
TYPE Original Research

PUBLISHED 18 June 2025

DOI 10.3389/frai.2025.1569395

OPEN ACCESS

EDITED BY

Ekkehard Ernst,

International Labour Organization,

Switzerland

REVIEWED BY

Lucas Bernard,

The City University of New York, United States

Tohid Atashbar,

International Monetary Fund, United States

*CORRESPONDENCE

Tato Khundadze

khunt758@newschool.edu

RECEIVED 31 January 2025

ACCEPTED 26 May 2025

PUBLISHED 18 June 2025

CITATION

Khundadze T and Semmler W (2025)

European sovereign debt control through

reinforcement learning.

Front. Artif. Intell. 8:1569395.

doi: 10.3389/frai.2025.1569395

COPYRIGHT

© 2025 Khundadze and Semmler. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

European sovereign debt control
through reinforcement learning

Tato Khundadze1* and Willi Semmler1,2,3

1Department of Economics, The New School for Social Research, New York, NY, United States,
2Business Administration and Economics, Bielefeld University, Bielefeld, Germany, 3Economic Frontiers

Program, IIASA, Laxenburg, Austria

The resilience of economic systems depends mainly on coordination among

key stakeholders during macroeconomic or external shocks, while a lack of

coordination can lead to financial and economic crises. The paper builds on

the experience of global and regional shocks, such as the Eurozone crises of

2009–2012 and the economic disruption resulting from COVID-19, starting in

2020. The paper demonstrates the importance of cooperation in monetary and

fiscal policies during emergencies to address macroeconomic non-resilience,

particularly focusing on public debt management. The Euro area is chosen as

the sample for testing the models presented in the paper, given that its resilience

is heavily dependent on cooperation among di�erent actors within the region.

The shocks a�ecting nations within the European Union are asymmetric, and

the responses to these shocks require coordination, considering heterogeneous

economic structures, levels of economic development, and policies. We develop

a macroeconomic modeling framework to simulate fiscal and monetary policy

interactions under a cooperative regime. The approach builds on earlier

nonlinear control models and incorporates modern reinforcement learning

techniques. Specifically, we implement the Soft Actor-Critic algorithm to

optimize policy responses across key variables including inflation, interest

rates, output gaps, public debt, and government net lending. We demonstrate

that the Soft Actor-Critic algorithm provides comparable or, in some cases,

better solutions to multi-objective macroeconomic optimization problems, in

comparison to Nonlinear Model Predictive Control (NMPC) algorithm.

KEYWORDS

fiscal policy, deep reinforcement learning, Euro area, NMPC, machine learning, Soft

Actor-Critic, actor critic algorithm

1 Introduction

The Euro area economy can be viewed as a large, complex system whose resilience

depends on a combination of external and internal factors. For modeling purposes, it is

valuable to identify and isolate the key elements that contribute to the system’s stability

and to examine how these elements evolve within a simulated environment. Modern

macroeconomic literature and existing policy studies have provided four key directions

that are important from the standpoint of macroeconomic resilience in such a complex

economic system as the European Union. As key macroeconomic challenges are seen: (i)

the decline in competitiveness and slow pace of growth, (ii) long-term debt sustainability,

(iii) the need for a green transition, and all this (iv) in the context of an uneven economic

development within the EU (Fagerberg et al., 2016).

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1569395
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1569395&domain=pdf&date_stamp=2025-06-18
mailto:khunt758@newschool.edu
https://doi.org/10.3389/frai.2025.1569395
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1569395/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khundadze and Semmler 10.3389/frai.2025.1569395

The key question is how to achieve the long-term goals of

sustaining high growth rates while keeping debt levels manageable.

According to the Maastricht Treaty, a fiscal rule in the European

Union stipulates that government debt should not exceed 60% of

GDP, and government deficits should not surpass 3% of GDP.

If a country’s debt-to-GDP ratio breaches this rule, the recently

postulated adjustment rule is that the respective country is expected

to gradually reduce the ratio until it reaches those thresholds.

However, those fixed and adjustment rules are schematic and

represent a highly debated general framework, that is challenged

in recent policy debates (Grauwe, 2025). In fact there could be

multiple regimes in terms of understanding debt sustainability. A

while ago De Grauwe provided the explanation of the emergence

multiple equilibria in the context of the European Union.

According to him, considering the monetary union, the member

countries can’t issue debt in their own currency, which means

that they are in the same position as many developing countries

where local financial markets are not sufficiently developed, so that

governments can borrow money in a local currency (De Grauwe,

2011).

Furthermore, Blanchard (2022) applies empirically such a

multiple equilibria framework. In his view there are “good” and

“bad” equilibria, in terms how they may be able to become resilient

impacting an economy. The good equilibria are sustainable and

self-stabilizing the debt level. This occurs under high economic

growth rates, which help maintain low risk premia and lower

effective interest rates. In the good equilibria, debt ratios tend

to converge toward sustainable steady state levels, which implies

that this level of debt does not pose the risk of financial

stability (Blanchard, 2022). On the other hand bad equilibria are

characterized by unsustainable debt dynamics—high levels of debt

lead to destabilization of the system. As Semmler and Young

(2024) explain, when the macroeconomic system is in a bad

equilibrium, macroeconomic non-linearities are playing greater

role, specifically, thresholds and tipping points, that can be source

of sudden disruptions in the macro economy. The self-reinforcing

loop works in the following way: higher risk premia and interest

rates exacerbate the debt situation and the high debt requires higher

risk premia.

In light of a perceived “secular stagnation,” EU countries are

facing persistently slow growth, characterized by relatively high

savings rates but slowed down private and public investment rates.

Blanchard (2022) suggests that this is in part due to a preference

for safe assets. This imbalance between savings and investment

has pushed down the neutral interest rate—the hypothetical rate

that keeps the economy at a knife edge problem of neither too

high nor too low inflation and growth rates. Given private sector

expectations for returns are diminishing, actual interest rates

tend to fall and central banks, whose objectives are to maintain

stable prices and reasonable growth, often respond by cutting

rates further. However, given the long delay effects of interest

rate changes even with lower rates, private consumption and

investment demandsmay remain sluggish.1 Another factor possibly

contributing to low interest rates is the growing demand for

safe assets, such as government bonds. This trend drives up the

1 For the long delay e�ects of interest rate changes, see Chen et al. (2022).

price of these assets, putting downward pressure on their yields

(interest rates).

The neutral interest rate can then fall below the the growth

rate, which means that the cost of servicing debt has decreased. As

a result, monetary policy may face the zero bound of the interest

rate and has become less effective in managing the economy, and

fiscal policy is likely to take on a more prominent role. Lower

neutral rates also mean lower debt servicing costs, which creates

more space for public borrowing. This traditional view of fiscal

policy assumes that monetary policy can effectively manage the

economy until the zero bound of the interest rate is reached

and then fiscal policy can keep output close to its potential. On

the other hand when private demand is strong, and growth rate

and employment reasonable high, fiscal policy should focus on

stabilizing debt (Blanchard, 2022).

On the other hand, if monetary policy is ineffective in closing

the output gap, and fiscal policy faces unsustainable debt often

budget consolidation drive fiscal policy with often adverse effects on

output and employment. Budget consolidations might be achieved

but at considerable cost.2 Fiscal policy can push the neutral rate

above the upper bound, but still keep the actual interest rate below

the growth rate and therefore enabling to pursue debt sustainability.

On the other side, in periods of low interest rates and weak private

demand, governments may be forced to run deficits to keep output

close to its potential, which in turn can increases the debt-to-

GDP ratio because also high risk premia can arise driving up the

borrowing rate. These are mechanisms we want to capture in our

macrodynamic model with good and bad debt equilibria.

The another key challenge not to be neglected in this context

is the problem related with slow productivity growth within

European Union. In comparison with the US the growth rate of

the EU was lower, while also China had much higher growth,

rising world export shares, and in the process of becoming an

industrial powerhouse. As recently published report by Draghi

(2024) suggests, the key factors which explain the gap in GDP

growth rate of theUS—the EU being deficient in public investments

and productivity growth: specifically, the report suggests that 70

percent of in GDP per capita gap between the EU and USA can be

explained by relatively low rate of productivity in the EU. The EU

is losing its competitiveness on the global market in particular in

sectors relevant for the green transition, for example digitization,

AI innovative investments, electrical vehicles, batteries and so on.

Much became more prevalent after the COVID-19 pandemics. The

challenge comes from the US and also Chinese companies, making

the foreign demand for EU products decreasing (Draghi, 2024).

