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HMA-Net: a hybrid mixer
framework with multihead
attention for breast ultrasound
image segmentation

Soumya Sara Koshy and L. Jani Anbarasi*

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Breast cancer is a severe illness predominantly a�ecting women,

and in most cases, it leads to loss of life if left undetected. Early detection can

significantly reduce the mortality rate associated with breast cancer. Ultrasound

imaging has been widely used for e�ectively detecting the disease, and

segmenting breast ultrasound images aid in the identification and localization of

tumors, thereby enhancing disease detection accuracy. Numerous computer-

aided methods have been proposed for the segmentation of breast ultrasound

images.

Methods: A deep learning-based architecture utilizing a ConvMixer-based

encoder and ConvNeXT-based decoder coupled with convolution-enhanced

multihead attention has been proposed for segmenting breast ultrasound

images. The enhanced ConvMixer modules utilize spatial filtering and channel-

wise integration to e�ciently capture local and global contextual features,

enhancing feature relevance and thus increasing segmentation accuracy

through dynamic channel recalibration and residual connections. The bottleneck

with the attention mechanism enhances segmentation by utilizing multihead

attention to capture long-range dependencies, thus enabling themodel to focus

on relevant features across distinct regions. The enhanced ConvNeXT modules

with squeeze and excitation utilize depthwise convolution for e�cient spatial

filtering, layer normalization for stabilizing training, and residual connections

to ensure the preservation of relevant features for accurate segmentation. A

combined loss function, integrating binary cross entropy and dice loss, is used

to train the model.

Results: The proposed model has an exceptional performance in segmenting

intricate structures, as confirmed by comprehensive experiments conducted on

two datasets, namely the breast ultrasound image dataset (BUSI) dataset and the

BrEaST dataset of breast ultrasound images. Themodel achieved a Jaccard index

of 98.04% and 94.84% and a Dice similarity coe�cient of 99.01% and 97.35% on

the BUSI and BrEaST datasets, respectively.

Discussion: The ConvMixer and ConvNeXT modules are integrated with

convolution-enhanced multihead attention, which enhances the model’s ability

to capture local and global contextual information. The strong performance of

the model on the BUSI and BrEaST datasets demonstrates the robustness and

generalization capability of the model.
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1 Introduction

Breast cancer is the most frequently diagnosed and deadliest

form of cancer, primarily affecting women. Breast cancer is caused

by the irregular growth of abnormal cells in the breast, leading to

tumors. Tumors can be classified as either benign or malignant.

Benign tumors are non-cancerous and do not spread outside the

breast tissues, while malignant tumors are cancerous and have

the ability to metastasize beyond the breast tissues to other parts

of the body. Effective policies and initiatives have reduced the

percentage of women with metastatic breast cancer at diagnosis in

high-income nations; nonetheless, disparity still exists, which must

be addressed by raising awareness of breast cancer symptoms and

promoting early detection (Fuentes et al., 2024). In economically

deprived nations, the occurrence and fatality rates of breast cancer

continue to increase. Early detection can significantly reduce breast

cancer mortality. Research pertaining to the detection of the disease

at an early stage has gained wide attention.

Due to the non-invasive, real-time, low-cost, and non-radiation

nature of ultrasound imaging, it has quickly gained widespread

acceptance as a breast tumor detection method. Ultrasound

imaging uses sound waves instead of radiation to generate images.

A precise analysis of the breast cancer images can be done by

extracting only the relevant areas from the images, which is called

segmentation. Breast ultrasound lesion segmentation presents a

variety of challenges: (1) Poor contrast and noise present in

the images make it difficult to differentiate lesions from the

surrounding tissues. (2) Variations in the structure of malignant

tumors make them difficult to detect. (3) Uneven distribution of

benign and malignant images in the datasets.

The manual annotation of breast ultrasound images is

laborious, time-intensive, and prone to inter-observer variability;

an automated segmentation approach can mitigate these issues

by delivering consistent and trustworthy outcomes. Computer-

aided diagnostic tools for breast ultrasound images have steadily

gained popularity as a means of enhancing the precision of

diagnosis. Precise segmentation can augment diagnostic accuracy,

facilitate quantitative lesion analysis, and aid radiologists in

making more informed judgments, thereby enhancing patient

outcomes. Furthermore, automating segmentation can optimize

clinical procedures, decrease diagnostic duration, and facilitate

radiology training by offering prompt feedback. Earlier machine-

learning techniques were utilized for breast ultrasound image

segmentation, for which manual intervention was required for

feature extraction. This approach is time-consuming and also

lacks consistency and reliability. Deep learning methods have now

been widely used for breast ultrasound image segmentation, in

which features are extracted automatically. Various convolutional

neural network architectures, including U-Net, U-Net++, etc.,

show exceptional performance in ultrasound image segmentation.
A hybrid mixer framework with multihead attention (HMA-

Net) is proposed for breast ultrasound image segmentation in
which features are extracted from the input ultrasound images
using five contiguous ConvMixer (Trockman and Kolter, 2022)-
based encoder blocks (EMxi ), which utilize enhanced ConvMixer
for improved feature representation across channels. Convolution-

enhanced multihead attention (CEMHA) acts as an intermediary

between the encoder and decoder, extracting significant semantic

information and effectively decreasing the number of channels,

thereby reducing the computational complexity of subsequent

layers. Multihead attention (Georgescu et al., 2023) enables the

model to focus on divergent areas of the image simultaneously,

thereby allowing the model to capture intricate patterns. The

ConvNeXT-based decoder blocks (DCNxi ) generate high-

resolution feature maps from the compressed feature maps

produced by the EMxi blocks. The ConvNeXT (Liu et al., 2022)

involves enhanced convolutions with which the features can be

extracted with increased efficiency compared to the conventional

convolutional networks. Skip connections are established between

the feature maps in the contracting path of the EMxi blocks and the

corresponding layers in the DCNxi , facilitating feature merging

via concatenation to restore the spatial resolution of images.

The HMA-Net model is validated on two datasets of ultrasound

images. The initial dataset is called breast ultrasound image dataset

(BUSI) (Al-Dhabyani et al., 2020), which consists of 780 ultrasound

images in PNG format. The second dataset is a benchmark dataset,

called BrEaST (Pawłowska et al., 2024), of ultrasound images. It

consists of 256 breast images from 256 patients, all of which have

been personally annotated by a skilled radiologist.

The major contributions of this study are as follows:

(1) ConvMixer-based encoders for efficiently extracting and

summarizing the features of input images.

(2) ConvNeXT-based decoders for efficiently reconstructing

feature maps based upon the intricate features received from

the encoder.

(3) Channel-wise feature responses of each channel are

recalibrated using the squeeze and excitation by explicitly

modeling the interdependencies among channels.

(4) A computationally efficient bottleneck, combined with

convolution-enhanced multihead attention, allows for the

simultaneous processing of multiple components of the

input sequence, capturing their intricate relationships.

(5) The encoder, decoder, and enhanced multihead attention

utilize residual connections to combine high-level and low-

level features. It facilitates stable and faster training by

diminishing the problem of vanishing gradients.

(6) Utilization of the combined loss function (Adrian et al.,

2022) enhances the ability of the model to deal with

unbalanced data.

The subsequent sections are organized as follows: Section II

presents a summary of the recent research in the field of breast

ultrasound lesion segmentation. The architecture of the HMA-Net

is elaborated in Section III. Section IV covers experimental results

and discussions. Section V discusses the conclusion.

2 Related works

Researchers have extensively studied breast ultrasound image

segmentation, which is the primary step in breast cancer

detection. Conventional approaches used thresholding-based

methods (Horsch et al., 2001), watershed-based methods (Huang

and Chen, 2004), clustering-based methods (Moon et al., 2014),

graph-based methods (Zhou et al., 2014), etc., for segmentation.

Recently, researchers have utilized deep learning methods based on

convolutional neural networks and proposed various approaches
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for breast ultrasound image segmentation. Üzen (2024) introduced

an encoder–decoder network in which the encoder is based on

ConvMixer, and the decoder utilizes classification techniques.

