3 frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Mario Pavone,
University of Catania, Italy

REVIEWED BY
Muhammed Basheer Jasser,

Sunway University, Malaysia

Ayah Ahmed,

University of Zakho Faculty of Science, Iraq

*CORRESPONDENCE
Meghana Kshirsagar
Meghana.Kshirsagar@ul.ie

RECEIVED 01 February 2025
ACCEPTED 29 September 2025
PUBLISHED 21 October 2025

CITATION

Kshirsagar M, Rathi V and Ryan C (2025)
Meta-learner-based frameworks for
interpretable email spam detection.
Front. Artif. Intell. 8:1569804.

doi: 10.3389/frai.2025.1569804

COPYRIGHT

© 2025 Kshirsagar, Rathi and Ryan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Artificial Intelligence

TYPE Original Research
PUBLISHED 21 October 2025
pol 10.3389/frai.2025.1569804

Meta-learner-based frameworks
for interpretable email spam
detection

Meghana Kshirsagar*?*, Vedant Rathi* and Conor Ryan'?

tBiocomputing Developmental Systems Research Group, Department of Computer Science and
Information Systems, University of Limerick, Limerick, Ireland, 2Lero, Research Ireland Research Centre
for Software, Limerick, Ireland, *University of Illinois Urbana-Champaign, Champaign, IL, United States

Introduction: With the increasing reliance on digital communication, email
has become an essential tool for personal and professional correspondence.
However, despite its numerous benefits, digital communication faces significant
challenges, particularly the prevalence of spam emails. Effective spam email
classification systems are crucial to mitigate these issues by automatically
identifying and filtering out unwanted messages, enhancing the efficiency of
email communication.

Methods: We compare five traditional machine-learning and five deep-
learning spam classifiers against a novel meta-learner, evaluating how different
word embeddings, vectorization schemes, and model architectures affect
performance on the Enron-Spam and TREC 2007 datasets. The primary aim is to
show how the meta-learner’'s combined predictions stack up against individual
ML and DL approaches.

Results: Our meta-learner outperforms all state-of-the-art models, achieving
an accuracy of 0.9905 and an AUC score of 0.9991 on a hybrid dataset that
combines Enron-Spam and TREC 2007. To the best of our knowledge, our
model also surpasses the only other meta-learning-based spam detection model
reported in recent literature, with higher accuracy, better generalization from
a significantly larger dataset, and lower computational complexity. We also
evaluated our meta-learner in a zero-shot setting on an unseen real-world
dataset, achieving a spam sensitivity rate of 0.8970 and an AUC score of 0.7605.
Discussion: These results demonstrate that meta-learning can yield more
robust, bias-resistant spam filters suited for real-world deployment. By
combining complementary model strengths, the meta-learner also offers
improved resilience against evolving spam tactics.

KEYWORDS

machine learning, deep learning, spam email detection, natural language processing,
classification, meta-learner, algorithmic bias, data bias

1 Introduction

The growing popularity of email in the modern era has been fueled by an increase
in internet usage and its universality, connecting people across the world, and reliability,
permitting the distribution of ideas swiftly (International Telecommunication Union,
2023). According to one report, daily email traffic has grown by more than 4% yearly and
the number of users by 3%. Current projections estimate that there will be at least 4.5 billion
email users in 2025 (The Radicati Group, 2021).

However, with the rise of rapid and convenient communication comes significant
risks. One of the main risks has been the growth of spam emails, unsolicited emails
sent in bulk, which can take various forms, including phishing, malware distribution,
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frauds, and commercial advertising (Ghourabi and Alohaly,
2023). Spam (phishing) emails can be especially dangerous if
they lead people to share private information like credit card
numbers (Butt et al., 2023) or viruses that can hack into desktops
and steal sensitive data (Ayo et al, 2024). In particular, spear
phishing poses a heightened threat, as these targeted attacks
use personalized messages to deceive individuals into divulging
sensitive information. Often, these emails are crafted to look like
they come from someone the recipient knows personally (Badman,
2023). These dangers can result in significant financial losses to
individuals and organizations. One study estimates that Americans
suffer costs of approximately $20 billion per year because of spam,
while spammers collect global revenues of about $200 million
yearly (Rao and Reiley, 2012).

Costs incurred due to spam emails will continue to grow as the
traffic of emails sent increases yearly. Spam emails sent daily have
increased from 2.4 billion in 2002 to 158.4 billion in 2023 (Almeida
and Yamakami, 2012; Statista, 2024), reflecting a remarkable
geometric growth rate of 22.1% annually. Moreover, while general
spam emails are not inherently directed toward any specific race
or gender, the content of such emails often caters to working-
age males, which may influence the feelings people of different
demographics have toward these emails as the content may be
less relevant to certain groups (Grimes et al., 2007). Nonetheless,
certain spam, such as phishing, may be especially targeted toward
senior individuals due to their perceived vulnerability stemming
from potential unfamiliarity with the technology and their higher
potential for having larger wealth (Lin et al., 2019).

Consequently, spam detection techniques have gained
significant traction, as spammers employ increasingly sophisticated
methods to limit people’s abilities to distinguish genuine content
(termed ham) from spam (Ayo et al, 2024). Most of these
spam detection techniques can be categorized as either machine
learning-based or deep learning-based. Of machine learning-based
methods, frequently used models include Random Forest (Abkenar
et al.,, 2021; Vinitha and Renuka, 2019; Ageng et al., 2024), Support
Vector Machine (Khamis et al,, 2020; Ma et al., 2020), Naive
Bayes (Ma et al., 2020; Zraqou et al., 2023), XGBoost (Omotehinwa
and Oyewola, 2023; Dhar et al., 2023), and more. Common deep-
learning based approaches include using individual models or a
combination of the following: CNN (Yang et al., 2019; Metlapalli
et al,, 2020; Rahman and Ullah, 2020), LSTM (Yang et al., 2019;
Metlapalli et al., 2020; Basyar et al., 2020; Poomka et al., 2019),
GRU (Basyar et al.,, 2020; Poomka et al., 2019; Wanda, 2023),
BiLSTM (Rahman and Ullah, 2020; Abayomi-Alli et al., 2022), etc.

Despite these recent advancements in spam detection
techniques, substantial challenges persist, limiting the
interpretability and generalizability of these models (Gilpin
et al, 2018). In particular, many existing approaches suffer
drawbacks related to data or algorithmic biases. Data bias refers to
data that is limited in certain ways, preventing the sampled data
from accurately portraying population trends. For example, spam-
detecting models trained on only one dataset (Lee et al., 2010; Faris
etal., 2017) often fail to capture spam characteristics across diverse
sources, limiting the model’s ability to be applied in real-world
contexts. Thus, data biases can often cause algorithmic bias, which
refers to systematic errors in computer systems resulting in unfair
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(biased) outcomes (Kordzadeh and Ghasemaghaei, 2022). For
instance, spam-detecting models trained with only one source may
fail to detect spam emails with varying contexts, thereby exhibiting
a bias toward certain types of emails over others.

To contribute to growing research and address existing
issues in spam-filtering techniques, in this study, we conduct
a comprehensive evaluation of both machine learning and
deep learning-based spam detection techniques. We compare
five different ML models (Random Forest, Support Vector
Machine, Naive Bayes, XGBoost, Logistic Regression) and five
DL models (LSTM, BiLSTM, GRU, BiGRU, CNN). We compare
two feature-selection algorithms for ML-based techniques, TE-IDF
vectorization and Bag of Words vectorization. On the deep learning
side, we compare two types of word embedding algorithms,
GloVe and Word2Vec, and two types of architectures, models
with attention vs. models without attention. Finally, we propose
a meta-learner model that combines the predictions of all ML
models and outperforms state-of-the-art models. We instantiate
these pipelines on three datasets: Enron-Spam, TREC 2007, and
a hybrid dataset combining the former two. The meta-learner is
also tested on an unseen real-world dataset. Our primary research
contributions are:

e Conducting a comprehensive evaluation of different spam
detection algorithms;

e Comparing model performances with different feature-
selection approaches, word embeddings, and architectures;

e Evaluating results on a hybrid dataset combining multiple
constituent datasets to mitigate data bias;

e Proposing a new meta-learner model and comparing it with
state-of-the-art models on key performance metrics;

e Testing in a zero-shot setting to evaluate the generalizability
and robustness of the spam detection models.