The Draghi report highlights these factors: the EU is falling

behind in technological development. TheUS has seven super high-

tech companies with asset values exceeding a trillion dollars, while

the EU has none. Only 4 companies among global tech companies

are from the EU. The Draghi report highlights if the current EU

labor productivity growth rate stays the same (on average 0.7%

since 2015), it would be enough to keep the GDP constant only

until 2050 (Draghi, 2024).While there is more optimism in terms of

interest rates, some express concerns about the slower growth rates.

Under the slower growth rates, the EU debt levels may become

2 See Grauwe (2025).
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untenable and the EUmaybe forced to slow down its plans in terms

decarbonization or other goals (Draghi, 2024). As Blanchard (2022)

predicts that future growth rates above the interest rate are crucial

for debt sustainability and for sovereign debt control.

With this paper, we contribute to the literature on simulating

debt dynamics and debt sustainability in the Eurozone countries,

and also contribute to the literature on the application of

deep reinforcement learning macroeconomics. It is important to

utilize modern economic models, including simulations powered

by machine learning, to address macroeconomic management

challenges. European sovereign debt control can get the help

of machine learning. When interest rates are lower than the

growth rate, governments can manage higher debt levels without

encountering fiscal difficulties, as economic growth helps offset

the debt burden. This allows also for running primary deficits

while maintaining stable debt levels. However, this condition is not

guaranteed in the long term: Unexpected shocks could raise interest

rates above the growth rate, leading to move closer to unsustainable

debt levels and a “bad” debt equilibrium. The paper using Deep

Reinforcement Learning and Non-linear Model Predictive Control

(NMPC) provides a novel approach to solving a multi-objective

macroeconomic problem aimed at minimizing the deviation of

multiple macroeconomic state variables from their target levels.

Deep Reinforcement Learning (DRL) allows to introduce

a new macroeconomic framework and study macrodynamic

problems alongside an established NMPC algorithm which was

known for a while in economic literature. While based on

different principles, the NMPC method and Deep Reinforcement

Learning (e.g., the Soft Actor-Critic algorithm) can address similar

problems in dynamic economic systems—one operating within

a deterministic framework, the other within a stochastic one.

Both have as multi-period target to minimize deviations in the

inflation rate, output gap, and debt levels from their respective

targets under a cooperative scenario. In this scenario, monetary

and fiscal policies are synchronized between two groups (North

and South) of EU countries. Simulations of this cooperative

scenario, comparing NMPC and the stochastically oriented Deep

Reinforcement Learning, offer insightful perspectives on how key

macroeconomic variables may evolve through objective function

optimization and policy learning, aiding in sustainable sovereign

debt control.

The second section of the paper summarizes the stylized facts

regarding debt sustainability and other trends of the EU over the

last 30 years. Specifically, the variables include the interest rate for

the European Central Bank’s main refinancing operations (MRO),

government net lending, consolidated gross government debt, the

Harmonized Index of Consumer Prices (HICP), and the output

gap. The third section provides a macromodel based on the idea

of a cooperative macro-dynamic solution for EU countries. The

fourth section offers a brief review of Non-linear Model Predictive

Control and various forms of Deep Reinforcement Learning, which

are used to solve the macro model with possibly good and bad debt

equilibria as presented in the previous section. The final section

presents the simulation results for NMPC and the Soft Actor-Critic

(SAC) algorithm, demonstrating how the state variables may evolve

under the cooperative scenario within EU countries and studies

how the bad debt equilibrium can be avoided.

2 Stylized facts

For modeling purposes, it is valuable to identify and isolate the

key elements that contribute to the system’s stability and to examine

how these elements evolve within a simulated environment.

The variables considered for describing the macroeconomic

system include the interest rate for the European Central Bank’s

main refinancing operations (MRO), government net lending,

consolidated gross government debt, the Harmonized Index

of Consumer Prices (HICP), and the output gap. Describing

the dynamics of the given variables is essential for detecting

stylized facts in an uncooperative scenario. In this context,

“uncooperativeness” refers to the absence of a common or

cooperative fiscal policy among the North and South country

groups defined below.

Following the approach of Semmler and Haider (2018),

we divide the Euro area into two regions: North and South,

encompassing countries such as Germany, France, Spain, and

Italy. The North-South aggregates are constructed based on their

respective GDPs. We examine these variables from a historical

perspective to identify and capture stylized facts. From the

perspective resilience it is important to observe how the economic

variables evolve during the shock periods.

The Eurozone’s recent macroeconomic history can be divided

into several episodes. For instance, Hartmann and Smets (2018)

provide four phases from 1999 to 2017. Specifically, the phases

in Figure 1 include the following: from 1999 to 2003, involved a

slowdown in growth after the dotcom bubble burst, accompanied

by a weak euro. The second phase, from 2004 to 2007, was marked

by a surge in money and credit expansion, stable inflation, and

accelerating economic growth. This increase corresponds with a

period of robust economic growth and inflationary pressures in

the Eurozone, resulting in relatively high rates until 2008.The third

phase, from 2008 to 2013, saw a double-dip recession, caused by the

U.S. financial crisis and the euro area sovereign debt crisis. The final

phase, from 2014 to 2017, was characterized by economic recovery

in a low-inflation environment. A substantial decline in the MRO

rate begins in 2008, coinciding with the global financial crisis and

the subsequent Eurozone sovereign debt crisis.

In response to the economic downturn, the ECB significantly

reduced its rates, lowering them to approximately 1.00% by 2009.

After a brief increase in 2011, the rate was further reduced to

0.75% by 2012 as the crisis intensified, particularly in countries like

Greece, Spain, and Italy. From 2013 to 2019, the graph depicts a

period of sustained low interest rates, eventually reaching 0.00%

by 2016. This period reflects the ECB’s approach to addressing low

inflation and economic stagnation in the Eurozone, employing a

combination of low rates and unconventional monetary policies,

such as quantitative easing (Hartmann and Smets, 2018). Hartmann

and Smets classification of ECB policy can be further extended

in order to cover episodes COVID-19 pandemic and war in

Ukraine. During the COVID-19 pandemic in 2020 and 2021, the

rate remained at 0.00%, demonstrating the ECB’s commitment

to maintaining liquidity and supporting the economy amid

severe economic contractions. The ECB utilized combination of

conventional and unconventional monetary policy mix during

the pandemic. This policy mix included Pandemic Emergency
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FIGURE 1

Main refinancing operations.

Purchase Programme (PEPP), under which the ECB purchased

750 billion worth of securities (De Guindos and Schnabel,

2022). In parallel, the ECB continued and improved other non-

conventional measures, such as targeted long-term refinancing

operations (TLTROs). Specifically, the objective of Targeted Long-

Term Refinancing Operations was to provide sufficient liquidity to

the real sector and also to improve lending conditions (Fernndez

et al., 2021).

A significant upward trend in interest rates begins in mid-

2022, reflecting a series of rapid rate hikes by the ECB in

response to rising inflation. By September 2023, the MRO rate

reached 4.50%, representing one of the most rapid increases in

the ECB’s history. This adjustment reflects the ECB’s efforts to

counter inflationary pressures caused by the war in Ukraine,

supply chain disruptions, and the energy crisis (Maurya et al.,

2023). A slight reduction to 4.25% in 2024 indicates a cautious

adjustment as inflationary concerns start to moderate but remain

a key focus.

Overall, the Figure 1 captures the ECB’s evolving monetary

policy strategies, from pre-crisis moderate rate hikes, sharp

cuts during the Eurozone crisis, a prolonged period of

near-zero rates amid economic stagnation and the COVID-

19 pandemic, to aggressive rate increases in response to

post-pandemic inflation, geopolitical tensions and fossil fuel

prices rising.

There are two important thresholds regulated by the EU

Stability and Growth Pact (SGP): Government Deficit Limit and

Government Debt Limit.3 The Figure 2 of government net lending

in France, Germany, Italy, and Spain between 1995 and 2023

shows different paths in their financial situations, influenced by

national policies and broader economic events like the 2008 global

financial crisis and the COVID-19 pandemic. One important aspect

which can be regarded as stylized fact from this picture is that,

the EU countries breach the deficit limit considerably, when there

are strong economic downturns. In the given period, two such

significant economic downturns appeared, such as Global Financial

Crises in 2008 and the economic crises which follow COVID-19

pandemics in 2019. The second stylized fact is related to the scale of

the deficit rule.

