in AI/AN communities

Though this work is only in its third year, the initial positive 
response from Alaska Native communities and leadership has led to 
expanded participation of additional THOs, and the pilot data has led 
to follow-up funding from the Artificial Intelligence/Machine 
Learning Consortium to Advance Health Equity and Researcher 
Diversity Program (AIM-AHEAD) (AIM-AHEAD, 2024). This 
second grant builds off preliminary data from the original project and 
will expand both the scope of community engagement, distribution of 
power, and expand technical capacity within community partnerships, 
as well as begin addressing system-wide issues of Tribal data 
sovereignty, policy and governance (Figure 2).

This work uses an upstream, embedded Ethical, Legal and Social 
Implications Research (ELSI) AI/ML framework to facilitate 
stakeholder engagement and use of empiric ELSI findings in all 
aspects of the research project to support collaboration, partnership, 
trust building, accessibility, ownership, accountability and 
transparency (Rajagopalan et al., 2024; Wiens et al., 2019). The work 
will expand the qualitative methods of the initial project to include the 
community not just of providers, but of the larger patient population. 
It also provides formal pre-implementation evaluation using 
frameworks for AI, helps pilot predictive AI/ML models within the 
ATHS, and establish broader guidance for ethics and governance for 
AI/ML projects. The research team will take externally developed 
predictive AI models for patient outcomes in cardiovascular disease 
and cancer and assess their performance, fairness, and bias when 
using ATHS data. The team will either develop mitigation strategies 
to adapt these models for use within the ATHS or establish the need 
for building and training AI models for the ATHS within the ATHS, 
using ATHS data. While AI/ML research often lacks clear clinical 
applicability, these projects are notable for not only being developed 

with support from patients, providers, researchers, and local and 
statewide Tribal leadership, but also with clear pathways for 
subsequent implementation within the ATHS to improve training for 
providers and provide direct clinical benefits to Alaska Native patients.

Discussion

The methods described above have applicability beyond medevacs 
and beyond Alaska. It is hoped that publishing this work in its 
preliminary stages will provide a starting point for other under-
represented and minority communities interested in engaging in AI/
ML research to address the health issues that are unique to their 
communities. CBPR-driven AI/ML research may avoid a priori 
assumptions in design and locally situated models that are respectful 
and reflective of Alaska Native people and values. The process of 
co-design will allow the research team and community to explore 
specific design decisions, describe and mitigate real AI/ML harms, 
determine specific ATHS systemic inequalities, and support 
transparency and communication of AI/ML with end users. 
Embedding ELSI AI/ML into the project may expand the field in 
regard to normative research with historically marginalized 
communities using AI/ML in healthcare (Parker et  al., 2019). 
Ultimately, the aim is to create an accessible and equitable pathway for 
Alaska Native people to gain the benefits promised by AI/ML and 
eliminate existing health disparities. It is hoped that this work can help 
provide a roadmap for other communities to do the same.
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