DenseNet121 is used in the encoder part to obtain semantic and

spatial information, whereas long-range contextual information

is acquired with ConvMixer. The encoder merges and passes

the features to the decoder, which employs a detection and

classification network to obtain the classification and detection

scores. The performance of the approach is analyzed using the

BUSI dataset.

Zhang et al. (2023) introduced a method that includes a

classification branch and a segmentation branch. The classification

branch receives the encoder’s output and classifies the images into

normal and abnormal. The classification branch is responsible

for determining whether the image is benign or cancerous, and

the segmentation branch draws the outlines of the tumors. A

new breast ultrasound dataset has been compiled with 1,600

images, 405 of which were benign, 372 were malignant, and the

rest were normal. Xu et al. (2023) proposed a regional attentive

multitask learning framework for classifying and segmenting

breast ultrasound images. A regional attention module was

designed in which predicted probability maps are utilized to

direct the classifier to learn category-specific information in the

background, peritumoral, and tumor regions, which are then

combined to enhance the feature representation. The model

involves a segmentation and classification network that shares the

features acquired from the encoder. This study used the BUSI and

UDIAT datasets.

Chen et al. (2023) presented a method in which a deeper U-

Net is employed to capture feature information from ultrasound

images. Between the encoder and decoder, the squeeze and

excitation network, acts as a link to enhance attention. Prediction

masks of the ultrasound images are refined by incorporating deep

supervised constraints to the decoding network. The method is

analyzed using two datasets: BUSI and Dataset B (Yap et al., 2017).

Lyu et al. (2023) combined attention mechanisms and multiscale

features for segmenting breast ultrasound images. The authors

performed multidimensional feature extraction using a depthwise

separable convolution strategy on the encoding side and utilized

Global Attention Upsample feature fusion on the decoding side.

Themodel is evaluated using two datasets (Al-Dhabyani et al., 2020;

Piotrzkowska-Wróblewska et al., 2017). Almajalid et al. (2018)

introduced a technique based on U-Net structure, which involves

an expansive path and a contracting path. The contracting path

consists of convolution layers which are then followed by max

pooling for downsampling, and the ReLU activation function is

applied. The expansion path includes upsampling, convolution

layers, and ReLU. The input images were preprocessed using

speckle reduction and contrast enhancement and then post-

processed to remove the noise from the segmented images.

Cho et al. (2022) introduced a multistage approach with U-

Net-based residual feature selection for segmentation, followed by

a classification network. The method obtained a pixel accuracy

of 96.975, intersection over union (IOU) of 73.904, and DC of

82.005 on the BUSI dataset. Vakanski et al. (2020) incorporated

attention blocks into a U-Net framework, enabling the model to

acquire feature representations that prioritize spatial locations with

notable saliency. Tang et al. (2023) presented a fully convolutional

model in which the encoder output is fed to the ConvMixer model

for extracting global context information. The decoder employs

multiscale attention gates to enhance salient features. On the BUSI

dataset, the method obtained 73.27% IOU, precision of 84.81%,

F1 score of 84.16%, recall of 84.26%, and accuracy of 97.33%.

Huang et al. (2021) introduced a fuzzy-based deep learning network

in which breast ultrasound images are transferred to the fuzzy

domain using fuzzy membership functions, which, after decreasing

the uncertainty, are fed to the initial convolutional layer. The

feature maps that are obtained are also converted into the fuzzy

domain. The segmented results obtained are further enhanced

using conditional random fields. Data augmentation is performed

using a wavelet transform. Ilesanmi et al. 92021) introduced a U-

Net-based method with four decoding and four encoding blocks.

The method employed variant-enhanced blocks for encoding,

which comprised a combined average and max pooling technique

together with batch normalization. The decoding architecture

utilizes double concatenated convolutions.

Tong et al. (2021) replaced the convolution module of the

attention U-Net framework’s networking path with the residual

modules, thereby alleviating the gradient explosion problem.

AbdElhakem and Torki (2023) proposed an encoder–decoder

model with the ConvMixer block as the bottleneck between the

encoder and decoder. Shareef et al. (2022) introduced an enhanced

tumor network with a dual encoder architecture for extracting and

combining image context details at various scales. It achieves this by

creating feature maps using multiple kernels. These kernels extract

multiscale tumor context information while conserving tumor

location information. He et al. (2023) proposed a network which

combines global contextual information learnt using transformer

encoder blocks with convolutional neural networks for extracting

features of varying resolutions. The decoder incorporates a spatial-

wise cross-attention module to reduce the semantic mismatch

within the encoder. The model is evaluated on three datasets: BUSI,

BUS (Ilesanmi et al., 2021), and Dataset B (Huang et al., 2020).

Zhang et al. (2024) proposed a hybrid model for breast

ultrasound image segmentation utilizing the long-range

dependencies of transformers and the detailed local representations

of convolutional neural networks. An L-G transformer block

was embedded within the skip connections of the U-shaped

architecture network to integrate global contextual information.

The segmentation performance was enhanced by incorporating

a cross-attention block module on the decoder side to facilitate

interaction among different layers. The model obtained a Dice

coefficient of 88.73% for the UDIAT dataset, 89.48% for the

Breast Lesion Ultrasound Image dataset (BLUI) dataset (Abbasian

Ardakani et al., 2023), and 83.11% for the BUSI dataset.

Zhai et al. (2022) proposed an asymmetric semi-supervised

generative adversarial network, which employs a discriminator

and two generators for adversarial learning. Unlabeled cases can

be utilized to enhance model training as the two generators

mutually guide each other to generate segmentation-predicted

masks without labels. The method was evaluated on three datasets,

namely DBUI, SPDBUI, ADBUI, and SDBUI.

Lin et al. (2023) proposed a dual-stage framework for

the segmentation of breast lesions, utilizing transformer and

Multilayer perceptron. The segmentation performance is enhanced

by combining Swin Transformer block with pyramid-squeezed

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1572433
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sara Koshy and Anbarasi 10.3389/frai.2025.1572433

attention block in a parallel configuration and introducing

bidirectional interactions across branches. The performance of

the model is evaluated using three public datasets, namely

BUSI, MT_BUS, and BUL. The BUL dataset consists of 163

images collected from the UDIAT Diagnostic Center of the Parc

Taul Corporation. MT_BUS consists of 400 breast ultrasound

images, with 200 images of benign breast cancer and 200

of malignant breast cancer. Table 1 compares various breast

ultrasound segmentation methods.

3 Proposed methodology

The proposed hybrid mixer framework with multihead

attention (HMA-Net) incorporates a lightweight spatial-channel

mixing model within its encoder (EMx1 to EMx5 ) to extract robust

features effectively. convolution-enhanced multihead attention

module (CEMHA) serves as the bottleneck between encoder and

decoder, enhancing the long-range dependencies and allowing it

to focus on subtle differences for precise segmentation. In the

decoder (DCNx5 to DCNx1 ), enhanced ConvNeXT (ECN) modules

facilitate upsampling and high-resolution reconstruction, refining

features and accurately capturing boundaries and contours in

breast ultrasound images. Figure 1 displays the architecture of the

hybrid mixer framework with multihead attention (HMA-Net).

3.1 ConvMixer-based encoder blocks
(EMxi)

The complex features from the input ultrasound images (IUSI)

are extracted using five consecutive encoder mixer blocks EMx1

to EMx5 . Downsampled feature maps with reduced dimensions

(OEMxi
) are generated, facilitating an enhanced hierarchical

representation of complex features. The enhanced ConvMixer

modules (ECMs) incorporated squeeze and excitation along with

residual linking for modeling channelwise interdependencies by

adaptively adjusting channel feature responses. The structure of

ConvMixer-based encoder block is shown in Figure 2.

3.1.1 Convolved GeLU block (CBG)
CBG block is designed to capture edge information for accurate

boundary identification. The batch normalization component

stabilizes training and accelerates convergence, while the Gaussian

Error Linear Unit (GeLU) activation introduces enhanced non-

linearity, enriching the extracted features. Convolutions with filters

of size 3 × 3 are performed to generate feature maps emphasizing

distinct features of the input image by extracting local features.