The rest of the paper is structured as follows: Section 2
summarizes related literature (2.1) which also develops email
spam detection techniques, the mathematical bases (2.2) of the
algorithms employed in our research, the data methodology (2.3),
and our experimental setup (2.4). Section 3 covers our study results,
and finally, Section 4 explores the real-world relevance of our
research and promising future steps.

2 Materials and methods
2.1 Related work

This section delves into the related literature concerning
spam classification in machine learning and deep learning
methodologies. We aim to identify trends, gaps, and diverse
approaches that inform our research. The selected papers were
chosen based on their relevance to the scope of our study, the
datasets they evaluated, and/or the classification approaches they
employed. Specifically, we focused on works that address email
spam classification, as this is the primary focus of our research. By
including studies that utilize benchmark datasets such as Enron-
Spam, TREC 2007, and SpamAssassin, we ensure a fair and
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consistent comparison with our proposed methods. Additionally,
we prioritized papers that explore a variety of techniques, including
traditional machine learning models, deep learning architectures,
hybrid approaches, and novel methodologies, as well as ensemble
methods, feature engineer techniques, and transformer-based
models, to provide a comprehensive overview of the field. Metrics
of the following models which used Enron-Spam or TREC 2007
datasets are omitted in this section as their performances are
compared in the results section, Subsection 3.4. To provide a
structured and comprehensive overview of the existing literature,
we organize the related works into six primary categories based on
their methodologies and contributions.

2.1.1 Hybrid and attention-based models
(2023) proposed a hybrid
classification model using CNNs, bidirectional GRUs, and attention

Zavrak and Yilmaz spam
mechanisms. Attention at word and sentence levels captured
semantic relationships, with two architectures tested: a standard
CNN and a temporal convolutional network (TCN). Evaluated
on TREC 2007, GenSpam, SpamAssassin, Enron-Spam, and
LingSpam, experiments included (a) same-dataset training/testing
(five experiments) and (b) cross-dataset evaluation, training on
one dataset and testing on the other four (20 experiments).

Krishnamoorthy et al. (2024) developed a hybrid DNN-
BiLSTM model for Enron-Spam. Using TF-IDF features and
handcrafted metrics like word counts and capitalization, the model
trained with triple cross-validation and outperformed multiple ML
and DL baselines across all metrics.

Alsudani et al. (2024) used crow search optimization (CSO)
to tune weights in a hybrid feedforward neural network-
LSTM. Inspired by crows’ food-storing behavior, CSO improved
learning efficiency, achieving strong results on the SpamAssassin
Public Corpus.

2.1.2 Transformer-based and pre-trained
language models

Guo et al. (2023) used BERT embeddings with traditional
classifiers for spam detection. Embeddings from a pre-trained
BERT model on Enron-Spam and Spam or Not Spam were
used with SVM, KNN, Random Forest, and Logistic Regression,
with Logistic Regression achieving the highest AUC, F-score,
and precision.

Tida and Hsu (2022) proposed a universal spam detection
model based on BERT Base with 12 encoders and 110M parameters.
Pre-trained weights reduced computation, and additional linear,
dropout, and ReLU layers were added. Tested on Enron-Spam,
SpamAssassin, LingSpam, and SpamText, extensive tuning of batch
sizes and splits showed best results with a batch size of 128.

Uddin and Sarker (2024) applied finetuned DistilBERT, a
lightweight BERT variant, for phishing email classification. Using
20,000 emails with oversampling to handle imbalance, they
tested various batch sizes, learning rates, and epochs. LIME and
Transformer Interpret improved explainability by highlighting
token-level contributions in predictions.
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2.1.3 Feature engineering and dimensionality
reduction

Wang et al. (2021) introduced a manifold learning-based
approach to improve spam detection efficiency. Using the Laplacian
score to select key features and applying the LEP algorithm
for dimensionality reduction, they improved SVM accuracy and
reduced computation. On Enron-Spam, GenSpam, and PU1 (70—
30 split), performance matched baselines but with faster processing.

Chu et al. (2020) proposed a two-phase spam detection
framework using the C4.5 decision tree. Email headers were
analyzed first, then bodies if uncertain, using keyword tables for
spam and non-spam mapping. Evaluated on TREC 2007 and
Enron-Spam subsets with a 50-50 split, false positives decreased,
though false negatives slightly increased.

Ayo et al. (2024) designed a hybrid deep learning model
with a fuzzy inference system. Genetic search and CfsSubsetEval
optimized feature selection, while fuzzy logic subdivided spam
severity to reduce misclassification. On UCI SpamBase, the model
achieved high true positive rates and low processing time.

2.1.4 Ensemble and meta-learning approaches

Adnan et al. (2024) proposed a meta-classifier combining
five models—Logistic Regression, Decision Tree, KNN, Gaussian
Naive Bayes, and AdaBoost. Evaluated on a combined Enron-Spam
and SpamAssassin dataset with Logistic Regression as the meta-
classifier, their ensemble outperformed all individual models across
F-score, precision, and other metrics.

Omotehinwa and Oyewola (2023) explored hyperparameter
tuning for Random Forest and XGBoost. Using grid-search with
10-fold cross-validation on the Enron dataset, tuned models
outperformed baselines, with XGBoost achieving the highest
overall accuracy.

Fatima et al. (2024) developed an optimized spam detection
framework using CountVectorizer, TF-IDF, and multiple models
including Naive Bayes, Extra Trees, XGBoost, Random Forest,
MLP, and SGD. Tested on Ling Spam, UCI SMS Spam,
and a new dataset, SGD performed best, and combining
count-based vectorization with hyperparameter tuning further
improved accuracy.

2.1.5 Novel methodologies in spam detection

Ezpeleta et al. (2020) integrated sentiment analysis and
personality detection into spam datasets. Sentiment was derived
from dictionaries, and personality traits from the Myers-Briggs
model. Testing 10 Bayesian spam filters on TREC 2007 and
CSDMC2010 showed combining both features improved accuracy
over using either alone.

Lee et al. (2023) developed BlindFilter, a privacy-preserving
framework combining homomorphic encryption with Naive
Bayes. Encryption enabled computation on protected data, with
WordPiece tokenization used for representation. BlindFilter’s
four stages—key generation, encryption, classification, and
decryption—were evaluated on Enron-Spam and TREC 2007,
achieving best results on TREC 2007 with a 20-20-60 split.

Mythili et al. (2024) extended Multinomial Naive Bayes
by introducing a temporal classifier. Standard preprocessing

frontiersin.org


https://doi.org/10.3389/frai.2025.1569804
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kshirsagar et al.

(tokenization, stemming, lemmatization, stop-word removal)
was used, while temporal features such as arrival times, sender
frequency, and keyword distributions were added. Incorporating
temporal dependencies improved accuracy on the “Spam
filter” dataset.

2.1.6 Traditional machine learning and deep
learning models

Ghogare et al. (2023) compared Naive Bayes, SVM, and
Random Forest on datasets with four preprocessing strategies:
standard, lemmatization, stemming, and none. Using Enron-Spam
and SpamAssassin, preprocessing effects varied by model, and their
classifier outperformed Yahoo's built-in spam filter.

Chirra et al. (2020) evaluated deep learning models for binary
and multi-class spam classification. On Enron, CNN, LSTM, and
GRU were tested for binary tasks, while RNN, LSTM, GRU, BiRNN,
BiLSTM, and BiGRU were applied to the 20 Newsgroup dataset.
GloVe embeddings captured semantics, and dropout mitigated
overfitting. CNN performed best on mini-Enron, while RNN and
BiRNN tied on 20 Newsgroup.

Rabbi et al. (2023) compared Logistic Regression, KNN,
AdaBoost, Multinomial Naive Bayes, Gradient Boosting, and
Random Forest on LingSpam and TREC 2007. Using TE-IDF and
standard preprocessing, AdaBoost performed best on LingSpam,
Random Forest on TREC 2007. KNN, Naive Bayes, and Logistic
Regression trained fastest.

2.2 Mathematical formulations

We first conduct a thorough comparison of machine learning
and deep learning models using a pipelined approach on three
datasets—Enron-Spam, TREC 2007, and a hybrid dataset—and
then combine their results. More details on the datasets can be
found in Section 2.3.