In France, the government deficit started at around 5.1% of

GDP in 1995. Over the next decade, the government worked to

improve its financial situation, bringing the deficit closer to balance

by the early 2000s. However, there were some setbacks, such as in

2003, when the deficit increased to about 4.1%. Despite these ups

and downs, France managed to keep its financial position relatively

stable until the 2008 financial crisis. This crisis caused a large

increase in the deficit to 7.4% in 2009, mainly because of lower

revenues during the recession and higher government spending to

3 The headline deficit, which includes interest payments, is the EU’s main

fiscal benchmark under the 3% of GDP rule in the SGP. It often exceeds the

primary deficit, which excludes interest payments, especially when interest

costs are high.
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FIGURE 2

Government net lending.

support the economy. After this, France slowly started to recover,

reducing the deficit to 2.4% by 2019. However, the COVID-19

pandemic caused new problems, increasing the deficit to 8.9% in

2020. By 2023, the deficit had improved a bit to 5.5%, but it was still

relatively high.

Germany began with a large deficit of 9.4% of GDP in 1995

but saw steady improvement over the next decade. By 2007,

Germany achieved a small surplus of 0.3%, thanks to strict control

over spending and good economic conditions. The financial crisis

in 2008 briefly pushed Germany back into a deficit of 3.2% in

2009, but the country quickly returned to a surplus from 2012

onward, reaching its highest point at 1.9% in 2018. The COVID-

19 pandemic in 2020 caused another deficit of 4.3%, but Germany

reduced this to 2.5% by 2023, showing effective management of its

finances during the recovery.

Italy faced many financial problems throughout the period.

Starting with a deficit of 7.2% in 1995, it managed to lower the

deficit to 1.3% by 2007. However, Italy often struggled with its

public budget, and the deficit remained above 3% of GDP. The

financial crisis in 2008 made things worse, with the deficit reaching

5.1% in 2009. Italy’s recovery was slow, and by 2019, the deficit was

1.5%. The COVID-19 pandemic in 2020 made the situation even

worse, pushing the deficit to 9.4%. By 2023, the deficit was still

high at 7.4%, showing that Italy continues to face deep economic

challenges. Spain improved its financial situation significantly from

1995 to 2006, moving from a deficit of 6.8% to a surplus of 2.1%

due to strong economic growth and reforms. However, the 2008

financial crisis caused the deficit to grow sharply to 11.3% in 2009,

and it reached 11.6% again in 2012 during the Eurozone crisis.

From 2014 to 2019, Spain worked hard to reduce its deficit, bringing

it down to 3.1% by 2019. The COVID-19 pandemic in 2020 led to

another large increase in the deficit to 10.1%, but Spain managed

to lower it to 3.6% by 2023, although it was still higher than before

the pandemic.

It is important to note that the EUs fiscal deficit rule has not

been consistently adhered to before and after 2008, as illustrated

in Figure 2. With the exception of Germany, most countries

have frequently violated the rule. Second, fiscal positions appear

to be subject to different regimes. Economic and exogenous

shocks significantly affect the fiscal position of these nations.

As shown in Figure 2, there are at least two distinct episodes—

the 2008 Financial Crisis and the 2019 COVID-19 crisis—during

which fiscal deficits increased sharply. However, it is evident that

fiscal deficits respond differently to various shocks. For instance,

although Germanys fiscal deficit rose in both episodes, the increase

was more modest compared to other countries in the group.

The fiscal policy response to shocks is largely influenced by

automatic stabilizers: when output falls, lower tax revenues and

increased transfers stimulate aggregate demand. The variation in

fiscal responses can be attributed to several factors, including

the nature of the shock and the specific vulnerabilities of each

country. In general, the strength of automatic stabilizers depends

on the degree of tax progressivity and the size of the transfer

system. According to an OECD study, countries with more

progressive tax systems and more generous transfer programs

tend to have stronger automatic stabilizers that respond more

aggressively to output declines (Maravalle and Rawdanowicz,

2020).

Another SGP ceiling is Debt-to-GDP ratio, which should not

exceed 60%. Figure 3 illustrates the evolution of this indicator

over the period of 2000–2023. The evolution of government gross

debt as a percentage of GDP for Germany, Spain, France, and

Italy from 2000 to 2023 illustrates distinct trends, particularly

during key economic shocks. One important aspect, which is

visible from this evolution is the trended behavior of this indicator

since the Global Financial Crises for all countries described on

the graph except Germany. The debt-to-GDP ratio decreases and

plateaus up to 2019, however, there is a sudden spike after the

COVID-19 pandemic.

For Germany, there is a steady rise in debt, reaching about

73% in 2009 due to the global financial crisis. The ratio peaks at

82% in 2010, reflecting increased borrowing and economic support
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FIGURE 3

Government gross debt.

measures, then gradually decreases. A noticeable upward jump

appears in 2020, pushing the debt ratio to nearly 69% during the

COVID-19 pandemic, before decreasing again to around 64% by

2023. France’s debt ratio steadily increases from the early 2000s,

with a marked rise starting in 2008, reaching around 84% by 2009

during the financial crisis. The ratio continues to climb, peaking

at ∼115% in 2020 due to the pandemic, with a slight reduction to

about 111% by 2023.

Spain shows a steep rise from around 36% in 2007 to over 100%

by 2014, driven by the financial and Eurozone debt crises. After

some stabilization, another sharp increase is visible in 2020, where

the debt ratio jumps to 120% due to pandemic-related spending,

followed by a gradual decline to ∼108% by 2023. Italy starts high

at 109% in 2000 and remains elevated, with a significant increase

during the global financial crisis, reaching around 119% in 2010.

Another sharp rise occurs during the Eurozone debt crisis, peaking

at 135% by 2014. In 2020, the debt ratio surges to 155% due to

the COVID-19 pandemic, followed by a gradual decline to 137%

by 2023.

It is important to note that after 2012, as shown in Figure 3,

the debt-to-GDP ratio began to stabilize in both the Northern and

Southern regions of the Eurozone—a trend that persisted until the

onset of the COVID-19 crisis. In this context, the interest rate on

government debt (safe real interest rate), not only reflects average

rates on short- and long-term government bonds, but also includes

risk premium. After the financial crises in 2009–2010 period, this

effective interest rate start to increase relative to the economy’s

growth rate. The resulting gap between interest rates and growth

created challenges for managing rising debt levels. In 2012, Mario

Draghi intervened decisively to “rescue the euro" with his now-

famous “whatever it takes" speech (Draghi, 2012). He initiated

the purchase of Greek and Italian treasury bonds, which helped

restore investor confidence, stabilize bond prices, and prevent

capital flight. As a result, the risk premia embedded in sovereign

yields decreased significantly.

In terms of the inflation rate, there are three general trends

that emphasize three key periods: a rise during the global financial

crisis around 2008–2009, another increase during the Eurozone

debt crisis in the early 2010s, and a pronounced spike after 2020 due

to the COVID-19 pandemic and bottle necks, with varying levels of

recovery afterward. Figure 4 illustrates inflation trends in Germany,

Spain, France, and Italy from 1997 to 2024, reflecting the impacts of

various economic shocks and policy responses over time.

During the decade preceding the 2008 financial crisis, inflation

rates were relatively stable across these countries. Spain experienced

slightly higher inflation, averaging around 3% in the early 2000s,

partly due to rapid economic growth and a housing boom. In

contrast, Germany maintained a lower inflation rate, averaging ∼

1.5% during the same period, reflecting its conservative monetary

policies and economic stability. France and Italy showed moderate

inflation trends, with France’s rate averaging around 1.8% and

Italy’s rate decreasing gradually from about 2.6% in 2000 to 2.0%

by 2007, as it aligned its fiscal policies with broader European

economic standards.

The 2008 financial crisis marked a significant turning point.

Inflation rates spiked in 2008, with Germany reaching 2.8%, Spain

peaking at 4.1%, France at 3.2%, and Italy at 3.5%. This increase

was driven by sharp changes in demand and uncertainty in financial

markets. By 2009, inflation had fallen dramatically, with Germany

at 0.3%, Spain at -0.2%, France at 0.1%, and Italy at 0.8%, reflecting

the deep recession across Europe. In response, governments and

the central bank implemented various fiscal stimulus and monetary

easing measures, leading to diverse inflation trajectories in the

following years.

Between 2010 and 2012, during the Eurozone debt crisis,

inflation remained volatile. The crisis led to austerity measures,

bailout packages, and increased financial market stress. Spain’s

inflation remained high, averaging around 3.0%, while Italy’s

inflation peaked at 3.3% in 2012. In contrast, Germany’s inflation

remained relatively controlled, staying around 2.2% due to its
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FIGURE 4

HICP annual change.

stronger fiscal position. France also maintained a moderate

inflation rate, averaging∼ 2.2%.