The generated feature maps are stabilized and normalized by

batch normalization (BN), accelerating faster convergence and

enhancing the resilience of the model to variations in the input data

distribution. Non-linearity is introduced by the GeLU activation

function (γ ), enhancing the ability of the model to acquire intricate

relationships within the data and to make accurate predictions on

unfamiliar data. The functioning of the Convolved GeLU block

(CBG) is shown in Equation 1:

OCBG = γ (BN (C3×3 (IUSI))) (1)

3.1.2 Enhanced ConvMixer module
Enhanced ConvMixer module (ECM) integrate depthwise

convolutions, pointwise convolutions and squeeze and excitation

to improve feature extraction and boost the representation power

of the model. Local patterns in the input images are detected

using depthwise convolutions (D3×3), where each input channel

is convolved via separate convolutions instead of applying the

same kernel to all channels, thus extracting spatial features while

maintaining channel independence. Non-linearity is introduced by

passing the feature maps through the GeLU activation function,

allowing the model to learn complex patterns with improved

gradient flow, thus aiding the model to learn slight variations in

input features. Training is accelerated and stabilized by normalizing

the non-linearly transformed feature map.

Channel-wise features are generated by pointwise

convolutions (P1×1), by mixing the information across the

channels, with the application of a 1 × 1 convolution filter

to each and every pixel across all the channels. The spatial

and channel features are integrated by CBG block, facilitating

improved integration of information across channels, thereby

boosting the network’s ability to represent complex patterns.

Spatial features captured by depthwise convolutions and channel

features captured by 1 × 1 convolutions are enhanced by the

GeLU activation function, enabling the network to learn complex

patterns. The output of the convolutions is normalized using batch

normalization to ensure that the activations have a reliable and

consistent distribution (OIECM), as shown in Equation 2.

OIECM = BN(γ (P1×1

(

OCBG

(

BN
(

γ (D3×3 (OCBG))))
)))

(2)

The attention mechanism is incorporated into the ECM module by

adding squeeze-and-excitation (SE) block, thereby enhancing the

model accuracy by giving higher priority to significant features and

reducing the impact of less useful ones. It is a process of adaptively

adjusting the weights of each feature map to selectively enhance

the weight of relevant feature maps, which in turn improves the

representation power of the model. Global average pooling (GAP)

is applied to the feature maps thereby generating a single value for

each channel, hence reducing the spatial dimensions. The global

average pooled vector is mapped into a low-dimensional space

using a dense layer, and the network representation capacity is

enhanced by introducing non-linearity using the ReLU activation

function (DRL). The reduced dimensional vector is mapped back

to its original size using a fully connected layer, and the feature

maps are scaled with sigmoid activation functions (DSD) to generate

channel-wise weights. The channel-wise weights generated are

reshaped (Rs) to match with the dimensions of the input feature

map, as given in Equation 3.

OSE = (Rs(DSD(DRL(GAP(OIECM))))) (3)

The SE block’s output (OSE), that is, the channel-wise weights

generated are multiplied with its input feature map in order to
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TABLE 1 Comparison of various breast ultrasound image segmentation methods.

References Method used Dataset Performance measures

Üzen (2024) ConvMixer-based encoder and
classification-based decoder

BUSI dataset with 780 images Jaccard score–69.23%
Dice score–80.23%

Zhang et al. (2023) Model with U-Net structured segmentation
branch and classification branch

1,600 breast ultrasound images Area under curve (AUC)–99.1%
Dice similarity coefficient (DSC)–89.8%
Jaccard index–79.1%
True positive rate (TPR)–85.9%
False positive rate (FPR)–9.7%

Xu et al. (2023) Regional attentive multitask learning framework UDIAT dataset with 163 breast ultrasound
images

Sensitivity–89.51%
Specificity–99.25%
DSC–85.69%
Accuracy–98.79%
Intersection over union (IOU)–77.84%

BUSI dataset with 780 images Sensitivity–82.54%
Specificity–98.00%
DSC–80.04%
Accuracy–96.4%
IOU–71.93%

Chen et al. (2023) Squeeze-and-excitation attention U-Net BUSI dataset with 780 images Jaccard–70.36%
Precision–79.73%
Recall–82.70%
Specificity–97.42%
Dice–78.51%

Dataset B with 163 breast ultrasound
images

Jaccard–73.17%
Precision–82.58%
Recall–84.02%
Specificity–99.05%
Dice–81.50%

Lyu et al. (2023) Enhanced Pyramid Attention Network integrating
multi-scale features and attention mechanism

BUSI dataset 780 images Accuracy–97.13%
DSC–80.71%
IOU–68.53%
Recall–79.30%
Precision–83.50%
Specificity–98.54%

OASBUD dataset
(Piotrzkowska-Wróblewska et al., 2017)
with ultrasound scans

Accuracy–97.97%
DSC–79.62%
IOU–67.52%
Recall–74.43%
Precision–87.92%
Specificity–99.38%

Almajalid et al. (2018) U-Net architecture 221 breast ultrasound images DSC–82.52%
SI–69.76%
False negative–21.34%
FPR–18.59%
TPR–78.66%

Cho et al. (2022) Multistage segmentation method with
classification and segmentation networks

BUSI dataset with 780 breast ultrasound
images

Accuracy–97.253%
IOU–77.835%
DSC–84.856%

UDIAT dataset with 163 breast ultrasound
images

Accuracy–98.601%
IOU–77.094%
DSC–85.366%

Vakanski et al. (2020) U-Net architecture with attention blocks Dataset of 510 breast ultrasound images
collected from three different hospitals.

DSC–90.5%
Jaccard index–83.8%
TPR–91.0%
FPR–8.9%
Accuracy–98%
AUC–ROC–95.7%

Tang et al. (2023) Encoder–decoder structure with ConvMixer
bottleneck and multiscale attention gates

BUSI with 780 breast ultrasound images IOU–73.27%
Recall–84.26%
Precision–84.81%
F1-value–84.16%
Accuracy–97.33%

(Continued)
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TABLE 1 (Continued)

References Method used Dataset Performance measures

Huang et al. (2021) Fuzzy, fully convolutional neural network Dataset with 325 breast ultrasound images TPR–90.33%
FPR–9.00%
IOU–81.29%

Ilesanmi et al. (2021) VEU-Net Dataset with 264 images Hausdroff distance–7.81 Jaccard
measure–80.07%
Dice measure–90.82%

Dataset with 830 images Hausdroff distance–7.71%
Jaccard measure–79.49%
Dice measure–90.67%

Tong et al. (2021) U-Net with extended residual convolution and
residual convolution

Dataset of 316 breast ultrasound images Dice–92.8%
Specificity–97.9%
Sensitivity–85.0%
Accuracy–95.9%
AUC–94.1%
F1 score–87.3%
Recall–84.6%
Precision–90.2%

AbdElhakem and Torki
(2023)

Encoder–decoder structure with ConvMixer block
as bottleneck

BUSI dataset with 780 breast ultrasound
images

IOU–68.17%
Dice score–80.60%

Shareef et al. (2022) Enhanced small tumor-aware network BUSI dataset with 780 breast ultrasound
images

TPR–80%
FPR–36%
Jaccard Index–70%
DSC–78%

BUSIS dataset with 562 images TPR–91%
FPR–7%
Jaccard index –86%
DSC–92%

Dataset B with 163 BUS images TPR–84%
FPR–22%
Jaccard index –74%
DSC–82%

He et al. (2023) Hybrid CNN transformer with transformer
encoder blocks and spatial-wise cross-attention in
the decoder.

