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Oral squamous cell carcinoma
grading classification using deep
transformer encoder assisted
dilated convolution with global
attention

Singaraju Ramya® and R. |. Minu®*

Department of Computing Technologies, School of Computing, SRM Institute of Science and
Technology, Chennai, India

In recent years, Oral Squamous Cell Carcinoma (OSCC) has been a common tumor
in the orofacial region, affecting areas such as the teeth, jaw, and temporomandibular
joint. OSCC is classified into three grades: “"well-differentiated, moderately
differentiated, and poorly differentiated,” with a high morbidity and mortality
rate among patients. Several existing methods, such as AlexNet, CNN, U-Net, and
V-Net, have been used for OSCC classification. However, these methods face
limitations, including low ACC, poor comparability, insufficient data collection,
and prolonged training times. To address these limitations, we introduce a novel
Deep Transformer Encoder-Assisted Dilated Convolution with Global Attention
(DeTr-DiGAtt) model for OSCC classification. To enhance the dataset and mitigate
over-fitting, a GAN model is employed for data augmentation. Additionally, an
Adaptive Bilateral Filter (Ad-BF) is used to improve image quality and remove
undesirable noise. For accurate identification of the affected region, an Improved
Multi-Encoder Residual Squeeze U-Net (Imp-MuRs-Unet) model is utilized for
segmentation. The DeTr-DiGAtt model is then applied to classify different OSCC
grading levels. Furthermore, an Adaptive Grey Lag Goose Optimization Algorithm
(Ad-GrelLop) is used for hyperparameter tuning. The proposed method achieves
an accuracy (ACC) of 98.59%, a Dice score of 97.97%, and an Intersection over
Union (loU) of 98.08%.

KEYWORDS

GAN model, adaptive bilateral filter, U-net model, dilated convolutional, Grey lag
goose optimization algorithm and global attention

1 Introduction

Oral Squamous Cell Carcinoma (OSCC) is one of the most prevalent malignancies
affecting the oral cavity and remains a major cause of morbidity and mortality worldwide.
Despite advances in diagnostic tools, the prognosis of OSCC patients continues to depend
largely on the stage and grade of the disease at the time of detection (Chu et al., 2021). Early
and accurate identification of tumor grade is therefore crucial for guiding treatment strategies
and improving survival outcomes.

Traditional histopathological diagnosis, while effective, relies heavily on the expertise of
pathologists and is prone to inter-observer variability, leading to inconsistencies in
classification (Sukegawa et al., 2023). With the growing volume of biopsy samples, manual
examination has become increasingly challenging, often resulting in delays and diagnostic
inaccuracies (Yoshizawa et al., 2022). These challenges highlight the need for automated,
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reliable systems that can assist clinicians in achieving more consistent
and efficient diagnostic outcomes.

In recent years, deep learning (DL) has emerged as a powerful
tool in medical image analysis, enabling significant progress in
cancer detection, segmentation, and classification. Several studies
have explored CNN-based and transformer-based approaches for
OSCC and related cancers. For instance, Wako et al. (2022) applied
transfer learning (TL) with CNNs for margin classification of
squamous cell carcinoma, reporting strong performance but noting
reduced accuracy in the absence of hybrid models. Alanazi et al.
(2022) introduced an intelligent DL-enabled OSCC detection
framework combining NasNet features with a deep belief network,
achieving promising accuracy but limited generalization to unseen
data. Similarly, Albalawi et al. (2024) employed EfficientNet B3 for
0OSsCC though
performance was constrained by dataset size. Peng et al. (2024)

classification on histopathological images,
investigated various TL models such as Inception v4, ShuftleNet V2,
and ResNet 50 for Oral Epithelial Dysplasia (OED) grading, but
(2024)
developed an ensemble model combining CNN classifiers, achieving

accuracy improvements remained modest. Das et al.

97.88% accuracy, though their work was restricted to binary
classification. Beyond histopathology, Fliigge et al. (2023) utilized
transformers for OSCC detection in clinical photographs, while Li
et al. (2024) combined MRI-based transformers with radiomics for
early- and late-stage OSCC detection.

Collectively, these studies demonstrate the potential of deep
learning for OSCC analysis. However, challenges such as limited
datasets, over fitting, computational inefficiency (Deif et al., 2022),
absence of hybrid approaches, and poor real-time applicability persist.
Moreover, most existing works focus on binary classification rather
than multi-class grading (Ananthakrishnan et al., 2023), which is
critical for clinical decision-making.