For machine learning models, we compare two vectorization
approaches with five different models. The approaches are term
frequency-inverse document frequency and bag of words, and the
models are XGBoost, Random Forest, Logistic Regression, Naive
Bayes, and Support Vector Machine. For deep learning models, we
compare two types of word embeddings and two types of model
architectures with five different models. The word embeddings
used are GloVe and Word2Vec. The deep learning architectures
we explore and models with attention layers and models without
attention layers. The models compared are LSTM, BiLSTM, GRU,
BiGRU, and CNN. Then, we propose a machine learning-based
meta-learner model that outperforms all other models; it is tested
in a zero-shot setting on an unseen real-world dataset.

2.2.1 Meta-learner system overview
2.2.1.1 Meta-learner

Meta-learning refers to algorithms that learn from the
outputs of other learning models to optimize overall predictive
performance (Vilalta and Drissi, 2002). The objective can be
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defined as:
LM
min - 21: Li(6)
i=

where 6 represents meta-learner parameters, M is the number of
tasks, and £;(0) is the task-specific loss.

For our spam-detection system, we design a logistic
regression-based meta-learner trained on the predictions of
five individual machine learning models, as illustrated in Figure 1.
We intentionally exclude deep learning models since they
are computationally more expensive and less interpretable,
while traditional ML models perform better on relatively low-
dimensional data like ours, where preprocessing and feature
extraction reduce input complexity (Taye, 2023; Sharifani and
Amini, 2023).

We include all five ML models rather than only top-performers
to leverage complementary strengths and improve robustness.
Random Forest and XGBoost, with their tree-based complexity,
capture nuanced patterns, while simpler probabilistic models like
Naive Bayes and Logistic Regression provide interpretable, stable
predictions. Combining these diverse models mitigates overfitting
and enhances overall performance (Fatima et al., 2023).

2.2.1.1.1 XGBoost

eXtreme Gradient Boosting (XGBoost) is a supervised
ensemble algorithm based on gradient boosting, designed for
efficiency and scalability (Chen and Guestrin, 2016; Bacanin
et al., 2022). It builds trees sequentially by fitting to the negative
gradients (pseudo-residuals) of the loss function, with each new
tree correcting errors from the previous iteration. A shrinkage
factor helps control overfitting, and for our binary classification
task, we use a logistic loss function. Final predictions are obtained
by aggregating outputs from all trees in the ensemble.

2.2.1.1.2 Random Forest

Random Forest is an ensemble algorithm that combines
multiple decision trees to improve prediction accuracy (Kulkarni
and Sinha, 2013). Each tree is trained on a bootstrapped dataset,
and at each split, a random subset of features is considered. For
our spam classification task, trees output binary predictions—spam
or ham—and the final result is determined by majority vote. This
bootstrap aggregation approach reduces variance and improves
generalization. While less interpretable than a single decision tree,
Random Forest mitigates overfitting effectively. Our model uses
Gini impurity to select optimal splits by measuring misclassification
likelihood (Yuan et al., 2021).

2.2.1.1.3 Logistic regression

Logistic Regression is a widely used model for binary
classification (Kleinbaum et al., 2010; Allison, 2012; Bacanin et al.,
2022). It estimates the probability of belonging to the positive
class using a sigmoid function and optimizes model parameters by
minimizing cross-entropy loss. Gradient descent iteratively updates
weights until convergence, and predictions are made by applying a
0.5 threshold on the output probability.
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FIGURE 1
Flowchart of the proposed architecture for meta-learner.
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2.2.1.1.4 Naive Bayes

Naive Bayes is a family of probabilistic models based on
Bayes' Theorem, assuming conditional independence among
features (Murphy, 2006). We use the Multinomial Naive Bayes
variant, suitable for text classification with term frequency data.
Each document is represented as a term-frequency vector, and
the model computes class priors and term likelihoods. For new
documents, posterior probabilities are calculated using Bayes’
Theorem, and the class with the higher posterior is assigned.

2.2.1.1.5 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning
algorithm effective for classification, particularly in high-
dimensional or non-linear settings (Suthaharan and Suthaharan,
20165 Statnikov, 2011; Boswell, 2002). For binary classification,
a linear SVM finds the optimal hyperplane that maximizes the
margin between classes, using support vectors—the closest data
points—to define the decision boundary. Maximizing this margin
improves generalization and reduces overfitting, with the model
trained via a constrained optimization problem reformulated using
Lagrange multipliers.

2.2.1.2 Vectorization approaches
2.2.1.2.1 Bag of words

The Bag-of-Words (BoW) model is a feature extraction
technique that represents documents as vectors of word
frequencies, disregarding word order (Zhang et al, 2010).
The dataset is tokenized to build a vocabulary of unique words,
and each document is encoded as a vector whose length equals the
vocabulary size, where each entry corresponds to the frequency of
the associated word. This representation scales across the entire
dataset to generate numerical features for modeling.

2.2.1.2.2 Term frequency—inverse document frequency

TF-IDF is a vectorization method that measures the importance
of a word within a document relative to the entire corpus (Ramos,
2003). Term Frequency (TF) quantifies how often a term appears in
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a document:

Count of term ¢t in d

TF(t,d) =
() Total terms in d

Inverse Document Frequency (IDF) measures how unique a
term is across all documents:

IDF(t) = log (

N
Number of documents containing t)

The final score is computed as:
TF-IDF(t,d) = TF(t,d) - IDE(t)

Higher TF-IDF values indicate rarer, more informative terms,
helping models focus on discriminative features.

2.2.2 Deep learning system overview
2.2.2.1 Models
2.2.2.1.1 GRU and BiGRU

GRU, or Gated Recurrent Unit, is a type of recurrent neural
network (RNN) designed to address the vanishing gradient
problem in traditional RNNs. It uses two gates: an update gate,
which controls how much of the previous hidden state to retain,
and a reset gate, which determines how much past information to
discard. These gates regulate the integration of the candidate state
into the final hidden state, enabling GRUs to effectively capture
long-range dependencies in sequential data (Dey and Salem, 2017;
Gao and Glowacka, 2016). BiGRU, or Bidirectional GRU, extends
this concept by processing sequences in both forward and backward
directions. It combines the forward and backward hidden states
through concatenation to form a comprehensive representation
of contextual information, improving performance in tasks such
as sentiment analysis and named entity recognition (Zhang et al.,
2020; Cui et al., 2018).

2.2.2.1.2 LSTM and BiLSTM

LSTM, or Long Short-Term Memory, is a recurrent neural
network designed to address the limitations of traditional RNNs
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by incorporating three gates—input, forget, and output—along
with a cell state for long-term memory and a hidden state
for passing information between time steps (Staudemeyer and
Morris, 2019; Gao and Glowacka, 2016). The gates regulate
what information to store, discard, or output, enabling LSTMs
to model long-term dependencies effectively, though the added
parameters from the forget gate can increase the risk of overfitting.
BiLSTM, or Bidirectional LSTM, extends this by processing
sequences in both forward and backward directions. It concatenates
forward and backward hidden states to form a comprehensive
representation of contextual information, improving performance
in natural language processing tasks by leveraging both past and
future context.

2.2.2.1.3 CNN

CNN, or Convolutional Neural Network, is a deep learning
model designed for processing grid-like data such as images.
It consists of convolutional layers, pooling layers, activation
functions, and other components. Convolutional layers apply filters
(kernels) to the input to generate feature maps, while pooling
layers downsample spatial dimensions, reducing complexity and
overfitting risk. Common pooling types include max pooling
and average pooling. Activation functions like ReLU are applied
element-wise to introduce non-linearity. Finally, flattening or
global average pooling converts the extracted features into a one-
dimensional vector for downstream processing (O’Shea and Nash,
2015; Zhang et al., 2020).

2.2.2.2 Word embeddings
2.2.2.2.1 Word embeddings vs. vectorization

Traditional vectorization methods like Bag-of-Words (BoW)
and TF-IDF represent text as high-dimensional, sparse vectors,
where each word corresponds to a dimension but semantic
relationships are ignored (Singh and Shashi, 2019). For example,
“king” and “queen” would be treated as unrelated. In contrast,
word embeddings such as Word2Vec and GloVe produce
dense, low-dimensional representations that capture semantic
and contextual similarities by learning from surrounding words.
These embeddings enable models to better understand language
meaning, improving performance in tasks like text classification
and sentiment analysis (Incitti et al., 2023).