BUSI dataset with 780 breast ultrasound
images

Dice–82%
Accuracy–96.94%
Jaccard–71.84%
Recall–82.14%
Precision–83.24%
HD–34.55%

BUS dataset with 163 breast ultrasound
image dataset

Dice- 84.13%
Accuracy–98.49%
Jaccard–73.83%
Recall–83.19%
Precision–88.50%
Hausdorff distance–21.66%

Dataset B with 320 images Dice–97.23%
Accuracy–97.41%
Jaccard–94.63%
Recall–97.33%
Precision–97.14%
Hausdorff distance–19.35%

Zhang et al. (2024) Hybrid CNN transformer with L-G transformer
block is embedded into the skip connections of the
Ushape architecture and cross-attention module
on the decoder.

UDIAT dataset Dice coefficient–88.73± 2.11 Hausdorff
distance–3.64± 2.26 IOU–81.22± 2.30
Accuracy–99.03± 0.32 Specificity–99.60
± 0.12 Precision–88.68± 2.25

BLUI dataset Dice coefficient–89.48± 0.44 Hausdorff
distance–5.38± 0.66 IOU–82.12± 0.85
Accuracy–96.96±0.42 Specificity–98.17
± 0.29 Precision–89.93± 1.15

BUSI dataset Dice coefficient–83.11± 2.07 Hausdorff
distance–10.67± 2.44 IOU–75.26
± 2.08 Accuracy–96.80±0.16
Specificity–98.52± 0.24
Precision–86.08± 2.52

(Continued)
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TABLE 1 (Continued)

References Method used Dataset Performance measures

Zhai et al. (2022) Asymmetric semi-supervised generative
adversarial network

DBUI IOU–0.7683 Accuracy–0.9760 Dice
coefficient–0.8690

SPDBUI IOU–0.8852 Accuracy–0.9508 Dice
coefficient–0.9391

ADBUI IOU–0.6187 Accuracy–0.9605 Dice
coefficient–0.7644

SDBUI IOU–0.7123 Accuracy–0.9589 Dice
coefficient–0.8319

Lin et al. (2023) Transformer and multilayer perceptron BUSI Dice: Benign–0.8127±0.2178,
malignant–0.6939±0.2401 IOU:
Benign–0.7269±0.2370,
malignant–0.5754±0.2448 Precision:
Benign–0.7932±0.2382,
malignant–0.6943±0.2594 Sensitivity:
Benign–0.8873±0.1950,
malignant–0.7679±0.2588 HD:
Benign–3.75±1.83,
malignant–5.88±1.61

MT_BUS Dice–0.8016±0.1722
IOU–0.6975±0.2030
Precision–0.8021±0.1976
Sensitivity–0.8465±0.1780
HD–4.72±2.04

BUL Dice–0.8698±0.1200
IOU–0.7852±0.1502
Precision–0.8938±0.1263
Sensitivity–0.8717±0.1374
HD–3.30±1.18

FIGURE 1

Architecture of the HMA-net.

recalibrate the feature maps, as shown in Equation 4.

OSE = OSE ⊗ OIECM (4)

Ultimately, the ECM reintegrates the recalibrated featuremaps with

the input using a residual link, which facilitates the flow of gradients

and improves the network’s ability to represent information, as in

Equation 5.

OECM = OSE ⊕ OCBG (5)

The architecture of the ECM is given in Figure 3.
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FIGURE 2

ConvMixer-based encoder block.

FIGURE 3

Enhanced ConvMixer module (ECM).

FIGURE 4

Architecture of the convolution enhanced multihead attention (CEMHA) module.

3.1.3 Max pooling
The feature maps from the ECM blocks are downsampled

(M2X2), as in Equation 6, to enhance the learning ability of the

model by capturing high-level features at varying spatial scales.

Translational invariance is provided so that the model can detect

lesions irrespective of their position in the image, which results in

improved generalization.

OEMxi
= M2X2(OECM) (6)

3.2 Convolution-enhanced multihead
attention module (CEMHA)

The convolution-enhanced multihead attention (CEMHA)

emphasize the relevant features across distinct regions of the image,

ensuring that themasks generated by the decoder will closely follow

the lesion boundaries, thus aiding in the accurate identification

of lesions. The architecture of the CEMHA module is shown in

Figure 4.

The downsampled feature maps from the EMxi blocks are

enhanced by the convolved GeLU block, thus improving the ability

of the model to process and comprehend the underlying structure

of the input data and stabilizes the training process. Long-range

diverse dependencies across different parts of the images are

captured using four distinct heads, each of which focuses on a

specific pattern in the image, thus allowing the model to maintain

context by comprehending the relation between different areas of

the image. The enhanced feature map F is linearly transformed

into a query(F.Wq), key(F.Wk) and value (F.Wv) matrices, which,

in turn, calculate the attention score. The similarity between the

query and key matrices is calculated (
(

F.Wq

)

(F.Wk)
T) and scaled

by (
√

d
h
) to stabilize for larger dimensions. The attention scores

are normalized using the softmax activation function (σ ), and the

most significant features from the input featuremap are aggregated,

allowing the model to integrate global and local contextual details.

The computations inside each attention unit (h) are shown in
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FIGURE 5

Architecture of the ConvNeXT-based decoder (DCNxi ) block.

Equation 7. The output dimension of each attention head is dmodel
h

where dmodel represents the dimensionality of the model.

Head(F)i = F.Wv σ





(

F.Wq

)

(F.Wk)
T

√

d
h



 ∈ R

dmodel
h

×n (7)

The attention scores calculated by the four distinct heads are

merged to obtain Multihead(F)i , as in Equation 8, with output

dimension dmodel, facilitating the ability of themodel to concentrate

on distinct segments of the input image concurrently, effectively

collecting many facets of the data. The model is thus enabled to

generalize better for different types of input images.

Multihead(F)i = Con
[

head(F)1, . . . , head(F)h
]

∈ Rd×n (8)

The output of the attention is transformed back to its original

number of channels by convolving with a filter of size 1× 1 (C1×1).

The refined feature maps generated are appended with its input

to enable the smooth flow of gradients throughout the network,

thereby alleviating the issues of vanishing gradient problems and

aiding in learning efficient representations, as shown in Equation 9.

O (CEMHA) = ((C1×1(Multihead (OCBG (F))))⊕ F) (9)

The residual connections are integrated to enhance segmentation

accuracy and training stability Equation 9. The actual input is

integrated with the attention-enhanced features, allowing the

model to combine both the original features and globally attended

information. This approach promotes the smooth flow of gradients

and reduces the vanishing gradient problem. Intricate contextual

information is preserved, facilitating the precise delineation

of tumor boundaries. The convolution-enhanced multihead

attention with residual connections (CEMHA) ensures the balanced

integration of learned attention-driven features while maintaining

training stability and efficient convergence.

3.3 ConvNeXT-based decoder blocks
(DCNxi)

The output feature maps from the convolution-enhanced

multihead attention (O (CEMHA)) are upsampled and concatenated

with the corresponding feature maps from the EMxi , which

increased the resolution of the feature maps to that of the original

image, and the segmentation masks were generated. The detailed

architecture of the ConvNeXT-based decoder blocks (DCNxi )

are shown in Figure 5. In each DCNxi block with enhanced

ConvNeXT (ECN), the spatial dimensions of the downsampled

refined feature map are increased by transposed convolutions

(CT2×2
) while lowering the number of channels. The upsampled

feature map from the transposed convolutions is batch normalized

to accelerate the training process, ensuring that the input to the

succeeding GeLU activation layer has a uniform distribution.

The downsampled feature maps from each EMxi block after

center cropping (Cr(OEMxi
) ) has been concatenated with

the corresponding upsampled feature map from DCNxi block,

resulting in a merged feature map by combining semantic

information with the spatial information. This enabled the DCNxi

to get a comprehensive understanding of the data, utilizing both

the low level and high level features. The concatenated feature map

is further refined with the Enhanced ConvNeXT (ECN) module as

shown in Equation 10.