In 2020, the COVID-19 pandemic first caused inflation rates

to decline sharply, with Germany at 0.4%, Spain at -0.3%, France

at 0.5%, and Italy at -0.2%. The economic disruptions caused

by lock downs, reduced consumer spending, and supply chain

issues led to these decreases. However, by 2021, inflation began

to rise again due to pent-up demand and supply constraints,

with Germany reaching 3.2%, Spain at 3.0%, France at 2.1%, and

Italy at 2.0%.

The period from 2022 to 2023 witnessed a significant surge

in inflation, with Germany’s rate peaking at 8.6%, Spain at 8.3%,

Italy at 8.7%, and France at 5.9%. This was driven by supply

chain disruptions, energy price increases, and geopolitical tensions,

including the conflict in Ukraine, which affected global energy

and food supplies. In response, the European Central Bank

implemented tighter monetary policies and national governments

undertook fiscal adjustments to curb inflation.

By 2024, inflation rates appeared to stabilize, though at varying

levels: Germany at 2.6%, Spain at 3.4%, France at 2.8%, and

Italy at 0.9%. This stabilization is likely due to policy tightening,

improved supply chain conditions, and adjustments in economic

expectations following the shocks of the previous years. The data

highlight the varying economic conditions and policy responses in

these major European economies in response to both external and

internal challenges.

Figure 5 illustrates the output gap as a percentage of GDP for

France, Germany, Italy, and Spain from 1995 to 2025. The output

gap measures the difference between an economy’s actual output

and its potential output, helping to determine whether an economy

is functioning above or below its full capacity. A positive output

gap suggests that the economy is operating above its potential,

while a negative output gap indicates that it is underperforming.

Potential output is the maximum level of goods and services

that a given economy can produce. It is a latent variable since

it is not directly observable. The output gap reflects, in which

phase of business cycle economy is located (Chen and Grnicka,

2020).

Between 1995 and the early 2000s, the output gaps for these four

countries fluctuated around zero, which is consistent with periods

of moderate growth and occasional economic slowdowns. During

this period, Germany’s output gap, after hovering near zero in the

mid-1990s, shifted into positive territory around 2000, reaching a

peak of 1.5% in 2001, indicating robust economic performance.

Similarly, France experienced positive output gaps in the early

2000s, peaking at 1.5% in 2000. In contrast, Italy and Spain faced

negative output gaps throughout the late 1990s, which highlights

weaker economic conditions in these countries. On the other hand,

between 2000 and 2008, Spain experienced rapid growth and, a

positive output gap.

The 2008 financial crisis led to a sharp downturn. In 2009, the

output gaps for all four countries fell significantly. Spain’s output

gap dropped to -2.1%, while Italy, France, and Germany saw their

gaps decline to -4.7%, -2.5%, and -3.9%, respectively. This period

reflects a severe contraction in economic activity across Europe,

resulting in negative output gaps as actual production fell below

potential output levels.

The recovery after the crisis was uneven among these countries.

Germany quickly returned to a positive output gap, reaching

1.3% by 2011, supported by strong economic fundamentals and

export growth. In contrast, France continued to show negative

output gaps between 2010 and 2015, ranging from -0.8% to -

2.4%. Italy and Spain also experienced persistent negative output

gaps, particularly following the Eurozone debt crisis (2010–

2012), which severely impacted their economies. In 2013, Spain’s

output gap fell to -9.0% and Italy’s to -5.9%, reflecting deep

recessions and the effects of austerity measures implemented

during this period.
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FIGURE 5

Output gap.

From 2016 to 2019, there were gradual improvements

in all four countries. Both Germany and France succeeded

in closing their output gaps, with Germany maintaining

a positive output gap of ∼ 1.0% in 2017, while France’s

output gap neared zero by 2019. Italy and Spain also saw

their negative output gaps narrow, but they remained slightly

below zero, indicating a slow recovery and ongoing structural

economic challenges.

The COVID-19 pandemic in 2020 caused a further significant

decline in the output gap across all four countries, as economic

activity was heavily restricted due to lock downs and weakened

demand. Spain’s output gap decreased to -8.5%, while Italy,

France, and Germany saw declines to -5.9%, -4.5%, and -3.1%,

respectively. This period represents one of the most severe

economic contractions since the financial crisis, with all countries

struggling to regain their potential output levels.

With the gradual reopening of economies in 2021 and 2022,

the output gaps began to show signs of recovery. By 2022,

Germany’s output gap was approaching zero, while France and

Italy demonstrated gradual improvements. In 2023, Spain and Italy

recorded slight positive output gaps of 0.1% and 0.3%, respectively,

indicating modest economic recovery. However, Germany and

France continued to experience negative output gaps, highlighting

ongoing challenges in achieving pre-pandemic potential output

levels.

3 Architecture of the cooperative
policy and macroeconomic model
description

The paper by Semmler and Haider (2018) provides

a model-guided study of the above fluctuations

using the formulation of the following objective

function:

V(π , y) = min
it ,f

j
t

∫ T

0
e−ρt

{

λπ (πt − πs)
2 + λy (1)

[

0.5
(

ySt + yNt − ys
)2

]

+

λl

[

0.5
(

dSt + dNt − ds
)2

]

+λi (it − is)
2
}

dt

Equation 2 is the objective function, which has four quadratic

penalty components: (1) deviation of the inflation rate πt from

the inflation target πs, (2) the average of the South and North

output gaps (ySt and yNt ) from the EU-level output gap ys, (3) the

deviation of the averaged public debt of South (dSt ) and North

(dNt ) from the Euro area public debt target, and (4) element is the

deviation of the interest rate from equilibrium interest rate, is. The

objective function is to be minimized with regards to interest rate

and fiscal surplus. In other words, interest rate and fiscal surplus

trajectory have to be chosen in a way that inflation rate, output,

interest rate, and debt deviation from the targets are minimal.

Given optimization problem contains a decision horizon T, over

which the total cumulative cost should be minimized.

The dynamic constraints for the dynamic macroeconomic

optimization problem are the following:

π̇ = α1πt + α2

(

0.5
(

ySt + yNt
)

− ys
)

− πs (2)

ẏS = β1y
S
t − β2

(

it − πt − rn
)

− f St − β3

(

f St
)2

(3)

ẏN = β1y
N
t − β2

(

it − πt − rn
)

− fNt − β3

(

fNt
)2

(4)

ḋS = γ1
(

dSt − ds
)

− f St + ǫSt (5)

ḋN = γ1
(

dNt − ds
)

− fNt + ǫNt (6)
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TABLE 1 Parameter descriptions and values.

Parameter description Parameter
value

Penalty on the deviation of inflation from the target πs λπ

Penalty on the deviation of output from the euro-area

output gap ys

λy

Penalty on the deviation of public debt from the euro-area

public debt target ds

λl

Penalty on the deviation of the interest rate from the steady

state interest rate is

λi

Reaction coefficient in the Phillips curve equation α1 > 0,α2 > 0

Reaction coefficients in the output gap dynamics β1 ,β2 ,β3 > 0

Mean-reversion parameter in the debt evolution equations γ1 < 0; or > 0

(depending on

stable and

unstable

regimes,

respectively)

Shock variables in the debt evolution equations ǫSt , ǫ
N
t

Decision horizon for the optimization problem T

Natural rate of interest rn

Equation 2 describes the Phillips curve: It is the rate of

change in prices in the euro area, which depends on the current

inflation rate and the deviation of the output gap from the target.

Equations 3, 4 describe how output gaps change over time, which

is influenced by the present-level output gaps in both the South and

North, as well as the discrepancy between the real interest rate and

the natural interest rate, denoted as rn.

As for the Equations 5, 6, they describe the rate of change of

the debt in South and North, which depend on the deviation of

debt levels from public debt targets. The rate of change in debts

also depends on the term of fiscal consolidation f
j
t , which according

to Semmler and Haider (2018) reflects budget consolidations and

fiscal deficits. Table 1 provides an overview of the parameter

descriptions and their corresponding value ranges.