2.2.2.2.2 GloVe
GloVe, or
is an

Global Vectors for
unsupervised

Word Representation,

algorithm  for  generating  word
embeddings (Pennington et al, 2014). It constructs a word
co-occurrence matrix and optimizes an objective function that
minimizes the difference between the dot product of embeddings
and the logarithm of co-occurrence probabilities, using a weighting
function to reduce the effect of rare pairs. Word vectors are trained
with AdaGrad, producing embeddings that effectively capture

semantic relationships.

2.2.2.2.3 Word2Vec

Word2Vec is a self-supervised algorithm that learns word
embeddings from surrounding context (Mikolov et al., 2013).
After tokenizing text, a sliding window generates word-context
pairs for training using either Continuous Bag of Words (CBoW),
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which predicts a word from its context, or Skip-gram, which
predicts context from a word. The model is optimized via stochastic
gradient descent, resulting in embeddings that represent semantic
similarities between words.

2.2.2.3 Principal component analysis

Principal Component Analysis (PCA) is a dimensionality
reduction technique that projects high-dimensional data into a
lower-dimensional space while preserving variance (Kuo and
Sloan, 2005; Abdi and Williams, 2010). After standardizing
the data, a covariance matrix is computed, and eigenvalue
decomposition identifies principal components—eigenvectors
corresponding to the largest eigenvalues. These components
capture the most significant variance. In our work, PCA reduces
the dimensionality of word embeddings, improving efficiency and
mitigating overfitting while retaining essential semantic structure.

2.2.2.4 Attention

Attention mechanisms enhance predictions by selectively
focusing on relevant parts of an input sequence (Niu et al., 2021;
Herndndez and Amigo, 2021). In sequence-to-sequence tasks, an
encoder processes the input, and the decoder generates the output
using attention scores that measure the importance of each input
element. These scores, computed via additive, dot-product, or
multiplicative attention, are normalized with softmax to produce
weights. A weighted sum of encoder states forms the context
vector, guiding decoding. In our classification task, attention
follows the same process with slight architectural adjustments for
text classification.

2.3 Data collection and preprocessing

2.3.1 Datasets

We use two publicly available benchmark datasets to
build our email spam classification models, the Enron-Spam
email dataset (Metsis et al., 2006) and TREC 2007 Public
Corpus (Cormack, 2007). We train and evaluate our model on
these two individual datasets, as well as a combined hybrid dataset.
Additionally, to demonstrate the effectiveness of our meta-learner
on recent emails, we use a newly released dataset for zero-shot
evaluation (Miltchev et al., 2024):

e Enron-spam: the non-spam portion of the Enron-Spam
dataset was collected during Enron’s legal scandal. It consists
of emails from the mailboxes of six specific employees: Louise
Kitchen, Daren Farmer, Vincent Kaminski, Bill Williams, Sally
Beck, and Michelle Lokay. The spam portion of the dataset was
compiled from the following four sources: the SpamAssassin
dataset, Project Honey Pot, spam emails collected from Bruce
Guenter, and spam emails from Georgios Paliouras (one of the
authors of Metsis et al., 2006). We combined these six smaller
datasets into one larger dataset comprising 33,716 emails, of
which 17,171 are spam.

e TREC 2007: TREC 2007 was presented in the Text Retrieval
Conference (TREC) Spam Track of 2007 and has 75,419 total
emails, of which 50,199 are spam. The conference focuses on
information retrieval from large text datasets. The dataset was
collected from a certain public server between April 8 and
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July 6, 2007, and includes all the emails the server received
during that period with a few modifications. The server hosts
numerous accounts that are no longer actively used but still
receive significant amounts of spam. Among these, several
“honeypot” accounts have been added, which are utilized to
register for different services.

e Recent: the dataset was compiled by the University of Twente.
It consists of 2,000 emails, half of which are ham emails and
the rest are spam. It is composed of a mix of real-world emails
and artificially generated ones.

The distribution of email types of the three datasets (and the
hybrid dataset) is shown in Table 1, along with the 10 most frequent
words for each dataset (after performing the first three steps of
the data preprocessing techniques detailed in 2.3.2. Although the
Enron-Spam and TREC 2007 datasets are dated, they remain
benchmark datasets widely used in recent literature (Zavrak and
Yilmaz, 2023; Adnan et al., 2024; Lee et al., 2023; Omotehinwa
and Oyewola, 2023; Krishnamoorthy et al., 2024; Rabbi et al,
2023). Their continued relevance is also justified by their extensive
size, providing a reliable source for model evaluation, and by the
diversity of email sources they encompass, ensuring a less biased
and more comprehensive representation of real-world spam and
ham emails.

Other datasets mentioned in Section 2.1 which we did
not use in our experiment include GenSpam (Medlock, 2005),
SpamAssassin  (Apache SpamAssassin, 2015), and LingSpam
(Natural Language Processing Group, Department of Informatics
- Athens University of Economics and Business, 2000), PU1
(Androutsopoulos et al., 2000), SpamBase (Hopkins et al., 1999),
CSDMC2010 [(International Conference on Neural Information
Processing (ICNIP), 2010)], and NewsGroup (Albishre et al., 2015).

2.3.2 Data preprocessing

We performed data preprocessing on all the datasets to
normalize the data before feeding it into our models and
reduce unnecessary noise. Our preprocessing consisted of the
following steps:

1. Cleaning: we removed all numbers, stop words, and special
characters from the text. Stop words are considered insignificant
because they don’t add meaning to the text; they include words

«_» o«

such as “a,

» «

from,” “this) and “for.” Numbers and special
characters are removed for similar reasons.

2. Lowercasing: to standardize the text and reduce vocabulary size,
we convert all the characters to lowercase. This prevents the
model from treating words with identical semantics as different
(e.g. “meaning” vs. “Meaning”) because of different casing.

3. Lemmatization: this technique is used to reduce a word to its
root form. Lemmatization is different from stemming because it
reduces a word’s suffix or prefix to its root, while lemmatization
ensures the base word is linguistically valid. For instance, if we
were to apply stemming, the word “changing” would be reduced
to “chang,” whereas lemmatization would yield “change.”

4. Filtering: when training the models with GloVe embeddings,
the dataset was filtered to exclude words not present in the
GloVe database. Likewise, in the case of training with Word2Vec
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embeddings, the dataset underwent a similar preprocessing
procedure in which words not found in the Word2Vec database
were removed.

Table 2 displays an example of the text that would be
preprocessed to improve model performance and reduce
computation time.

2.4 Experimental setup and meta-learner
framework

This section outlines our complete experimental design for
email spam classification. We build upon the model formulations
(Section 2.2) and data preparation methods (Section 2.3) to
compare various machine learning (ML) and deep learning
(DL) models, and finally, we thoroughly describe the setup of
our meta-learner.

2.4.1 Overall methodology

e Preprocessing: all datasets were preprocessed via

lemmatization, stop-word removal, and various other
techniques.
e Pipeline structure: as shown in Figure 2, the cleaned data was

input into:

o ML pipelines using TF-IDF and Bag-of-Words (BoW)
vectorizers.

o DL pipelines using Word2Vec and GloVe embeddings,
with and without attention mechanisms.

e Dataset variants:

o Evaluations were run on: the Enron-Spam dataset, the
TREC 2007 dataset, and a hybrid dataset combining both.

o Using the hybrid dataset mitigated overfitting to specific
email styles and enhanced generalization.

2.4.2 Training and evaluation splits
e Machine learning models: 80% training/20% testing.
e Deep learning models: 60% training/20% validation/20%
testing.
e Meta-learner:

o 60% of the data was used to train individual ML models.

o Predictions on the next 20% formed training data for the
meta-learner.

o The final 20% was used to evaluate the meta-learner’s
performance.

2.4.3 Deep learning architectures
e Without attention: each model had four layers with 128, 64,
32, and 16 units (including dropout), followed by two dense
layers (16 units and 1 unit).
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TABLE 1 Distribution of spam and non-spam emails for the two individual benchmark datasets, the hybrid (combined) dataset, and the real-world

dataset, along with the 10 most frequent words in each category.