ODCNxi = (f ECN(γ (BN(CT2×2
(O (CEMHA)))))+ Cr(OEMxi

)) (10)

Enhanced ConvNeXT module extracts spatial features

independently from each channel by convolving separately

with filters of size 7 ((Dconv(x)) resulting in feature maps with

better representation. The spatially significant features are

normalized to mitigate the effect of internal covariance shift during

training by calculating the mean and variance of the inputs of every

individual sample (LN). The normalized features are mapped back

to the original dimensions (C1×1) and the input (x) is added. The

mixing of features across the channels is enhanced by two 1 × 1

convolutions, with the first convolution expanding the feature

channels by 4 (C4∗
1×1) which enhanced the feature refining and

mixing capacity of the model before bringing it back to its original
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number of filter channels with the second convolution(C1×1).

The capacity of the model to recalibrate channel-specific feature

responses is improved by integrating squeeze-and-excitation

(SE) block, highlighting informative features and reducing the

prominence of less valuable ones, which results in enhanced

segmentation accuracy and improved feature refinement while

generating the image segments. The functioning of the ECN

module is given in Equation 11.

fECN = SE(C1×1(γ (C
4∗
1×1(C1×1(LN(Dconv

(x)))+ x)))) (11)

3.4 Combined loss function

A combined loss function, which integrates two loss functions,

is used for training the model, by which the segmentation

performance can be optimized. The discrepancy between the actual

label and the predicted label is measured by using the binary cross

entropy function and performs best when the data distribution is

uniform. However, this alone cannot be used for training where

the tumor occupies only a small fraction of the image due to

class imbalance.

To address this issue, dice loss is integrated with binary cross

entropy. The extent to which the true mask and predicted mask

overlapped is assessed using dice loss function, with an emphasis on

the regions where the two intersect. The combined loss is calculated

as in Equation 12.

Combined loss =
1

M

N
∑

i=1

−
[

yi. log
(

yi
)

+ log
(

1− yi
)

.
(

1− yi
)]

+ 1−
2.

∑N
i=1 yi.yi

∑N
i=1 yi +

∑N
i=1 yi

(12)

Here, yi is the predicted probability, M is the total number of

samples, and yi is the actual label. Binary cross entropy loss

guarantees that each pixel is classified correctly and, the accurate

segmentation is ensured by dice loss. The performance of themodel

is enhanced by the effective utilization of these two losses.

4 Experimental results and discussions

This section offers a detailed description of the dataset,

experimental setup, data preprocessing and augmentation

methods, evaluation metrics, ablation study, and performance

evaluation. Various performance measures are utilized to access

the performance of the proposed HMA-Net.

4.1 Dataset description

The proposed HMA Net model is validated on two datasets—

the BUSI dataset and the BrEaST dataset. The first dataset used

is BUSI, which is a public benchmark dataset with 780 PNG

images categorized into three classes—benign, malignant, and

normal. Each image of size 500 × 500 pixels is further enhanced

by a corresponding ground truth annotation that offers precise

segmentation masks for the tumors. The data were gathered from a

group of 600 female patients, ranging in age from 25 to 75, during

the year 2018 at the Baheya Hospital. Sample images and masks

from the BUSI dataset are shown in Figure 6. The BUSI dataset

presents a balanced depiction of various breast abnormalities

through a varied assortment of benign, malignant, and normal

cases of breast ultrasound images. It is ideal for segmentationmodel

evaluation and training in practical clinical circumstances due to

its diversity.

The BrEaST dataset is comprised of 256 images obtained from

256 patients. The dataset comprises 98 instances of cancer, 154

instances of benign lesions, and four instances of normal tissue

images. The initial stage in constructing the dataset involved

anonymising, gathering, and transferring the data. In order to

safeguard the confidentiality of patients, any identifiable data have

been eliminated from the images. Figure 7 shows sample images

and masks from the BrEaST dataset. In order to ensure high-

quality and clinically appropriate labels for both tumors and

surrounding areas, the BrEaST dataset was manually annotated by

skilled radiologists. For accuratemodel evaluation inmedical image

segmentation tasks, this level of precision is necessary. The dataset

is divided into two parts: 20% is used for testing and 80% is used

for training.

4.2 Experimental setup

The task was implemented on a cloud computing platform

known as Google Colab notebooks. The utilization of this

cloud-based technology facilitated the training and execution

of the deep learning model with enhanced efficiency. The

HMA − Net model was implemented using the Python

programming language and various important libraries, such

as Keras, matplotlib, Tensorflow, OS, and sklearn, were used

throughout the implementation process.

4.3 Data preprocessing and augmentation

In order to improve the effectiveness of the network training

process, the size of the input image of the network structure is

resized to 128 × 128. A significant amount of training data is

necessary for deep neural networks in order to obtain performance

levels that are adequate. The process of data augmentation is carried

out with the purpose of artificially increasing the quantity of the

dataset by generating new versions of the images that are already

there, thus overcoming the issues that are associated with having

limited data. Random flips in horizontal and vertical directions are

applied to the masks and images. Images and masks are randomly

shifted horizontally by up to 10% of their width and randomly

shifted vertically by up to 10% of their height. Images and masks

are randomly zoomed up to 20% and are randomly rotated with

a rotation angle of up to 20 degrees. The pixels that move outside

of the image are filled by fill_mode to the nearest, which fills the

empty region with the pixel that is adjacent to it. The sample

augmented data from the BUSI and BrEaST datasets are displayed

in Figures 8a, b, respectively.
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FIGURE 6

(a–c) Benign, malignant, and normal images from the BUSI dataset. (d–f) Masks corresponding to (a–c).

FIGURE 7

(a–c) Breast ultrasound images. (d–f) Masks from the BrEaST dataset.

4.4 Evaluation metrics of the proposed
architecture

The model is accessed using various evaluation metrics,

including the Jaccard similarity index (JI), accuracy, Dice similarity

coefficient (DSC), precision, recall, and AUC. The Jaccard index

is employed to assess the degree of similarity or variation among

sets. The Jaccard index can be used to determine how similar the

predicted image is to the ground truth image. Let P be the ground

truth mask and Q be the predicted mask; the Jaccard index is given

as in Equation 13.

JI (P,Q) =

∑

(P.Q)
∑

(P + Q− P.Q)
(13)

The DSC is a statistical metric employed to assess the resemblance

between two sets of data. The measurement quantifies the extent to

which the predicted segmentation mask and the ground truth mask

overlap. The equation for DSC is given in Equation 14.

DSC =
2 |P ∩ Q|

|P| + |Q|
(14)

Segmentation accuracy is the metric used to evaluate the pixels that

are correctly classified in the image that has been segmented. It is

defined as the ratio of the total number of true positive and true

negative pixels to the total number of pixels in the image, as in

Equation 15.
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FIGURE 8

Sample augmented images and masks from the (a) BUSI dataset, (b) BrEaST dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Recall measures the ability of the model to accurately detect tumor

areas. It is the percentage of actual positive cases (tumor pixels) that

the segmentation model correctly identifies as positive, as given by

Equation 16.

Recall =
TP

TP + FN
(16)

Precision is defined as the ratio of the number of pixels that are

correctly predicted as tumorous to the total number of samples that

are predicted as tumorous as in Equation 17.

Precision =
TP

TP + FP
(17)

AUC refers to area under receiver operating characteristic curve

in which true positive rate (TPR) is plotted against false positive

rate (FPR). The higher the AUC, the better the performance of

the model.

4.5 Ablation studies

Ablation studies were implemented to investigate the impact

of enhanced ConvMixer (ECM), convolution-enhanced multihead

attention (CEMHA) and the enhanced ConvNeXT (ECN) modules

on the segmentation of breast ultrasound images. The basic

model without ConvMixer and ConvNeXT modules (Model 1)

was initially implemented. ECMs were integrated next (Model 2)

to assess its impact on the performance of the model. The next

enhancement was to integrate enhanced ConvNeXT (Model 3),

followed by the addition of a convolution-enhanced multihead

attention module (HMA-Net). The efficiency of each model was

evaluated on the BUSI and BrEaST datasets using the Jaccard

index, DSC, accuracy, precision, and recall. Training and validation

accuracy and loss curves for each model (Figures 9, 10 for Model 1,

Figures 11, 12 for Model 2, and Figures 13, 14 for Model 3) along

with visualizations of segmentations (Figures 15a, b for Model 1,

Figures 16a, b for Model 2, and Figures 17a, b for Model 3) are

also presented, demonstrating the incremental enhancement in

segmentation performance across all the stages.