The Parameter which require more careful consideration in

terms of public management is γ1, which is unique coefficient

for the South and North debt equations. First, the value of γ1

coefficients should be <0 (and absolute value should be <1),

in order to make sure the mean reverting character of the debt

equations is obtained. Considering this defined range of the γ1

coefficient, debt equation will be stable even in the scenario, when

the fiscal surplus equals to 0. Second within the framework of the

differential Equations 5, 6, it is assumed that the γ1 coefficient is

positive when r > g, with r the actual interest rate, resulting in debt

instability in the sense of Blanchard (2019). This instability is often

addressed through austerity measures, requiring f St and fNt to take

positive values, having a negative sign in front of them.

The difference between economic growth (g) and interest rates

(specifically, long-term government bonds) (i) affects the public

debt dynamics. According to Blanchard (2019), when r − g <

0, public debt may not endanger fiscal stability, and also welfare

cost could be limited. When r < g governments can sustain

higher levels of debt without need to raise taxes or cut spending,

specifically, governments can run fiscal deficits and simultaneously

face decreasing rate of public debt to gdp ratio (De Grauwe and Ji,

2019).

The public debt accumulation equation can be represented

according to Blanchard (2019) as:

Bt

Yt
−

Bt−1

Yt−1
= (r − g) ·

Bt−1

Yt−1
+

Gt − Tt

Yt
(7)

where:

• Bt
Yt

is the public debt-to-GDP ratio at time t,

• r is the average interest rate on public debt,

• g is the nominal GDP growth rate,

• Gt−Tt
Yt

is the primary deficit as a percentage of GDP.

Equation 7 indicates that there are two sources driving the

dynamics of the public debt-to-GDP ratio: (i) condition of r < g

(giving rise to a negative γ1), and (ii) given a primary deficit (or

small or zero surplus): if r − g > 0, public debt-to-gdp ratio

will grow, exhibiting a positive γ1, unless the government primary

surplus is high enough to counteract the debt growth. The results of

the varying γ1 will be demonstrated in simulations, via employing

NMPC and Deep Reinforcement Learning algorithm, described in

the next section. It should be noted that differential Equations 5, 6

are reparametrized and modified versions of Equation 7, presented

in structural form. Specifically, r − g is reparameterized as γ1.

Additionally, a debt target is introduced, and instead of the primary

deficit, the concept of fiscal surplus is used.

4 NMPC and reinforcement learning
algorithms

Motivation for the section is to describe two algorithms, which

we use to solve the macroeconomic model given in the previous

section, these are: Non-linear Model Predictive Control and Deep

Reinforcement Learning Algorithm, specifically, Soft Actor-Critic

(SAC).

Historically, the algorithms we use originated from different

research paradigms: the first from control theory, the latter from

computation science. In his work Bertsekas (2024) identifies several

similarities, between model predictive control and reinforcement

learning algorithms, which is given below (Bertsekas, 2024). One

similarity is that both MPC and some versions of RL are based on

the principles of dynamic programming which is a mathematical

optimization method used for solving complex problems by

breaking them down into simpler subproblems. According to

Bertsekas in MPC, dynamic programming principles are employed

to solve a sequence of optimization problems over a finite horizon,

where each solution provides an optimal control action based on

the current state and predicted future states of the system. In

principle, this is similar to the methods used in some versions of

RL, where iterative techniques, such as value iteration and policy

iteration, are employed to compute optimal actions that maximize

expected cumulative reward over time (Bertsekas, 2022). Another

similarity, is the use of sampling methods, for policy update and

usage of iterative methods for policy update. In the context of
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MPC, policy is updated by solving optimization problem on the

given horizon, via control action implementation. In the context

of RL, policy update is implemented via sampling or simulation.

Specifically, RL does so via generating possible future values

of paths and maximizing expected future rewards considering

different expected returns (Bertsekas, 2020).

4.1 NMPC

Non-linear Model Predictive Control (NMPC) is an

optimization method developed for non-linear systems (Grüne

and Pannek, 2017), and it is based on the respective solution of the

control problems, given finite decision horizon (Johansen, 2011).

Here we summarize, the idea of NMPC based on the works of

Grüne and Pannek (2017) and Grüne et al. (2015). The discrete

version of the problem can be described as follows: consider a

system with its state represented by xn at discrete time points tn.

The aim is for xn to follow an optimal reference trajectory, xrefn , as

defined in Grüne and Pannek (2017). To achieve this, the state xn
is controlled using an input un, which is given in feedback form,

un = µ(xn). The function µ maps the state x ∈ X to the control set

U.

Non-linear Model Predictive Control (NMPC) has the

following form:

xn+1 = f (xn, un)

where f (xn, un) is a non-linear function that governs how the

system transitions from state xn to the next state xn+1, based

on the control input un. This forms the basis for the control

approach under consideration. The optimal control problem can

be described as follows: the objective is to minimize a cost function

J(x0, u(·)), where x0 represents the initial state. The cost function is

expressed as the sum of stage costs over a time horizon of N steps,

formulated as:

J(x0, u(·)) : =

N−1
∑

k=0

ℓ(xk, uk),

where each stage cost ℓ(xk, uk) is defined as:

ℓ(xk, uk) = ‖xk‖
2 + λ‖uk‖

2.

In this expression, the stage cost ℓ(xk, uk) penalizes deviations

of the system state xk from a reference trajectory, while also

accounting for the control effort uk. The parameter λ weights the

balance betweenminimizing the state error and limiting the control

effort.

Furthermore, we can also formulate a related control problem

involving the maximization of a discounted performance measure

JN(x0, u), represented by:

max
u∈U

JN(x0, u) where JN(x0, u) : =

N−1
∑

k=0

βkg(xk, uk).

In this case, βk is a discount factor applied at each time step

k, and g(xk, uk) represents the stage performance criterion, which

depends on both the system state xk and the control input uk. The

goal here is to maximize the cumulative discounted performance

over the finite control horizon N (Grüne et al., 2015).

4.2 Basic description of reinforcement
learning

Reinforcement learning is part of Artificial Intelligence, which

is about “learning from interaction” (Sutton and Barto, 2018, p. 1).

The Reinforcement Learning family of algorithms provide tools to

for learning optimal policy in a sequential decision-making set-up.

Optimality of the policy means choosing the policy that maximizes

cumulative rewards. Before moving on describing the particular

algorithm from the Deep Reinforcement Learning family, we give

a simple graphical example, which describes the basic formulation

of reinforcement learning and also provides a description of key

concepts. For this, we use the graphical representation from Russell

and Norvig (2010, p. 832) to Zhao (2024).

The plot in Figure 6 illustrates two simple gridworld examples,

which serve as representations of the reinforcement learning (RL)

concepts described in Box 1 above. Each gridworld consists of

nine distinct states. Policies are illustrated using arrows. The

gridworlds are populated with intermediate rewards, which can

be either negative or positive. Both policies are deterministic, as

the probability of taking a specific action given a state is one, as

indicated by the arrow directions. The state s9 serves as the terminal

state. For instance, the trajectory in the first gridworld, assuming

the agent starts at s1, will be a collection of state-action-reward

triplets leading to the terminal state s9. The policy represented by

the red arrows in the first gridworld is superior to that of the second

gridworld, as it yields a higher total reward.

In the taxonomy of the Reinforcement Learning from the

perspective of policy optimization there are two major approaches

which are widely adopted: (i) value-based methods and (ii) policy-

based methods. These approaches use function approximations,

unlike the classical reinforcement learning models which are

based on a tabular approach. Function approximations are

important given inefficiencies related to tabular representations

under complex action space (specifically, in terms of memory

requirements and computational complexity) (Ding et al., 2020).

Value-based methods are centered around the concept of learning

value functions, which estimate the cumulative reward that an

agent can achieve starting from a given state and taking a specific

action in a state. These methods seek to determine the optimal

policy indirectly by first finding the optimal value function. Most

prominent algorithms from the family of value-based methods are

Q-learning and Deep Q-Network (DQN). The two primary types of

value functions used in this approach are the state value function,

Vπ (s), and the action value function, Qπ (s, a). The state value

function estimates the expected return starting from state s and

following a particular policy π . Formally, it is defined as:

Vπ (s) = Eπ

[

∞
∑

t=0

γ trt+1 | st = s

]

, (8)
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FIGURE 6

Two gridworld examples demonstrating RL concepts.

where γ ∈ [0, 1) is the discount factor that establishes the present

value of future rewards, and rt+1 is the reward received at time step

t + 1. The action value function, Qπ (s, a), estimates the expected

return for taking an action a in state s and subsequently following

policy π . It is defined as:

Qπ (s, a) = Eπ

[

∞
∑

t=0

γ trt+1 | st = s, at = a

]

. (9)

Value-based methods often employ the Bellman equation to

recursively compute these value functions. The Bellman equation

defines the connection between the value of a state and the values

of its successor states, which is fundamental to algorithms such

as Dynamic Programming, and Temporal Difference learning. On

the other hand DQN approximates action-value functions with

the use of neural networks (Sutton and Barto, 2018). Value-based

methods are useful given they have certain advantages, such as

sample efficiency and low variance. On the other hand one of

the disadvantage of the value-based methods are that they are

not designed for problems which require a continuous action

space (Zhang and Yu, 2020), and in macroeconomics this sort of

problems are common.