Dataset Spam Non-spam Total Top 10 frequent words
Enron 17,171 16,545 33,716 Ham: enron, ect, hou, company, say, please, would, com, subject, energy

Spam: company, com, e, u, http, email, information, please, make, statement
TREC 2007 50,199 25,220 75,419 Ham: use, email, list, write, new, please, code, may, get, say

Spam: contenttype, contenttransferencoding, pill, per, x, de, desjardins, price, quotedprintable, item
Hybrid 67,370 41,765 109,135 | Ham: enron, ect, use, please, say, new, would, email, list, may

Spam: contenttype, contenttransferencoding, pill, per, de, x, price, desjardins, quotedprintable, item
Recent 1,000 1,000 2,000 Ham: please, hi, dear, let, meet, next, find, attach, thank, week

Spam: click, account, inform, please, review, avoid, subscript, renew, enjoy, payment

TABLE 2 Example sentence transformation through preprocessing steps.

Step Sentence

Original The man (Srikar) finally walked home after a long day
Cleaned Man Srikar finally walked home long day

Lowercased Man srikar finally walked home long day

Lemmatized | Man srikar final walk home long day

Filtered® Man final walk home long day

Final Man final walk home long day

2GloVe embeddings were used in this example. The word “srikar” was removed because it is
not in the GloVe vector database.

e With attention: each model consisted of three layers
(128, 64, 32 units) followed by attention, concatenation,
dropout, GlobalAveragePooling, and two dense layers (16 and
1 units).

e CNN specifics: incorporated a GlobalAveragePooling layer
between the convolutional core and the dense output layers.

e Figure 3 illustrate the visualizations of the deep learning
architectures.

2.4.4 Word embedding approaches

e GloVe: used 100-dimensional pretrained vectors; all words not
in the GloVe vocabulary were removed.

e Word2Vec: publicly available 300-dimensional vectors were
reduced to 100 dimensions using Principal Component
Analysis (PCA) for fair comparison with GloVe (see Section
22.2.3).

2.4.5 Meta-learner architecture
2.4.5.1 Base model preparation
e Five ML models (XGBoost, Random Forest, SVM, Naive
Bayes, Logistic Regression) were trained on 60% of the hybrid
dataset.
e Predictions on the subsequent 20% validation split served as
meta-features for the stacking model.
e Each ML model was benchmarked under both TF-IDF and
BoW; only the higher-performing vectorizer per model was
retained for meta-training.
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2.4.5.2 Meta-model training and inference
e Alogistic regression model was employed as the meta-learner.
e It was trained on the concatenated prediction outputs of the
five base ML models.
e The final evaluation was performed on the held-out 20% test
split.

2.4.6 Zero-shot evaluation

e Base ML models were retrained using 70% of the hybrid
dataset.

e Predictions on the remaining 30% were used to generate
meta-training features.

e Following prior work in zero-shot spam detection (Shirvani
and Ghasemshirazi, 2025; Rojas-Galeano, 2024), we evaluate
our meta-learner directly on an unseen email corpus of 2,000
emails introduced by Miltchev et al. (2024) without any
additional fine-tuning to assess out-of-domain generalization
capabilities.

e We follow the core meta-learning paradigm of Liu et al. (2021)
in their TGMZ model. Like TGMZ, we train our meta-learner
on one data distribution and then apply it directly to a fully
unseen email corpus without any fine-tuning. This episodic
evaluation, training on one “task” and testing on another
unseen one, embodies zero-shot generalization. This setup is
similarly explored in Verma et al. (2020).

3 Results

Through extensive experimentation and analysis, we found
that the meta-learner built on machine learning (ML) models’
predictions consistently outperformed individual deep learning
This result led us to conclude that the ML-based
meta-learner was effectively capturing important patterns in

models.

the data that deep learning models were unable to capture as
efficiently. By leveraging the strengths of machine learning, we
achieved significant improvements in spam classification accuracy
without introducing the additional complexity associated with deep
learning-based meta-learning techniques.

We now present the detailed results of our machine-learning
and deep-learning pipelines on the four datasets. The classification
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FIGURE 2
Flowchart of the proposed methodology for spam email classification.

metrics used to evaluate the models are accuracy, precision, recall,
F-score, and AUC. These metrics are formulated based on the
concepts of True Positives (TP)—correctly predicting the positive
class, True Negatives (TN)—correctly predicting the negative class;
False Positives (FP)—incorrectly predicting the positive class; and
False Negatives (FN)—incorrectly predicting the negative class. For
formal definitions and comparisons of these metrics, please refer
to Obi (2023).

All metrics presented for the machine learning models use five-
fold cross-validation. The metrics accuracy, precision, recall, and F-
score in the tables and visuals will be abbreviated to their first letter.
The meta-learner metrics will be italicized and placed as the last
row for each benchmark dataset’s machine learning pipelines table.
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3.1 Enron-spam dataset results

We will start by presenting the machine learning and
deep learning pipeline results on the Enron-Spam dataset.
Table 3A° shows how Random Forest with TF-IDF obtained
the highest average accuracy of 0.9796. Furthermore, of all
10 pipelines, Random Forest (including both vectorization
approaches) performed the best for four out of the five metrics.

For the deep learning models as shown in Table 3B, the two
best values per metric are bolded. We see that BILSTM-Attention-
GloVe and GRU-Attention-GloVe performed the best for the first
four metrics (accuracy, precision, recall, F-score), while BiGRU-
Attention-GloVe and CNN-No Attention-GloVe had the highest
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FIGURE 3

Deep learning model architecture visualizations. From top to bottom: BiLSTM with attention, BiLSTM without attention, CNN with attention, and
CNN without attention. The medium blue color represents a Bidirectional layer for the BiLSTM models and a Conv1D layer for the CNN models.

D InputLayer

[l Embedding

. Bidirectional/ConvlD

. Attention

B Concatenation

D Dropout

[7] GlobalMaxPooling1D

| Dense

TABLE 3A Machine learning pipelines performance metrics on Enron-Spam dataset.

Model Vectorization A P R F AUC
XGBoost BOW 0.9656 0.9439 0.9911 0.9668 0.9653
TF-IDF 0.9651 0.9426 0.9915 0.9663 0.9648
Random Forest BOW 0.9780 0.9724 0.9845 0.9784 0.9780
TF-IDF 0.9796 0.9696 0.9907 0.9800 0.9795
Logistic Regression BOW 0.9792 0.9680 0.9917 0.9797 0.9791
TF-IDF 0.9724 0.9521 0.9957 0.9733 0.9721
Naive Bayes BOW 0.9734 0.9642 0.9843 0.9740 0.9733
TF-IDF 0.9780 0.9711 0.9860 0.9784 0.9779
Support Vector Machine BOW 0.9505 0.9179 0.9913 0.9530 0.9501
TF-IDF 0.9770 0.9595 0.9967 0.9777 0.9768
Meta-learner - 0.9898 0.9898 0.9898 0.9898 0.9991

Bold values indicate the top score for each metric across traditional ML models. Italic values indicate the top score for each metric across all models (traditional ML and meta-learner).

AUC scores. The meta-learner outperformed all ML and DL
model performances (Tables 3A,B) with an accuracy of 0.9898.
Figure 4 presents the accuracies of the top ML and DL models and
demonstrates that the meta-learner achieves superior performance.
Table 3C displays the confusion matrix for the meta-learner. The

accuracy for the Ham (0) class is % ~ 0.9856 and the
accuracy for the Spam (1) class is % ~ 0.9940.
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3.2 TREC 2007 dataset results

For the TREC 2007 dataset, Table 4a shows that Support
Vector Machine with TF-IDF performed the best with an
average accuracy of 0.9911, while Naive Bayes with Bag of
Words had the lowest average accuracy of 0.9378. For the deep
learning pipelines shown in Table 4b, BiLSTM-Attention-GloVe
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TABLE 3B Deep learning pipelines model performance metrics on Enron-Spam dataset.