4.5.1 Performance analysis of model 1 (base
model)

The base model has an encoder–decoder structure with

symmetrical layers that perform downsampling and upsampling

operations on the input image, respectively. The encoder section

consists of five blocks, each consisting of a convolutional layer,

batch normalization and GeLU activation. Downsampling is

accomplished by employing max pooling layers. The bottleneck

utilizes a simple structure that incorporates additional convolution

and normalization layers. The decoder section of the model uses

Conv2DTranspose layers to increase the resolution of the feature

maps. This base model, without the use of ConvMixer, ConvNeXT,

and a simple bottleneck with convolutions (instead of multihead

attention), attained a Jaccard index of 50.47% for the BUSI dataset,

and for the BrEaST dataset, the Jaccard index was 44.71%. The

DSCs obtained were 67.08% for the BUSI dataset and 61.79% for the

BrEaST dataset. The accuracy, precision, and recall values obtained
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FIGURE 9

(a) Training and validation accuracy for Model 1 on the BUSI dataset. (b) Training and validation loss for Model 1 on the BUSI dataset.

FIGURE 10

(a) Training and validation accuracy for Model 1 on the BrEaST dataset. (b) Training and validation loss for Model 1 on the BrEaST dataset.

were 95.69%, 84.29%, and 55.71% for the BUSI dataset, and 96.13%,

89.69%, and 47.13% for the BrEaST dataset, respectively. The

training and validation accuracy for Model 1 on the BUSI dataset is

shown in Figure 9a, and the training and validation loss is displayed

in Figure 9b. The training and validation accuracy for Model 1 on

the BrEaST dataset is displayed in Figure 10a, and the training and

validation loss is displayed in Figure 10b. The visualizations of the

segmentation results for Model 1 on the BUSI dataset are shown in

Figure 11a, while the results for the BrEaST dataset are shown in

Figure 11b.

4.5.2 Performance analysis of model 2 (enhanced
ConvMixer modules integrated with the base
model)

Enhanced ConvMixer modules were added to the encoder

blocks of Model 1, significantly improving the ability of the model

to capture spatial patterns. It allowed the model to effectively

integrate spatial and channel information, enabling it to focus on

relevant features. The integration of ECMmodules also reduced the

risk of vanishing gradient problems, resulting in effective training

and improved performance. For the BUSI dataset, the model

obtained a Jaccard index of 83.22%, a DSC of 90.84%, an accuracy

of 98.52%, a precision of 91.97%, and a recall of 88.52%. For the

BrEaST dataset, the Jaccard index was 80.57%, the DSCwas 89.24%,

the accuracy was 98.60%, the precision was 91.28%, and the recall

was 87.30%.

The training and validation accuracy of Model 2 on the BUSI

dataset is shown in Figure 12a, and the training and validation loss

is displayed in Figure 12b. The training and validation accuracy

of Model 2 on the BrEaST dataset is shown in Figure 13a, and

the training and validation loss is shown in Figure 13b. The

visualizations of the segmentation results obtained using Model 2

on the BUSI dataset are shown in Figure 14a, while those for the

BrEaST dataset are presented in Figure 14b.

4.5.3 Performance analysis of model 3 (enhanced
ConvNeXT modules integrated with model 2)

The next enhancement made was to integrate enhanced

ConvNeXT (ECN)modules into the five contiguous decoder blocks

of Model 2. It improves the feature representation ability of the

model, and high-resolution segmentationmaps can be generated by

combining transposed convolutions with ConvNeXT. The model

achieved a Jaccard index of 91.79%, a DSC of 95.72%, an accuracy

of 99.32%, a precision of 93.36%, and a recall of 98.20% on the

BUSI dataset. For the BrEaST dataset, the Jaccard index was 85.08%,

the DSC was 91.94%, the accuracy was 98.94%, the precision was

93.28%, and the recall was 90.64%. The training and validation

accuracy of Model 3 on the BUSI dataset is shown in Figure 15a,
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FIGURE 11

Visualizations of the segmentation result for the Model 1 on the (a) BUSI dataset (b) BrEaST dataset.

FIGURE 12

(a) Training and validation accuracy of Model 2 on the BUSI dataset. (b) Training and validation loss of Model 2 on the BUSI dataset.

and the training and validation loss is displayed in Figure 15b.

Similarly, the training and validation accuracy of Model 3 on the

BrEaST dataset is displayed in Figure 16a, and the training and

validation loss is shown in Figure 16b. The visualizations of the

segmentation results of Model 3 on the BUSI dataset are displayed

in Figure 17a, while the results obtained with the BrEaST dataset

are shown in Figure 17b.

The Jaccard index, DSC, recall, accuracy, and precision

obtained for Model 1, Model 2, and Model 3 are displayed

in Table 2. Model 1 (the base model) obtained lower Jaccard

and Dice scores, demonstrating its limited ability for precise

segmentation. Visualization results show that the lesion boundaries

are poorly defined due to the restricted expressive power of

conventional convolutional layers in the encoder and decoder.

The performance was enhanced with the addition of ECMs in

Model 2, which utilized depthwise and pointwise convolutions for

reduced computational complexity, in conjunction with squeeze

and excitation to improve the integration of spatial and channel

features. The model obtained higher Dice scores of 90.84% on the

BUSI dataset and 89.24% on the BrEaST dataset, demonstrating

improved generalization. Visualization of the segmentation results

also indicates clearer tumor contours. Enhanced ConvNeXT

modules were integrated within the decoder, resulting in Model

3. The ECN blocks enhanced the upsampled representations

through depthwise convolution, channel mixing, and recalibration

utilizing SE layers. The squeeze and excitation layer in the encoder

and decoder reduces the parameter overhead while enhancing

feature selection. High-resolution masks were reconstructed with
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FIGURE 13

(a) Training and validation accuracy of Model 2 on the BrEaST dataset. (b) Training and validation loss of Model 2 on the BrEaST dataset.

FIGURE 14

Visualizations of the segmentation results of Model 2 on the (a) BUSI dataset (b) BrEaST dataset.

sharper boundaries and reduced false positives. Intricate semantic

information can be retrieved as indicated by a recall value of 98.20%

on the BUSI dataset and 90.64% on the BrEaST dataset.

5 Experimental results and
performance analysis of proposed
HMA-Net

A detailed analysis of the proposed hybrid mixer framework

with multihead attention for breast ultrasound image segmentation

(HMA-Net) is carried out in this session. The HMA-Net utilized

EMxi blocks with enhanced ConvMixer for capturing multiscale

features at varying stages from the input ultrasound images and

is converted into a sequence of more detailed and compact

representations with reduced resolutions, which in turn is used

by the DCNxi blocks to perform effective segmentations. The

spatial resolutions of the extracted feature maps are restored

to the original level of the input image by the DCNxi blocks

using transposed convolutions and enhanced ConvNeXT modules.

The CEMHA module with normalized convolutions and multihead

attention with residual connections escalates the feature extraction

property of HMA-Net by allowing the model to concentrate

more on relevant features. The convolution-enhanced multihead
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FIGURE 15

(a) Training and validation accuracy of Model 3 on the BUSI dataset. (b) Training and validation loss of Model 3 on the BUSI dataset.

FIGURE 16

(a) Training and validation accuracy of Model 3 on the BrEaST dataset. (b) Training and validation loss of Model 3 on the BrEaST dataset.

attention allows the capture of contextual dependencies between

various components of the image, thus empowering the model to

differentiate minute differences in the breast ultrasound images.

The implementation of spatial attention at the bottleneck via

CEMHA avoids the need for spatial attention across all the layers,

thereby reducing computational complexity while capturing global

contextual dependencies.