In contrast, policy-based methods directly parameterize the

policy and optimize it to maximize the expected cumulative

reward. In other words, the policy update process stops only

when the cumulative reward is maximized (Zhang and Yu, 2020).

These methods do not require an explicit representation of the

value function; instead, they focus on finding an optimal policy

by directly optimizing the parameters that define the agent’s

behavior (Sutton and Barto, 2018). A policy function, denoted

as πθ (a | s), defines the probability of taking action a given

state s under parameter θ . Policy-based methods optimize this

function to maximize the expected reward, which can be achieved

using gradient ascent algorithm. Deep Reinforcement Learning

represents the integration of Reinforcement Learning and function

approximator, which is frequently neural networks (Haarnoja et al.,

2018b). Most prominent ones from the family of policy-based

algorithms are TRPO (Trust Region Policy Optimization), PPO

(Proximal Policy Optimization) and PG (policy gradient methods).

Unlike value-based methods, policy-based methods work well for

the problems, which have continuous action space and also have

advantage in convergence (Zhang and Yu, 2020).

4.3 Soft Actor-Critic (SAC)

Combination of the two types of algorithms in terms of

policy optimization described in the previous section is called

actor-critical algorithms. In this family of algorithms, the actor is

equivalent to a policy under which decisions are being made. On

the other hand, critic is the value function which assesses actions

produced by chosen policy produced by an actor. Usually, policy

and value functions are neural networks (Powell, 2022). Actor-critic

algorithms utilize value-based approach to learn the Q-function,

and the policy-based approach to learn policy function. By doing

so, actor-critic algorithms utilizes advantages of both valued-based

approach in terms of increasing sample efficiency and policy-based

methods for making the algorithm applicable to a continuous

action space (Zhang and Yu, 2020). One of the algorithms from

the actor-critic family of algorithms is Soft Actor-Critic (SAC).

Soft Actor-Critic (SAC) was first introduced by Haarnoja et al.

(2017) as an energy-based reinforcement learning algorithm, and

was further developed in Haarnoja et al. (2018a) and Haarnoja

et al. (2018b). According to the authors, SAC addresses two major
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BOX 1 Summary of key concepts in reinforcement learning.

• State space: the set of all possible states, denoted as S = {si}
n

i=1 . Each state

represents the current situation or condition of the environment.

• Action space: the set of all available actions, denoted as A(si) = {ai}
n

i=1 .

These are the actions the agent can choose from while in a given state.

• Reward: at each time step, the agent receives a reward, represented as a real

number: Rt+1 ∈ R ⊂ R.

• Policy: the policy defines the probability of taking an action a given the

agent is in state s. It is expressed as a conditional probability: π (a | s).

Policies can be either deterministic or stochastic. A stochastic policy means

there may be different probabilities for taking various actions in a given

state.

• Trajectory: a sequence of state, action, and reward triplets that describe the

agent’s path through the environment.

• Agent: the decision-maker that selects actions based on its policy.

• Environment: everything outside the agent can be considered as

environment. The agent interacts with the environment by performing

actions, which may or may not result in transitioning to a different state.

By acting, the agent may transition to a new state and receive feedback in

the form of scalar-valued rewards.

• Goal: the agent’s goal is to maximize the total cumulative reward. If

discounting is applied, the goal is to maximize the expected discounted

return. This is controlled by the discount factor γ (in the macroeconomic

context given in previous section, γ1 is used to represent different

coefficient). The discounted return is defined as:

Gt

.
= Rt+1 + γRt+2 + γ 2

Rt+3 + · · · =

∞
∑

k=0

γ k
Rt+k+1,

whereGt is the expected return, and 0 ≤ γ ≤ 1 is the discount rate, which

regulates rewards got earlier is more valuable than rewards obtained later

(Sutton and Barto, 2018). This parameter is different from "algorithmic

discount factor" λ as discussed in Powell (2022, p. 51).

issues that previous algorithms struggled with: sample efficiency

and the complexity of choosing themost effective hyperparameters.

One of the characteristics of the SAC is that it has two objectives:

maximization of both returns and entropy at the same time. As

the authors of the algorithm put it, the goal is to complete tasks

as successfully as possible and as randomly as possible Haarnoja

et al. (2018b, p. 1). In SAC, “soft” refers to entropy regularization,

which is introduced to encourage exploration. A higher level of

entropy implies a broader range of action choices. The entropy

term helps prevent the stochastic policy from collapsing into a

deterministic one, which is important for avoiding convergence

to suboptimal local optima. If entropy regularization is removed,

SAC effectively reduces to the performance of the TD3 algorithm,

while themechanics of the two algorithms are still different (Sigaud,

2020).

In the context of Deep RL, sample efficiency refers to the

requirement that on-policy algorithms, such as PPO or its

predecessor (TRPO), need new samples for each update. On-policy

methods learn the best value of a policy from the given policy,

and the update entails interactions of the same policy. In other

words, PPO collects trajectories under current policy and updates

policy on the given data. In terms of sample efficiency, it means

that collected data points are used only once for the training. For

the case of Off-Policy algorithms (and there two oft-used: DQN

and SAC), the algorithms learn from experiences collected under

different policies. SAC uses a replay buffer, where it stores past

interactions for training process, which makes it more sample

efficient (Zhang et al., 2020).

SAC is based on the maximum entropy regularizationmethod4,

and here we provide a brief overview based on the paper (Haarnoja

et al., 2018b). The goal of the algorithm is to learn a policyπ (at | st)

that maximizes the expected reward. The augmented objective

function, which includes entropy, has the following form:

π∗ = argmax
π

∑

t

E(st ,at)∼ρπ [r (st , at) + αH (π (· | st))] (10)

The augmented objective function aims to maximize both

the expected return and entropy. α denotes the temperature

parameter, which acts as a weight for entropy (indicating how

much importance is given to entropy compared to the return).

Therefore, if α approaches zero, the entropy-augmented objective

function reduces to the standard RL objective function. For the

optimization, SAC uses two networks: (i) soft Q-function, and

(ii) Policy Network. Q-function network Qθ (st , at) estimates the

expected return by taking action at in a state st under the current

policy πφ . Policy (actor) network πφ (at | st) is parameterized by

φ, and this network represents the policy, mapping states st to

a distribution over actions at . The policy is parameterized as a

Gaussian distribution whose mean and covariance are produced

by a neural network (Zhang et al., 2020). Minimization of the

following cost function, also known as the soft Bellman residual,

provides the parameters for the soft Q-function:

JQ(θ) = E(st ,at)∼D

[

1

2

(

Qθ (st , at) − Q̂ (st , at)
)2

]

, (11)

where:

• Qθ (st , at) is the current estimate of the Q-function,

parameterized by θ .

• Q̂ (st , at) is the soft Bellman backup target.

The cost function (Equation 11) consists of two components:

the current Q-function estimate and the soft Bellman backup

target, which is defined as:

Q̂ (st , at) = r (st , at) + γEst+1∼p

[

Vθ̄ (st+1)
]

.

By substituting the soft value function Vθ̄ , the cost function can

be rewritten as:

JQ(θ) = E(st ,at)∼D

[

1

2
(Qθ (st , at) − (r (st , at) (12)

+γEat+1∼π

[

Qθ̄ (st+1, at+1) − α logπ (at+1 | st+1)
]))2

]

4 Entropy regulates randomness in this context: higher entropy means

higher randomness. For instance, if a coin is fair, the randomness and,

consequently, the entropy will be higher.
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The value function is parameterized by the soft Q-function and

is expressed as:

Vθ̄ (st) = Eat∼πφ

[

Qθ̄ (st , at) − α logπφ (at | st)
]

where α controls the trade-off between reward maximization and

entropy (exploration).

The cost function (Equation 11) is optimized using stochastic

gradient descent. The gradient of the cost function is:

∇̂θ JQ(θ) = ∇θQθ (st , at) (Qθ (st , at) − (r (st , at) (13)

+γ
(

Qθ̄ (st+1, at+1) − α logπφ (at+1 | st+1)
)))

.