10.3389/frai.2025.1569804

Model Attention Word embedding A P R F AUC
LSTM Without Glove 0.9847 0.9847 0.9847 0.9847 0.9984
With Glove 0.9857 0.9858 0.9857 0.9857 0.9975
Without Word2Vec 0.9833 0.9833 0.9833 0.9833 0.9970
With Word2Vec 0.9851 0.9851 0.9851 0.9851 0.9977
BiLSTM | Without Glove 0.9856 0.9856 0.9856 0.9856 0.9975
With Glove 0.9866 0.9867 0.9866 0.9866 0.9982
Without Word2Vec 0.9847 0.9847 0.9847 0.9847 0.9965
With Word2Vec 0.9832 0.9832 0.9832 0.9832 0.9979
GRU Without Glove 0.9827 0.9828 0.9827 0.9827 0.9975
With Glove 0.9869 0.9869 0.9869 0.9869 0.9976
Without Word2Vec 0.9781 0.9781 0.9781 0.9781 0.9966
With Word2Vec 0.9844 0.9844 0.9844 0.9844 0.9985
BiGRU Without Glove 0.9859 0.9860 0.9859 0.9859 0.9983
With Glove 0.9854 0.9857 0.9854 0.9854 0.9992
Without Word2Vec 0.9853 0.9853 0.9853 0.9853 0.9980
With Word2Vec 0.9851 0.9851 0.9851 0.9851 0.9977
CNN Without Glove 0.9848 0.9850 0.9848 0.9848 0.9987
With Glove 0.9790 0.9791 0.9790 0.9790 0.9978
Without Word2Vec 0.9814 0.9814 0.9814 0.9814 0.9987
With Word2Vec 0.9823 0.9825 0.9823 0.9823 0.9983

Bold values indicate the top two scores for each metric.

1.00
M Machine Learning
[ Deep Learning
B Our Approach

0.98 4

Accuracy

I

Log-Reg Naive Bayes

FIGURE 4
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Accuracy of best ML and DL pipelines vs. our meta-learner on Enron-Spam dataset.

GRU BiGRU

Meta Learner

and BiGRU-Attention-GloVe had the best performances with
accuracies of 0.9884 and 0.9888, respectively. The highest accuracy
of all models was our meta-learner with 0.9945. Figure 5 compares
our meta-learner with the accuracies of the top ML and DL
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models. Table 4c displays the confusion matrix for the meta-

learner. The accuracy for the Ham (0) class is

0.9902 and the accuracy for the Spam (1) class is

0.9968.
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TABLE 3C Confusion matrix for the meta-learner on Enron-Spam dataset.

Predicted
Actual 1 (Spam)
0 (Ham) 3,291 48
1 (Spam) ‘ 20 ‘ 3,07

3.3 Hybrid dataset results

We now present results on the hybrid dataset, consisting
of the combination of Enron-Spam and TREC 2007. For the
machine learning pipelines in Table 5a, Support Vector Machine
with TF-IDF has the highest average accuracy of 0.9773 and the
highest recall, F1-score, and AUC score. Naive Bayes with Bag of
Words has the highest precision. Of the deep learning pipelines in
Table 5b, LSTM-Attention-GloVe and BiLSTM-Attention-GloVe
are the best performing with accuracies and F-scores of 0.9852 and
0.9846, respectively. Our meta-learner outperforms all pipelines
with an accuracy of 0.9904, an F-score of 0.9899, and an AUC score
0f 0.9991. Figure 6 illustrates the accuracies of the best-performing
ML and DL models, highlighting that the meta-learner surpasses
both. Table 5¢ displays the confusion matrix for the meta-learner.
S281 .~ 0.9853 and the

8,284+124

12,873
12,873+82 0.9937.

The accuracy for the Ham (0) class is

accuracy for the Spam (1) class is

3.3.1 Meta-learner interpretability on hybrid
dataset

The hybrid dataset combines the strengths of two widely
used datasets, Enron-Spam and the TREC 2007, making it a
suitable testbed for both accuracy and interpretability claims.
Our meta-learner treats each base model’s posterior as an input
feature; specifically, for the hybrid dataset the five “features”
are svm_tfidf, xgb_tfidf, rf_tfidf, nb_tfidf, Ir_count, which was
determined based on empirical evaluations of the individual models
on the dataset. This architecture supports a clear, named, low-
dimensional feature space.

Using permutation importance (Altmann et al., 2010) with
ROC-AUC as the score on the held-out test split, we observe
the largest mean performance drop when permuting svm_tfidf
(= 0.0128 AUC), with smaller but non-trivial drops for rf_tfidf
(A 0.0031) and xgb_tfidf (=~ 0.0028). This ranking indicates that
the stacker’s discriminative power is primarily mediated by the
SVM-TF-IDF base learner.

A complementary SHAP analysis (Lundberg and Lee, 2017) of
the meta-learner yields consistent rankings. The top three features
by global importance (mean |SHAP|) are: svm_tfidf = 2.237,
xgb_tfidf = 1.536, and rf_tfidf = 1.505. These three account for
A 89.6% of total mean |[SHAP|, indicating that the meta-learner’s
decisions are chiefly mediated by the SVM-TF-IDF posterior with
complementary signal from the TF-IDF tree models.

We also audit the dominant base learner (svm_tfidf) with
a LIME-Text (Ribeiro et al., 2016) pass on a stratified sample
of 600 test emails. The Phishing-pushing side is dominated by
actionable and credential/brand cues (e.g., click, secure, info, along
with organization or domain markers such as inc and com).
Conversely, tokens characteristic of legitimate organizational/news
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traffic and routine workflows (e.g., bbc, attached/attach, enron,
unsubscribe/subscribe) systematically pull toward Ham.

3.4 Comparison to state of the art

We compare the performance of our meta-learners to other
state-of-the-art models. In the Dataset column of Table 6, “EN”
refers to the Enron-Spam dataset, “TR” to TREC 2007, and “SA” to
SpamAssassin. The column “Instances” refers to the total number
of email instances in the dataset. The last row, whose dataset is
labeled as “Recent,” refers to the meta-learner’s performance on the
unseen recent dataset (Miltchev et al., 2024). All selected state-of-
the-art models have been published within the last four years and
experimentation involved at least one of the datasets Enron-Spam
or TREC.

Table 6 shows how our Enron-Spam and TREC 2007 meta-
learners outperform all other SOTA approaches with both
accuracies and F-scores of 0.9901 and 0.9944, respectively. The
model tested on Enron-Spam with the closest performance to our
model is proposed by Adnan et al. (2024) with an accuracy of
0.988. Furthermore, for models tested on TREC 2007, the closest
accuracy to our model is 0.992 by Zavrak and Yilmaz (2023). The
strong performance of our meta-learner models demonstrates their
robustness on diverse datasets.

Finally, we find that our meta-learner outperforms the
only other meta-learning-based spam classifier we identified,
proposed by Adnan et al. (2024), achieving an accuracy of
0.9905 compared to their 0.988. Notably, our model was trained
on a hybrid dataset over eight times larger, enabling better
generalization and robustness across diverse email distributions.
It also maintains lower computational complexity and explicitly
addresses data bias, helping reduce downstream algorithmic bias.
These advantages make our meta-learning pipeline not only more
accurate, but also more practical and scalable for real-world spam
classification deployments.

The meta-learner trained on the hybrid dataset was then zero-
shot evaluated on a recent real-world dataset, following practices
of Verma et al. (2020) and Liu et al. (2021), exhibiting an accuracy
of 0.6340 and an F-score of 0.6068, with a spam true positive
rate (TPR) of 0.8970. Achieving such high spam TPR on a recent
dataset without any fine-tuning indicates that our meta-learner can
effectively identify phishing and spam patterns even in different
email environments. Moreover, the high zero-shot performance
demonstrates that our hybrid dataset effectively captures diverse
spam patterns, enabling the model to transfer its knowledge to
unseen data. A confusion matrix can be seen in Table 7. The

accuracy for the Ham (0) class is 3713_'_% = 0.3710 and the accuracy
for the Spam (1) class is % = 0.8970.

4 Discussion

4.1 Analysis of trends in results
We now evaluate some common trends apparent in the results
of the various machine learning and deep learning pipelines and the

comparison to state-of-the-art models:
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TABLE 4 Performance metrics on TREC 2007 dataset.