Motivated by these gaps, this work introduces a robust hybrid
OSCC
histopathological images (Yang et al., 2022). The proposed approach

framework for classification and grading from
incorporates GAN-based augmentation to address data scarcity,
adaptive filtering for noise removal, an improved multi-encoder
residual squeeze U-Net for segmentation, and a transformer encoder-
assisted dilated convolution with global attention (DeTr-DiGAtt) for
classification (Ahmad et al., 2023). Additionally, hyperparameters are
optimized using the Adaptive Grey Lag Goose Optimization
algorithm to enhance model efficiency. The results demonstrate that
the proposed method not only achieves higher accuracy but also
improves generalization, thereby reducing diagnostic subjectivity and
supporting clinicians with a reliable decision-support tool (Rahman
et al.,, 2022; Lin and Chen, 2022).

2 Proposed methodology

The proposed methodology is designed to achieve accurate
classification and grading of Oral Squamous Cell Carcinoma (OSCC)
from histopathological images through a structured multi-stage pipeline
(Panigrahi et al., 2023; Das et al.,, 2023). First, data augmentation is
performed using Generative Adversarial Networks (GANs) to address
the challenge of limited and imbalanced datasets. The images are then
pre-processed normalization, and color

through  resizing,

Frontiers in Artificial Intelligence

10.3389/frai.2025.1575427

standardization to ensure consistency across the dataset (Fatapour et al.,
2023). In the next stage, segmentation is carried out using advanced
deep learning-based architectures to isolate tumor regions and enhance
relevant features (Haq et al., 2023; Mohan et al,, 2023). Following
segmentation, discriminative features are extracted using statistical and
texture-based descriptors, which capture both local and global image
characteristics. Finally, classification models—including hybrid deep
learning networks and optimized transformers—are applied to
categorize the images into normal, tumor, and graded OSCC classes
(Meer et al., 2025; Dhanya et al., 2024; Kumar et al., 2024). This
systematic approach enhances diagnostic accuracy while overcoming
challenges related to data scarcity, intra-class variability, and complex
tissue structures.

2.1 Data augmentation

GAN-based data augmentation (Zhang et al., 2022) can be used
to reduce overfitting problems and obtain reliable improvements
from the proposed method. GANs are useful for diversifying
datasets by generating new models. Where C and E represent the
generator and a discriminator, which is defined as following
Equation 1.

mcinmng(C,E) Fydata(y [logC ]

+qux(x)[log 1- C J (6]

Where 4data(y) represents the probability distribution of data
variables y, W(C,E) represents the value function, qx(x)Tepresents
noise variables y,,q and E( y) represents fake samples that are
generated from the random noise y (Ghaznavi et al., 2024; Sui¢mez,
2025). This has significantly augmented the overall sample count in
the dataset using the GAN model (Figure 1).

2.2 Pre-processing

Traditional filters such as median filters and Gaussian filters have
some limitations, including low-quality images and high noise. To
overcome these limitations, the new method uses an adaptive bilateral
filter (Bedi et al., 2024). The adaptive bilateral filter effectively
removes noise from the input image defined by the following

smopo= >, 2 f

(p-B) +(o-n)
207
P=Po-ymM=my__y

[L(d[p,m]d[pomo]é[po.m])]
< f

Equation 2.

P+M P+M

A 2

Where & represent the range of image, o represent the width of
the image, my, py represents the center of pixel window, o, and o
represents the standard derivation of the domain. This model has been
effectively de-noised the image.
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FIGURE 1
Overall flow diagram.
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2.3 Segmentation using improved
multi-encoder residual squeeze U-net
model

The existing segmentation methods had some limitations, such as
overtime duration, blurred image quality, and insufficient edges
(Abuhayi et al., 2024; Islam et al., 2024). To overcome those existing
limitations, introduce Figure 2 which is shown as a novel improved
multi-encoder residual squeeze U-Net model.

The multi-encoder (Wang et al., 2022) input Y e pBxLxM
feature map, convolution layer is assed to each upsampling to
obtain essential information of 1D channel attention map and a
2D spatial attention map. It can be define as following
Equations 3, 4.

Y'=Np(Y)®Y ®3)

Y =No(Y')®Y’ €y

Where ® represent the element-wise multiplication, No (Y’) and
Np (Y) represent the spatial and the channel attention map, which is
calculated by following Equations 5, 6.

No (Y) =0 MLP(qayg (¥) + Gmax (Y))) (5)

N (1) =0 {77 [gang () e (7)) ©

Where g,y (-) and gmax (.) represent the maximum and average
pooling, MLP (-) represent the multi-layer of perceptron, Y77

represent the operation of convolution with 7 x 7 filter size.
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2.3.1 Encoder
The input feature map Y,eP

B><£><£

q q Processed through the multi-

encoder to generate a one-dimensional feature map of a predefined
length. The encoder includes M layer of multi-layer perceptron (MLP)
and multi-head attention (MHA). Here encode the location
information by directly adding learnable level embedding to the
feature map. To construct the encoder’s input sequence as
Equation 7 follows:
Yo :{q1+n1+n2...........nx} (7)
The output of the MHA is then switched with the residual
connection through an MLP block, which is defined as following
Equation 8.