For the BUSI dataset, the model achieved a Jaccard index of

98.04% and a DSC of 99.01%. The model is efficient in detecting

actual tumor regions, indicated by a recall of 99.09%. Precision

and accuracy obtained were 99.06% and 99.85%, respectively. This

is important in medical diagnosis to prevent missed detections.

The values obtained indicate the ability of the model to correctly

identify both tumor and non-tumor regions. The results obtained

for the BrEaST dataset are as follows. The model achieved a

Jaccard index of 94.84% and a DSC of 97.35%. The model can

correctly identify tumor and non-tumor regions, as demonstrated

by an accuracy of 99.65% and a precision of 98.67%. The recall

achieved was 96.03%. In summary, based on the evaluation of the

two datasets, these findings indicate that the model has significant

potential for clinical use in precisely delineating breast tumors from

ultrasound images, hence assisting in the timely identification and

diagnosis of breast cancer. The summary of the results obtained is

shown in Table 3.

The training and validation accuracy obtained for the proposed

HMA-Net on the BUSI dataset is displayed in Figure 18a, and the

training and validation loss obtained is displayed in Figure 18b.

Figure 19a displays the training and validation accuracy obtained

for the HMA-Net on the BrEaST dataset, and the training and

validation loss for the BrEaST dataset is shown in Figure 19b.

HMA-Net obtained AUC values of 0.9950 for the BUSI dataset

and 0.9797 for the BrEaST dataset. These values indicate that the

model is highly effective in differentiating background pixels from

tumor regions. The AUC curve obtained for the BUSI dataset is

displayed in Figure 20a, and the BrEaST dataset is presented in

Figure 20b. The visualizations of the segmentation results obtained

for the BUSI dataset are displayed in Figure 21a, while those for the

BrEaST dataset are displayed in Figure 21b.

The results obtained in Table 3 for the BUSI and BrEaST

demonstrate that the proposedHMA-Net can be effectively used for

the segmentation of tumor regions. The performance of the HMA-

Net is due to the combined contribution of various components—

ECMs in the encoder, enhanced ConvNeXT modules (ECN)

in the decoder, and convolution-enhanced multihead attention

(CEMHA) at the bottleneck. The ECM blocks improve spatial

feature extraction using depthwise and pointwise convolutions,

utilizing SE techniques for adaptive channel recalibration, enabling

the model to prioritize relevant features and diminish noise. The
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FIGURE 17

Visualizations of the segmentation results of Model 3 on the (a) BUSI dataset and (b) BrEaST dataset.

TABLE 2 Performance analysis of model 1, model 2, and model 3.

Model Jaccard index (%) Dice similarity coe�cient (%) Recall (%) Accuracy (%) Precision (%)

BUSI dataset

Model 1 50.47 67.08 55.71 95.69 84.29

Model 2 83.22 90.84 88.52 98.52 91.97

Model 3 91.79 95.72 98.20 99.32 93.36

BrEaST dataset

Model 1 44.71 61.79 47.13 96.13 89.69

Model 2 80.57 89.24 87.30 98.60 91.28

Model 3 85.08 91.94 90.64 98.94 93.28

ECN blocks further enhance the upsampled features, guaranteeing

precise reconstruction of segmentation masks with more defined

lesion boundaries. The local and global feature representations

are merged using CEMHA module by integrating convolutional

processing and multihead attention, thereby allowing the network

to capture long-range relationships and contextual information

essential for accurate tumor localization.

6 Comparison of the HMA-Net with
the state-of-the-art architectures

Table 4 provides a comparison between the HMA-Net and the

other models. The method introduced by Üzen (2024) obtained a

Jaccard index of 69.23% and a DSC of 80.23% on the BUSI dataset.

TABLE 3 Results obtained by the HMA-Net for the two di�erent datasets.

Performance
metrics

BUSI dataset BrEaST
dataset

Jaccard index 98.04% 94.84%

Dice similarity coefficient 99.01% 97.35%

Recall 99.09% 96.03%

Accuracy 99.85% 99.65%

Precision 99.06% 98.67%

Zhang et al. (2023) introduced a method for breast ultrasound

image classification and segmentation and obtained a DSC of

89.8%, a Jaccard index of 79.1% and a recall of 85.9%. The regional
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FIGURE 18

(a) Training and validation accuracy of the HMA-Net on the BUSI dataset. (b) Training loss and validation loss of the HMA-Net on the BUSI dataset.

FIGURE 19

(a) Training and validation accuracy of the HMA-Net on the BrEaST dataset. (b) Training and validation loss of the HMA-Net on the BrEaST dataset.

attentivemultitask learning framework proposed by Xu et al. (2023)

was evaluated on two datasets, obtaining DSC values of 85.69%

and 80.04%, sensitivity values of 89.51% and 82.54%, specificity

values of 99.25% and 98.00%, accuracy values of 98.79% and 96.4%,

and IOU values of 77.84% and 71.93%. The method introduced

by Chen et al. (2023) was evaluated on two different datasets to

obtain Jaccard index values of 70.36% and 73.17%, DSC values

of 78.51% and 81.50%, specificity values of 97.42% and 99.05%,

precision values of 79.73% and 82.58%, and recall values of 82.70%

and 84.02%. The method proposed by Lyu et al. (2023) was also

evaluated using two datasets with the DSC values of 80.71% and

79.62%, specificity values of 98.54% and 99.38%, accuracy values of

97.13% and 97.97%, precision values of 83.5% and 87.95%, recall

values of 79.3% and 74.43%, and IOU values of 68.53% and 67.52%.

The method proposed by Almajalid et al. (2018) secured a DSC of

82.52%, a TPR of 78.66%, an FPR of 18.59%, and a FNR of 21.34%.

The method proposed by Cho et al. (2022) obtained a pixel

accuracy of 97.253%, an IOU of 77.835%, and a Dice coefficient

of 84.856% on the BUSI dataset. For the UDIAT dataset, the same

method achieved a pixel accuracy of 98.601%, an IOU of 77.094%,

and a Dice coefficient of 85.366%. Attention blocks enhanced U-

Net architecture proposed by Vakanski et al. (2020) attained a

Jaccard index of 83.8%, a DSC of 90.5%, a TPR of 91.0%, an

FPR of 8.9%, and an accuracy of 98.0%. The ConvMixer-based

model for ultrasound image segmentation proposed by Tang et al.

(2023) obtained an IOU of 84.75 ± 0.30, a recall of 91.53 ± 0.37,

a precision of 92.02±0.13, an F1 score of 84.16 ± 0.47 and an

accuracy of 97.33± 0.14 on the BUSI dataset. An IOU of 81.29%, an

FPR of 9.00%, and a Recall of 90.33% were obtained for fuzzy deep

learning network-based breast ultrasound image segmentation

proposed by Huang et al. (2021). Themethod proposed by Ilesanmi

et al. (2021) obtained a Dice measure of 89.73%. The method

proposed by Tong et al. (2021) obtained a Dice coefficient of 95.9%,

a sensitivity of 97.9%, an accuracy of 85%, and a specificity of 92.8%.

The method proposed by AbdElhakem and Torki (2023)

secured an IOU of 68.17% and a Dice score of 80.60%. The model

introduced by Shareef et al. (2022) was evaluated on three different

datasets, obtaining Jaccard index values of 70%, 86%, and 74%,

DSC values of 78%, 92%, and 82%, TPR values of 80%, 91% and

84%, and FPR values of 36%, 7%, and 22%, respectively. The hybrid

convolutional neural network proposed by He et al. (2023) was

also evaluated on three different datasets, achieving Jaccard index

values of 71.84%, 73.83%, and 94.63%, DSCs of 82%, 84.13%, and

97.23%, accuracy values of 96.94%, 98.49%, and 97.41%, precision
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FIGURE 20

AUC curve obtained for the (a) BUSI dataset and (b) BrEaST dataset.

FIGURE 21

Visualization of the segmentation results of HMA-Net on (a) BUSI dataset and (b) BrEaST dataset.

values of 83.24%, 88.50%, and 97.14%, and recall values of 82.14%,

83.19%, and 97.33, respectively. Themodel proposed by Zhang et al.