Policy network parameters are optimized by minimizing the

following cost function:

Jπ (φ) = Est∼D

[

DKL

(

πφ (· | st) ‖
exp (Qθ (st , ·))

Zθ (st)

)]

,

where DKL represents the Kullback-Leibler (KL) divergence, a

measure of the difference between two probability distributions.

This procedure aligns the policy πφ with the target distribution

defined by the soft Q-function,
exp(Qθ )

Zθ
, where Zθ is the partition

function. While Zθ normalizes the distribution, it does not depend

on φ and can be ignored during optimization.

The objective can be rewritten in the following form:

Jπ (φ) = Est∼D

[

Eat∼πφ

[

α log
(

πφ (at | st)
)

− Qθ (st , at)
]]

. (14)

Here, the term α logπφ(at | st) encourages exploration

by maximizing entropy, while the term −Qθ (st , at) encourages

the policy to choose actions with higher expected returns. The

parameter α is the entropy scaling factor that balances exploration

and exploitation.

To optimize this objective, the SAC algorithm computes its

gradient using the reparameterization trick. It is important to note

that in Equation 14, the expectation is taken over actions. The

reparameterization trick allows to express the sampled actions at
as a deterministic function of noise ǫt drawn from a standard

Gaussian distribution. Because the expectation is now taken

with respect to a fixed noise distribution independent of the

parameters φ, it allows backpropagation through the sampling

process. Specifically, the action is computed as

a = tanh
(

µφ + ǫ · σφ

)

, where ǫ ∼ N (0, 1),

and the expectation is reformulated over ǫ instead of a (Sigaud,

2020). In the context of continuous action spaces, this

reparameterization provides a lower-variance gradient estimator

for training the policy network (Zhang et al., 2020).

The final gradient of the objective is:

∇̂φJπ (φ) = ∇φα log
(

πφ (at | st)
)

+
(

∇atα log
(

πφ (at | st)
)

−∇atQθ (st , at)
)

∇φ fφ (ǫt; st) . (15)

Here, at = fφ(ǫt; st) is the reparameterized action, where

fφ maps the input noise ǫt to the action space based on the

policy network’s parameters. The term ǫt is a noise vector

sampled from a Gaussian distribution N (0, I). The first term,

∇φα log
(

πφ (at | st)
)

, accounts for the direct dependency of the

policy on φ. The second term includes gradients with respect

to actions at , backpropagated through the policy network. This

formulation ensures that the gradient computation respects

both the stochastic nature of the policy and the dependencies

introduced by the Q-function. As mentioned at the beginning

of this section, the SAC algorithm is appealing due to its ability

to automatically tune hyperparameters. Specifically, the entropy

coefficient α, which regulates the exploration-exploitation trade off,

is adjusted dynamically. To explain the process of automatic tuning,

we adopt a simplified and intuitive approach, as presented in

Morales (2020).

The objective function for α is given as:

J(α) = Es∼U(D),â∼π

[

α(H+ logπ(â | s;φ))
]

. (16)

In this process, states are sampled from the replay buffer, and

actions are drawn from the policy. The negative of this objective

is minimized to maximize the weighted sum of the target entropy

H and the log probability of the policy, scaled by α. This dynamic

adjustment ensures an optimal balance between exploration and

exploitation (Zhang et al., 2020).

5 Comparative analysis of NMPC and
SAC simulation results

In this section we provide a comparative analysis of the

NMPC and SAC simulations results. Firstly, we analyze baseline

simulation results, and next we show different scenarios for

checking robustness in terms of initial values and varying

parameters. We present both state and control variable in the

following graphs.

5.1 SAC simulation results

For the simulation process, we use the environment built on

the equations described in the third section of the paper. To

implement the SAC algorithm, we used a custom SAC agent

developed in Python and, separately, the stable-baselines3

implementation (Raffin et al., 2021). As shown in Figure 7, inflation

demonstrates a controlled trajectory that remains within relatively

stable bounds. Starting with an initial value 0.06, inflation initially

exceeds the target of π∗ = 0.02, however, the SAC algorithm

effectively guides policy adjustments, causing inflation to steadily

decline and move closer to the target. During the middle phase

(time steps 6–20), inflation dips below the target, reaching slightly

negative values, which may indicate a temporary deflationary

pressure. In the final phase (time steps 21–30), inflation gradually

rises and moves toward the target of 0.02. The inflation trajectory

highlights the SAC algorithm’s effectiveness in achieving price

stability. While inflation starts at a higher level, it is progressively

brought closer to the target, showcasing the algorithm’s capacity to

regulate inflation within normal bounds over time.
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FIGURE 7

Comparison of state variables (left) and control variables (right) over time.

The output gaps for both the North and South regions

eventually stabilize near the target of zero, demonstrating

satisfactory policy outcomes. However, the South’s greater

variability underscores the need for enhanced measures to improve

economic stability and resilience to shocks. In the North, the

output gap begins positively at around 0.1, indicating a slight

economic overheating relative to the potential output. This quickly

stabilizes, hovering near zero by time step 5. In the final phase (time

steps 21–30), the output gap peaks briefly at 0.25 around time step

22, before returning back closer to zero by time step 30. Overall,

the North’s output gap is well-managed throughout the period,

with deviations from zero being relatively small and short-lived.

In contrast, the South’s output gap starts close to zero but exhibits

slightly larger fluctuations than the North during the initial phase

(time steps 0–5), reaching a minimum of ∼ −0.1 and peaking

briefly around 0.05. During the middle phase (time steps 6–20),

the South shows higher volatility compared to the North. In the

final phase (time steps 21–30), the South’s output gap experiences

notable swings, peaking at around −0.2 before ultimately trending

toward zero. Despite this volatility, the region gradually aligns with

the target by the end of the period, demonstrating the effectiveness

of policy adjustments over time.

The debt trajectories for both the North and South regions

start above the target of d∗ = 0.6. The South region’s debt

level is higher, reflecting the economic realities of Southern EU

countries in that initial period, which often experienced greater

fiscal pressures compared to their Northern counterparts. While

the South’s debt peaks above 0.75 at the beginning, yet, the debt in

the South adjusts, while the North’s debt starts slightly above 0.65

and then moves down.

Throughout the observed period, the SAC algorithm

successfully manages to reduce debt levels in both regions.

For the South, the debt trajectory exhibits volatility, initially

declining sharply, then oscillating before gradually moving toward

the target. In the final phase, the South’s debt moves closer to

d∗ = 0.6, although it remains slightly above the target. In the

North, the debt trajectory follows a smoother downward trend.

After a brief initial decline, the debt level stabilizes and converges

below the target.

Both control variables are used actively to move the state

variables closer to their targets. Until time step 17, monetary

policy acts aggressively, possibly to bring the inflation rate closer

to its target, before it begins to decline. The movement of fiscal

FIGURE 8

Episode rewards and moving average.

balance plays an important role in controlling both output gaps

and debt dynamics. In the final steps, fiscal policy for both the

North and South adheres to the EU fiscal policy rules, but with

some fiscal consolidation policies. For the South, fiscal policy is

slightly negative, while for the North, it stabilizes around 2%. This

alignment demonstrates the effectiveness of the SAC algorithm in

maintaining compliance with fiscal rules while targeting economic

stability.

Figure 8 demonstrates how the SAC algorithm effectively

stabilizes rewards over time, which shows successful policy

optimization. Until the 50th episode, cumulative rewards

experience significant fluctuations, which is expected given

the complexity of the macroeconomic environment and the

existence of a continuous action space. However, after 70 episodes,

the rewards stabilize closer to the target (minimizing negative

rewards), indicating a successful outcome and highlighting

the effectiveness of the SAC algorithm in achieving both good

exploration and debt stabilization results (although with some

fiscal consolidation cost). Given this observation, the number

of episodes was restricted to 200, as in several simulations, an

excessively high number of episodes led to instability in the

algorithm’s performance. Also note that the parameter γ1 is kept

negative for baseline model (assuming that r < g) which will be

change below, see section 6.
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FIGURE 9

State variables under NMPC: inflation, output gap, and government debt dynamics.

FIGURE 10

Interest rate and fiscal policy dynamics under NMPC.

5.2 NMPC simulation results

For the simulation of the control problem, we use do-mpc,

a tool in Python developed by Fiedler et al. (2023). do-mpc is a

tool for linear, non-linear, and robust model predictive control.