(@) Machine learning pipelines performance metrics on TREC 2007 dataset

10.3389/frai.2025.1569804

Model Vectorization A P
XGBoost BOW 0.9888 0.9900 0.9930 0.9915 0.9869
TF-IDF 0.9883 0.9897 0.9926 0.9911 0.9863
Random Forest BOW 0.9859 0.9936 0.9849 0.9892 0.9864
TF-IDF 0.9856 0.9932 0.9849 0.9890 0.9860
Logistic Regression BOW 0.9845 0.9873 0.9892 0.9882 0.9824
TE-IDF 0.9852 0.9847 0.9929 0.9888 0.9816
Naive Bayes BOW 0.9378 0.9959 0.9091 0.9504 0.9509
TF-IDF 0.9671 0.9885 0.9612 0.9746 0.9698
Support Vector Machine | BOW 0.9753 0.9760 0.9867 0.9813 0.9701
TF-IDF 0.9911 0.9906 0.9960 0.9933 0.9889
Meta-learner - 0.9945 0.9945 0.9935 0.9939 0.9990

(b) Deep learning model performance metrics on TREC 2007 dataset

Model Attention Word embedding A P

LSTM Without GloVe 0.9677 0.9688 0.9677 0.9679 0.9952
With GloVe 0.9876 0.9876 0.9876 0.9876 0.9970
Without Word2Vec 0.9789 0.9790 0.9789 0.9789 0.9955
With Word2Vec 0.9865 0.9865 0.9865 0.9865 0.9975

BiLSTM | Without GloVe 0.9851 0.9851 0.9851 0.9851 0.9973
With GloVe 0.9884 0.9884 0.9884 0.9884 0.9981
Without Word2Vec 0.9814 0.9816 0.9814 0.9815 0.9960
With Word2Vec 0.9854 0.9854 0.9854 0.9853 0.9978

GRU Without Glove 0.9727 09733 0.9727 0.9728 0.9963
With GloVe 0.9867 0.9868 0.9867 0.9868 0.9972
Without Word2Vec 0.9852 0.9852 0.9852 0.9852 0.9971
With Word2Vec 0.9852 0.9852 0.9852 0.9852 0.9971

BiGRU Without GloVe 0.9855 0.9855 0.9855 0.9855 0.9974
With GloVe 0.9888 0.9889 0.9888 0.9889 0.9976
Without Word2Vec 0.9844 0.9844 0.9844 0.9843 0.9979
With Word2Vec 0.9851 0.9852 0.9851 0.9851 0.9973

CNN Without GloVe 0.9838 0.9838 0.9838 0.9838 0.9967
With GloVe 0.9842 0.9842 0.9842 0.9842 0.9974
Without Word2Vec 0.9837 0.9839 0.9837 0.9838 0.9977
With Word2Vec 0.9852 0.9852 0.9852 0.9852 0.9972

(c) Confusion matrix for the meta-learner on TREC 2007 Dataset

Predicted
Actual 0 (Ham)
0 (Ham) 5,029 50
1 (Spam) 31 9,598

(a) Bold values indicate the top score for each metric across traditional ML models. (b) Bold values indicate the top two scores for each metric. (a) Italic values indicate the top score for each
metric across all models (traditional ML and meta-learner).
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FIGURE 5

Accuracy of best ML and DL pipelines vs. our meta-learner on TREC 2007 dataset.
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. Word embeddings: for the hybrid dataset combining Enron-
Spam and TREC 2007, the deep learning pipeline with
GloVe embeddings outperformed the pipeline with Word2Vec
embeddings, in terms of accuracy, for nine out of 10 instances.
Similar trends occurred with the individual datasets as GloVe
performed better for nine out of 10 cases on Enron-Spam and
seven out of 10 on TREC 2007. We suspect this is the case
because when filtering each dataset to only include words from
either of these two word embedding vocabularies, the size of the
filtered dataset was larger for Word2Vec than for GloVe. This
suggests that Word2Vec has more vocabulary relevant to our
specific use case, spam email classification. Furthermore, using
Principal Component Analysis on the Word2Vec embeddings
to transform the representations from 300 dimensions to 100
dimensions may have slightly diluted the quality of these
representations, thus limiting the performance of the models on
the datasets.

. Attention: deep learning architectures with attention
mechanisms generally outperform identical architectures
without them because attention focuses on the most relevant
parts of the input, reducing information dilution.

. Vectorization: TF-IDF vectorization pipelines generally
outperformed Bag of Word pipelines for the machine learning
models. This was the case for four out of five instances on the
hybrid dataset and three out of five instances for the individual
datasets, Enron-Spam and TREC 2007.

. Models: we first note that BILSTM consistently appears among
the two highest-performing models in terms of accuracy for each
set of 20 deep learning pipelines across the three main datasets.
The Support Vector Machine performed the best of the machine
learning odels.

. Meta-learner: our proposed approach with a meta-learner
combining the predictions of the individual machine learning
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models outperforms all other pipelines evaluated and state-of-
the-art models. Compared to many of the deep learning-based
methods used in SOTA, our approach offers a significant
advantage in terms of complexity. Deep learning models,
especially those with attention mechanisms or extensive
architectures like transformers, can be computationally
expensive to train and deploy. They require substantial
computational resources, including powerful GPUs and large
amounts of memory. In contrast, our meta-learner approach
aggregates simpler models and tends to be less computationally
intensive, making it more accessible and cost-effective to
implement. This improves our model’s scalability and speed,
thus making it more effective in real use cases.

6. Bias: in our research, we evaluated various models on two
benchmark datasets and also combined them to form a hybrid
dataset. Furthermore, we tested our developed meta-learner
on a medium-size unseen and recent dataset. This differs
from most SOTA approaches, which only evaluate performance
on a single benchmark dataset. Integrating multiple datasets
mitigates the bias inherent in single-dataset evaluations, leading
to a more robust and generalizable model. This ensures that
our meta-learner model can perform well across different
data distributions, enhancing its applicability to a wider
range of real-world scenarios; we thus address both data
bias and algorithmic bias by providing a more balanced and
comprehensive evaluation.

7. Real-world use cases: as discussed in 3.4 our meta-learner yields
an accuracy of 0.6320 when evaluated in a zero-shot setting.
While this performance is evidently numerically lower than
on the benchmark datasets where training data was available;
we argue that it provides crucial insights into the meta-
learner’s robustness and practical utility in dynamic, real-world
email environments.
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TABLE 5 Performance metrics on hybrid dataset.

(@) Machine learning pipelines performance metrics on hybrid dataset

10.3389/frai.2025.1569804

Model Vectorization A P
XGBoost BOW 0.9610 0.9513 0.9878 0.9690 0.9535
TF-IDF 0.9612 0.9521 0.9872 0.9691 0.9539
Random Forest BOW 0.9685 0.9791 0.9691 0.9741 0.9683
TE-IDF 0.9694 0.9752 0.9750 0.9750 0.9678
Logistic Regression BOW 0.9695 0.9653 0.9858 0.9754 0.9650
TF-IDF 0.9689 0.9613 0.9893 0.9750 0.9631
Naive Bayes BOW 0.9436 0.9870 0.9197 0.9518 0.9504
TE-IDF 0.9612 0.9755 0.9604 0.9678 0.9614
Support Vector Machine BOW 0.9467 0.9348 0.9835 0.9580 0.9421
TF-IDF 0.9773 0.9711 0.9927 0.9817 0.9729
Meta-learner - 0.9904 0.9904 0.9895 0.9899 0.9991

(b) Deep learning model performance metrics on hybrid dataset

Model Attention Word embedding A P

LSTM Without GloVe 0.9826 0.9828 0.9826 0.9826 0.9980
With GloVe 0.9852 0.9852 0.9852 0.9852 0.9985
Without Word2Vec 0.9795 0.9795 0.9795 0.9795 0.9970
With Word2Vec 0.9816 0.9816 0.9816 0.9816 0.9975

BiLSTM | Without Glove 0.9810 0.9810 0.9810 0.9810 0.9972
With GloVe 0.9846 0.9845 0.9846 0.9846 0.9978
Without Word2Vec 0.9779 0.9780 0.9779 0.9780 0.9957
With Word2Vec 0.9811 0.9812 0.9811 0.9811 0.9977

GRU Without GloVe 0.9742 0.9742 0.9742 0.9741 0.9961
With GloVe 0.9843 0.9843 0.9843 0.9843 0.9978
Without Word2Vec 0.9689 0.9689 0.9689 0.9688 0.9938
With Word2Vec 0.9842 0.9842 0.9842 0.9842 0.9973

BiGRU Without GloVe 0.9607 0.9615 0.9607 0.9605 0.9924
With GloVe 0.9756 0.9757 0.9756 0.9756 0.9968
Without Word2Vec 0.9693 0.9693 0.9693 0.9693 0.9936
With Word2Vec 0.9746 0.9750 0.9746 0.9745 0.9965

CNN Without GloVe 0.9818 0.9818 0.9818 0.9818 0.9972
With GloVe 0.9800 0.9800 0.9800 0.9800 0.9965
Without Word2Vec 0.9798 0.9799 0.9798 0.9798 0.9970
With Word2Vec 0.9785 0.9785 0.9785 0.9784 0.9963

(c) Confusion matrix for the meta-learner on hybrid dataset

Predicted
Actual 0 (Ham) 1 (Spam)
0 (Ham) 8,284 124
1(Spam) 82 12,873

(a) Bold values indicate the top score for each metric across traditional ML models. (b) Bold values indicate the top two scores for each metric. (a) Italic values indicate the top score for each

metric across all models (traditional ML and meta-learner).