(2024) obtained a Dice coefficient of 88.73% for the UDIAT dataset,

89.48% for the BLUI dataset, and 83.11% for the BUSI dataset, while

the corresponding accuracy values were 99.03± 0.32, 96.96± 0.42,

and 96.80± 0.16.

The method proposed by Zhai et al. (2022) obtained DSC of

0.8690, 0.9391, 0.7644, and 0.8319 on DBUI, SPDBU, ADBUI, and

SDBUI datasets, respectively. The corresponding accuracy values of

these datasets were 0.9760, 0.9508, 0.9605, and 0.9589. The method

proposed by Lin et al. (2023) obtained DSCs of 0.8127 ± 0.2178,

0.6939± 0.2401, 0.8016± 0.1722, and 0.8698± 0.1200 on the BUSI

benign, BUSI malignant, MT_BUS, and BUL datasets, respectively.

In contrast, the precision values obtained were 0.7932 ± 0.2382,

0.6943 ± 0.2594, 0.8021 ± 0.1976, and 0.8938 ± 0.1263 for the

same datasets.

The HMA-Net model obtained better results than prior

techniques, such as U-Net, U-Net++, and ConvMixer-based

architectures, by combining global and local feature extraction.

The model utilized EMxi blocks integrated with ECMs to

capture varied characteristics through depthwise and pointwise

convolutions, while squeeze-and-excitation (SE) recalibrate

channel-wise responses for improved feature representation.

Enhanced ConvNeXT based DCNxi blocks further refine the
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TABLE 4 Comparison of the HMA-Net with the state-of-the-art architectures.

References Dataset Jaccard
index (%)

Dice similarity
coe�cient (%)

Recall
(%)

Accuracy
(%)

Precision (%)

Üzen (2024) BUSI 69.23 80.23

Zhang et al. (2023) 1,600 breast ultrasound
images

0.791 0.898 85.9

Xu et al. (2023) UDIAT 77.84 85.69 89.51 98.79

BUSI 71.93 80.04 82.54 96.4

Chen et al. (2023) BUSI 70.36 78.51 82.70 79.73

Dataset B 73.17 81.50 84.02 82.58

Lyu et al. (2023) BUSI 68.53 80.71 79.30 97.13 83.5

OASBUD 67.52 79.62 74.43 97.97 87.92

Almajalid et al. (2018) 221 breast ultrasound images 82.52 78.66

Cho et al. (2022) BUSI 77.835 84.856 97.253

UDIAT 77.094 85.366 98.601

Vakanski et al. (2020) Dataset of 510 breast
ultrasound images

0.838 0.905 0.910 0.980

Tang et al. (2023) BUSI 73.27% 84.26 97.33 84.81

Huang et al. (2021) Dataset with 325 breast
ultrasound images

81.29 90.33

Ilesanmi et al. (2021) Dataset with 264 images 89.73

Tong et al. (2021) Dataset with 830 images 0.959 0.979 0.850

AbdElhakem and Torki (2023) Dataset of 316 breast
ultrasound images

68.17 80.60

Shareef et al. (2022) BUSI 0.70 0.78 0.80

BUSIS 0.86 0.92 0.91

Dataset B 0.74 0.82 0.84

He et al. (2023) BUSI 71.84 82 82.14 96.94 83.24

BUS 73.83 84.13 83.19 98.49 88.50

Dataset B 94.63 97.23 97.33 97.41 97.14

Zhang et al. (2024) UDIAT 88.73± 2.11 99.03± 0.32 88.68± 2.25

BLUI 89.48± 0.44 96.96±0.42 89.93± 1.15

BUSI 83.11± 2.07 96.80±0.16 86.08± 2.52

Zhai et al. (2022) DBUI 0.8690 0.9760

SPDBUI 0.9391 0.9508

ADBUI 0.7644 0.9605

SDBUI 0.8319 0.9589

Lin et al. (2023) BUSI Benign 0.8127± 0.2178 0.7932± 0.2382

BUSI Malignant 0.6939± 0.2401 0.6943± 0.2594

MT_BUS 0.8016± 0.1722 0.8021± 0.1976

BUL 0.8698± 0.1200 0.8938± 0.1263

HMA-Net BUSI 98.04 99.01 99.09 99.85 99.06

BrEaST 94.84 97.35 96.03 99.65 98.67

Bolded values represent the performance of the proposed method (HMA-Net).

upsampled features by integrating residual connections and

channel mixing, facilitating the precise reconstruction of

segmentation masks.

Unlike previous architectures that prioritize either local

patterns or long-range dependencies, HMA-Net effectively

combines both with its convolution-enhanced multihead attention

Frontiers in Artificial Intelligence 20 frontiersin.org

https://doi.org/10.3389/frai.2025.1572433
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sara Koshy and Anbarasi 10.3389/frai.2025.1572433

(CEMHA) module, which merges convolutional operations for local

feature extraction with global attention. This design enhances

the delineation of ambiguous tumor boundaries in ultrasound

images. Integrating attention exclusively at the bottleneck

stage, rather than throughout all layers, achieves an optimal

equilibrium between performance and efficiency. These distinct

components jointly enhance the segmentation outcomes attained

by HMA-Net on both the BUSI and BrEaST datasets, as reflected

in Table 4.

7 Conclusion

Breast cancer is a prevalent issue among women nowadays

and is impacting the lives of numerous individuals. Ultrasound

images have now been widely used for detecting breast cancer

owing to their safe and radiation-less nature. A hybrid mixer

framework with multihead attention (HMA-Net) has been

proposed for segmenting breast ultrasound images. The HMA-

Net utilizes enhanced ConvMixer-based EMxi blocks for extracting

downsampled feature maps from the input ultrasound images,

and high-resolution segmentation masks are reconstructed using

enhanced ConvNeXT-based DCNxi blocks. The ability of ECMs

to combine the channel and spatial information is enhanced with

the addition of the squeeze and excitation layer by dynamically

adjusting the importance of various channels, resulting in more

discriminative and detailed feature representations. The enhanced

ConvNeXT modules capture complex patterns and hierarchical

characteristics by which high-resolution segmentation masks can

be reconstructed from low-resolution encoded features. The

variations in the input data can be handled by ConvNeXTmodules,

and more accurate segmentation masks can be constructed by

capturing local and global features. The residual linking improves

the performance of the model by enhancing feature propagation

andmaintaining important features across layers. The convolution-

enhanced multihead attention module improves the performance

of the model by capturing long-range dependencies and intricate

patterns from the input images. The model utilized a combined

loss function, which enables the model to handle unbalanced data

and to concentrate more on relevant areas. The performance of the

model was evaluated using two breast ultrasound image datasets.

The model obtained a Jaccard index of 98.04% and a DSC of

99.01% on the BUSI dataset. For the BrEaST dataset, the model

obtained a Jaccard index of 94.84% and a DSC of 97.35%. The

results obtained indicate that the model can be efficiently used

for segmenting breast ultrasound images, which will help in the

early detection of breast cancer. The HMA-Net model has robust

segmentation capabilities and may be effortlessly incorporated into

current ultrasound imaging workflows for clinical use. A practical

scenario involves direct real-time implementation on ultrasound

scanners and generating instantaneous segmentation masks during

image acquisition. It can also be implanted in post-diagnostic

systems to analyze the captured images and generate segmentation

outputs prior to radiologist evaluation. This facilitates better lesion

analysis, quicker interpretation, and consistent reporting in large-

scale clinical environments.

The HMA-Net model has been evaluated on the BUSI

and the BrEaST datasets. The BUSI dataset consists of 780

images collected from a single hospital, while the BrEaST dataset

contains 256 manually annotated scans collected from five different

institutions. Since these datasets have limited size and diversity,

the variations present in real-world clinical situations cannot

be adequately represented by this. Bigger datasets with a wider

variety of image qualities, scanner types, and patient demographics

should be used to validate the robustness and scalability of the

proposed methodology.
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