The results under the NMPC algorithm demonstrates smoother

and well-controlled trajectories, reflecting its deterministic nature

and ability to optimize policy decisions without the randomness

inherent in stochastic methods like SAC. Below is a detailed analysis

of both the control and state variable trajectories.

Assuming again that r < g and thus a positive γ1as shown

in Figure 9, the NMPC algorithm achieves stable adjustments

for the interest rate and fiscal policy. The interest rate starts

at zero and remains stable for the first 15 time steps. After

time step 15, the interest rate begins to rise steadily, reaching

∼ 0.014 by time step 30. This controlled increase highlights

NMPC’s capacity to manage monetary policy effectively without

introducing abrupt changes. Fiscal policy adjustments are also

smooth, with both the North and South regions converging to

steady levels by the end of the simulation. Fiscal policy for the

North stabilizes slightly above zero, around 0.02, reflecting a slight

surplus. For the South, fiscal policy remains marginally negative,

around −0.02, meaning fiscal consolidation, and likely supporting

debt stabilization and output gap reduction. As in the case of the

SAC these adjustments are in line with some the EU actual fiscal

policies.

Figure 10 demonstrates the trajectories of key state variables—

inflation, output gaps, and government debt—under NMPC.

We used the same initial values for the state variables under

both SAC and NMPC. The inflation rate starts at ∼ 0.06,

well above the target of 0.02. The algorithm reduces inflation

in the early phase, reaching a minimum close to zero by

time step 10. Afterward, inflation gradually converges toward

the target, reaching ∼0.02 by time step 30. As with the

SAC algorithm, the output gap remains at a relatively less

controllable state variable under NMPC. The output gap for the

North stabilizes at ∼0.87, while for the South, it stabilizes at

around 0.8. This indicates that while NMPC provides smoother
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FIGURE 11

Debt South (dS) and Debt North (dN) dynamics under positive γ1 settings: on the left, NMPC results; on the right, SAC results.

trajectories, achieving precise control over the output gap remains

a challenge.

Government debt levels show consistent and steady declines in

both regions. The South starts with a higher debt-to-GDP ratio,

exceeding 1.1. Debt declines smoothly, converging closer to 0.7 by

the end of the simulation. The North, with an initial debt level of

0.7, achieves faster stabilization and converges toward the target

of 0.6. Across multiple simulations and under varying weights, the

results demonstrate that SAC is more effective at reducing debt

below the target level in both the South and North regions under

the stable (baseline) scenario. Specifically, as shown in Figure 7,

the debt indicator for the South reaches the target level, while the

indicator for the North falls below it. In contrast, for the NMPC

version shown in Figure 10, while the algorithm successfully brings

the Norths debt indicator close to the target, it struggles to achieve

the same for the South.

The NMPC framework excels in generating smooth and

predictable trajectories for all variables. The interest rate and fiscal

policies for both regions are adjusted with minimal volatility,

ensuring compliance with macroeconomic objectives and EU

fiscal policy rules. Inflation, output gaps, and debt trajectories

converge steadily toward their respective targets, reflecting effective

policy management. Overall, the deterministic nature of NMPC

ensures precise and stable economic adjustments, making it a

robust tool formacroeconomic stabilization compared to stochastic

alternatives like SAC.

While NMPC provides more stable and smooth trajectories,

the inherent fluctuations in the SAC results may offer a more

realistic depiction of how economic variables evolve in the face

of ongoing policy adjustments, market reactions, and internal and

external shocks. The fluctuations seen in the SAC results may

illustrate how the algorithm navigates these trade-offs, adjusting

policies dynamically in response to changing priorities, conditions

and shocks. Economic policies also often have delayed effects (Chen

et al., 2022). The fluctuations in the SAC outcomes could reflect

these lags in policy impact, where initial policy actions cause

immediate fluctuations, followed by further adjustments as the

delayed effects manifest. The SAC results demonstrate more short-

term volatility, which can reflect real-economies situations where

economic indicators such as inflation and output gaps do not adjust

smoothly but instead fluctuate due to immediate market reactions,

consumer sentiment, investor behavior and external shocks.

The SAC algorithm relies on reinforcement learning, which

involves with continuous adaptation and learning from interactions

with the environment. This method can inherently capture the

trial-and-error nature of economic policy making, where decisions

are made based on current conditions and then adjusted as new

information becomes available. The resulting fluctuations can

mirror the constant adjustments policymakers make in response to

economic indicators. However, NMPC requires a comprehensive

and accurate model of the economic system’s dynamics, which

can be a limitation when dealing with highly complex or evolving

environments. The quality of the control actions generated by

NMPC is directly tied to the accuracy of the underlying model.

In cases where the model is incomplete or fails to capture certain

non-linearities or stochastic elements, NMPC’s performance may

degrade.

6 Debt dynamics under SAC

In this section, we present the debt dynamics under different

scenarios of r − g, specifically focusing on the varying signs of γ1,

which regulate the debt dynamics for the North and South regions,
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in the face of different debt equilibria. From Blanchard’s debt

equation discussed earlier, debt sustainability is achieved, facing

a good debt equilibrium, when the interest rate is lower than the

growth rate, and the primary balance is zero or close to zero.

In the context of the differential Equations 5, 6, we assume

that the γ1 coefficient will be positive, i.e., when r > g,

leading to debt instability. This instability is usually pursued and

mitigated through austerity policies, meaning f St and fNt must be

positive. Here, we demonstrate this assumption using the SAC and

NMPC algorithms for the macroeconomic environment described

in previous sections. The Figure 11 shows the case where γ1 is

identical for both the South and North regions and is positive.

As shown in Figure 11, the debt dynamics differ significantly

depending on whether the γ1 coefficient is negative or positive.

On the left, we observe the NMPC results, which demonstrate that

under a positive γ1, the algorithm is no longer able to stabilize the

debt level close to the target. Moreover, for the South, the debt-to-

GDP ratio follows an explosive trajectory. On the right, the SAC

algorithm results are shown under the same parameter setting.

Specifically, after an initial drop, the debt of the South surges to 125

percent by the end of 30 steps, while in the North, debt increases

to over 150 percent by the end of the episode. These patterns

illustrate how the sign of γ1 contributes to stability under Deep RL

simulations and further support assumptions in macroeconomic

literature regarding debt dynamics.

7 Conclusion

With this paper, we contribute to the literature on sovereign

debt control in Europe, simulating debt dynamics in Eurozone

countries and the application of deep reinforcement learning

in macroeconomics. To our knowledge, this paper is the first

attempt to apply machine learning in the form of the Soft Actor-

Critic (SAC) algorithm in the context of a macroeconomic policy

problem. Specifically, we present a novel approach to solving

a multi-objective macroeconomic problem aimed at minimizing

the deviations of multiple macroeconomic state variables from

their target levels. Our approach utilizes Deep Reinforcement

Learning alongside an established Non-linear Model Predictive

Control (NMPC) framework from the macroeconomic literature

to minimize deviations in the inflation rate, output gap, and debt

levels under a cooperative scenario.

We further demonstrate that, while NMPC provides more

stable and smooth trajectories, the inherent fluctuations observed

in SAC results may offer amore realistic depiction of how economic

variables evolve in response to ongoing policy adjustments, market

reactions, and internal and external shocks and disruptions. These

fluctuations illustrate how the SAC algorithm dynamically adjusts

policies to navigate trade-offs, responding to changing priorities,

conditions and shocks. Economic policies often exhibit delayed

effects, and the SAC results demonstrate short-term volatility,

reflecting real-economies situations where economic indicators

such as inflation and output gaps do not adjust smoothly but

instead fluctuate due to immediate market reactions, consumer

sentiment, investor behavior and shocks and disruptions through

local or global news (or misinformation).

The SAC algorithm, which belongs to deep reinforcement

learning algorithm family, involves continuous adaptation and

learning from interactions with the environment. This method

inherently captures the trial-and-error nature of economic policy

making, where decisions are made based on current conditions

and subsequently adjusted as new information becomes available.

The resulting fluctuations could mirror the constant adjustments

policymakers make in response to evolving economic indicators

and information.

Additionally, we explore how changes in parameters regulating

debt dynamics—specifically those related to the difference between

the interest rate and growth rate—can cause instability in

debt trajectories. Our results highlight how the sign of γ1

influences stability in Deep RL simulations and further support

macroeconomic literature assumptions regarding debt dynamics.

Finally, we emphasize the importance of utilizing modern technical

tools, including simulations powered by machine learning, to

address macroeconomic management challenges. We hope this

paper contributes meaningfully to the ongoing academic discussion

in this direction.
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