(a) Operational value: the confusion matrix in Table 6 reveals
class-specific accuracies of 0.3710 (Ham) and 0.8970
(Spam). This asymmetric performance is often desirable in
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security-focused spam detection algorithms. In particular,

the model demonstrates high recall on the positive class

(spam)—a crucial metric, since false negatives are more costly
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FIGURE 6
Accuracy of best ML and DL pipelines vs. our meta-learner on hybrid dataset.

TABLE 6 Comparison of the proposed approach vs. state-of-the-art models.

Year taset Instances Method A P R F AUC
Zavrak and Yilmaz (2023) 2023 EN 33,654 Hybrid NN 0.958 0.981 0.937 0.958 0.989
TR 75,288 0.992 0.989 0.999 0.994 0.999
Guo et al. (2023) 2022 EN 33,716 BERT + Log-Reg - 0.9786 0.9783 0.9784 0.9971
Tida and Hsu (2022) 2022 EN 32,638 BERT 0.97 0.96 0.98 0.9720 -
Wang et al. (2021) 2021 EN 33,702 SVM 0.939 - - - -
Adnan et al. (2024) 2023 EN+SA 13,629 ML meta-learner 0.988 0.988 0.989 0.989 -
Ezpeleta et al. (2020) 2020 TR 75,419 Log-Reg 0.9918 - - - -
Lee et al. (2023) 2023 EN 33,716 Naive Bayes 0.9708 0.9703 0.9721 0.9712 -
TR 75,419 0.9597 0.9557 0.9855 0.9701 -
Chu et al. (2020) 2020 EN 7,800 C4.5 Algorithm 0.9859 - 0.9779 - -
TR 10,000 0.9892 - 0.9808 - -
Omotehinwa and Oyewola (2023) 2023 EN 32,860 XGBoost 0.9809 0.9748 0.9884 0.9816 0.9978
Krishnamoorthy et al. (2024) 2024 EN 33,727 DNN-BIiLSTM 0.9869 0.9883 0.9856 0.9869 -
Ghogare et al. (2023) 2023 EN 46,932 Random Forest 0.9869 0.9876 0.9795 0.9835 -
Chirra et al. (2020) 2020 EN 6,000 CNN 0.985 - - - -
Rabbi et al. (2023) 2023 TR 75,419 Random Forest 0.9838 0.9840 0.9838 0.9838 0.9820
Our approach 2024 EN 33,716 Meta-learner 0.9898 0.9898 0.98 0.9898 0.9991
TR 75,419 0.9945 0.9945 0.9935 0.9939 0.9990
EN + TR 109,135 0.9904 0.9904 0.9895 0.9899 0.9991
Recent 2,000 0.6340 0.6853 0.6340 0.6068 0.7605
Bold values indicate the top score for each metric, by dataset.
than false positives. A missed spam email could expose users (b) Computational efficiency and constraints: unlike transformer-
to phishing or malware attacks, whereas a false positive based models or deep hybrid attention mechanisms, our
merely results in a benign email being misclassified. meta-learner is built on lightweight machine learning
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classifiers. It is trainable in CPU hardware in minutes,
highly interpretable, and easily deployable. Commercial
email providers like Gmail or Outlook often tout high
spam detection accuracy and minimal false negative rates,
but these systems are trained using massive, ever-growing
streams of user data. With access to millions of emails per
day and real-time behavioral feedback (e.g., user flagging,
engagement patterns), they leverage continual learning and
large-scale infrastructure to maintain performance against
evolving spam techniques. In contrast, our meta-learner
was trained once, using a finite and well-curated dataset
totaling approximately 100,000 emails, and yet it achieved
strong results—including a zero-shot accuracy of 0.6340
on a modern unseen dataset—without any retraining or
tuning. This highlights the practicality and generalizability of
our approach.

8. Zero-shot evaluation on a recent dataset: We evaluate our hybrid
meta-learner zero-shot on a recent public dataset of 2,000 emails
labeled as Safe or Phishing. We select this dataset because it is
recent, openly accessible, and explicitly released for validating
email classifiers without special access requirements.

(a) On the recent dataset used in our study, there are 1,000
Safe and 1,000 Phishing emails. Messages are short (mean
86.7 characters, 14.1 tokens). Phishing emails are shorter on
average (82.9 characters, 12.9 tokens) than Safe emails (90.6,
15.3). All messages are ASCII and no URLs or HTML tags
appear in the dataset. Also, the combined vocabulary is small
(174 tokens), with substantial overlap across classes.

(b) These properties differ from Enron-Spam and TREC 2007.
Enron-Spam consists of natural emails and “fresh” spam
distributed across six user mailboxes and is widely used
for filter evaluation. TREC 2007 is a large, chronologically
ordered email stream (75,419 messages). Both datasets
are larger, more heterogeneous, and include richer email
structure than the recent dataset.

(c) These differences help explain our zero-shot pattern on
the recent dataset (accuracy 0.6340, F-score 0.6068, spam
TPR 0.8970). First, the task framing differs as the recent
dataset targets phishing specifically, whereas the benchmark
datasets evaluate spam broadly. Second, short, template-like
texts with no URLs/HTML reduce discriminative cues that
modern systems often rely on. Third, the balanced class prior
and short-message style shift the optimal decision threshold
relative to our benchmark-trained operating point. Together,
these factors lead to high recall on the positive class and lower
accuracy on the ham class.

(d) A few improvements for future iterations include: 1. Re-
tune the operating threshold on precision-recall curves for
the recent dataset and report the chosen point, 2. Add
a small set of non-lexical features available at inference
(e.g., message length statistics, simple style markers, and,
when available, header or URL indicators), 3. Perform
light domain adaptation using unlabeled recent emails
(importance reweighting of benchmark dataset training
instances before refitting the base learners and the meta-
learner), 4. Label a small, diverse subset of recent emails
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TABLE 7 Final meta-learner confusion matrix.

Predicted
Actual 1 (Spam)
0 (Ham) 371 629
1 (Spam) 103 897

(prioritizing distinct templates) and fine-tune, and 5. Adopt
a periodic refresh schedule (continual learning) with dated
external datasets to track evolving email patterns.

4.2 Future steps

In this study, we compare traditional machine learning
and deep learning models. Given the recent popularity of
artificial intelligence, we plan to evaluate the performances
of transformer-based models in the future. In particular,
we plan to conduct a similar study on the state-of-the-art
NLP models, including BERT and XLNet. Furthermore,
compare the performances of different

Models  (LLMs), GPT,

we will Large

Language Gemini,
and Llama.
In this

learning

including
different  machine
approaches and deep
word embedding approaches and architectures.

study, we  evaluated

vectorization learning
In future
studies, we plan to experiment with different data splits
and hyperparameters instead to optimize models without
complexity.
tuning will be conducted using methods such as
identify  the

balancing performance with

significantly increasing Hyperparameter
grid
random search to optimal

search and

parameters for each model,
computational efficiency.

Finally, we plan to explore different feature extraction
techniques. Many recent studies have evaluated methods in
which certain features from the dataset were used to train
models, such as the number of special characters per email,
email length, presence of certain keywords, and topic modeling.
These approaches may provide greater generalizability, which is
something worth researching.
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