Yy = MHA(LN (Yy1))+ MLP(LN(MHA(LN(YX—I)))) (8)

Where Y, represent the output of the £ layer and LN represent
the normalization operator.

2.3.2 Decoder

For better ischemia stroke segmentation, skip-connectors are
connected to decoder parallels with low-level features. The decoder
system of the U-Net framework uses the Squeeze and-Excitation (SE)
module (Suigmez, 2025) to optimize the combination of “high-level and
low-level characteristics” The squeeze operation is achieved global
average ensemble compress global spatial information into a single
channel representation, which is calculated as following Equation 9.

1 L M
Yo =Egeq(vs) =mz 2w (xy)
x=ly=1

)
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FIGURE 2
Diagram for Imp-MuRs-Unet.

Where vj, represent the input, Y, represent the data after squeeze
operation, E, represent the squeeze function, L and M genote the width and

height of the fegm map. FOr Excitation Layer, here consider Vie Q?y B and
V, e QBJ’ ", is the Weights of the first and second fully correlated layer,

& RelU activation function. Excitation Layer are define as following
Equation 10:

P=0o(V,5(Vy)) (10)

Convolution is coupled with a residual connection, which retains
valuable information from previous layers and helps reduce possible
information loss during processing. It can be address vanishing and
exploding gradients problems. It can calculated as following
Equations 11, 12.

2y =E(j.Ky ) +1(jy) (11)

yxe1=€(vx) (12)

Where E(o) represent the residual function, y, and y,; represent
the I/o of the residual unit, / (-) represent the identity mapping
function. With the suggested method, the picture has been
divided well.

2.4 Feature extraction using ensemble VGG
assisted Mobile Net model

The Mobile VGG framework is built using deep separable curves.
Existing methods such as ResNet, InceptionNet, and so on had some
limitations, such as complex textural features, size, and shape for
feature extraction. To overcome that limitation, introduce a novel
VGG-Mob. The VGG (Albalawi et al., 2024) network was built with
very small convolutional filters for image recognition. VGG 16
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structure follows convolution and pooling layer. It contains
Hierarchical Deep Features like Edge, Texture, Shape, Tumor
Clustering, Color Intensity shown in Figure 3.

It is built with three fully connected layers. The first and
second layers are ReLU, and the third is Soft max-activated. Images
can be obtained with an input layer of 224 x 224 pixels and this
format has 16 layers and 138 Millions of parameters.
MobileNetV2’s Ochoa-Ornelas et al. (2025) efficient architecture
improves the model’s capacity to capture feature inter-class
differences, making it highly suitable for clinical image analysis
that relies on common visual features. Figure 4 shows the
architecture of Mobile Net.

That has included several other pivotal architectural innovations
like Depthwise Separable Convolutions, Inverted Residuals and
Linear Bottlenecks, and ReLU6 Activation Function. In Depthwise
Separable Convolutions, the operation separates the common basic
convolution into two layers like depthwise convolution and point-
wise convolution, which convolve the input channels individually
and sum these filtered output images to create new level features. It
can be represented as the following Equations 13, 14.

] K
Xmn,0 = ZjZIZkzlym‘Fk*l,n‘Fk*l,O “Vijk,o (13)
o
Ymun = Zo:lxm,n,o *qo (14)

Wherev; k., represent the depthwise convolution kernel, x,,, ,, o and
Ym,n,o represent “the input and output feature map,” J and K represent
the dimensions of the kernel. Then g, weight parameter and y,,, , shows
the final output after point-wise convolution. MobileNetV2 uses inverse
residuals in I/P thin moderate layers and extended intermediate of layers.
Linear bottlenecks prevent nonlinearities such as ReLU information loss.
Which can be defined as the following Equation 15.

xzmaX(O,Vexp 'y)'me (15)
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FIGURE 4
Architecture of Mobile Net.

Where V,,, represent the projection matrix, Ve, represent the
matrix of expansion. MobileNetV2 uses the ReLU6 activation
function to reduce the size error and prevent information loss in
low-PRE calculation, which is defined as the following Equation 16.

ReLU6(y)=min(max(O,y)) (16)

Where y input tensor. Using the VGG-Mob model, the suggested

method was able to successfully extract the feature.
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2.5 Classification using deep optimized
transformer encoder assisted dilated
convolutional with global attention

Several methods have been developed for OSCC grade classes, but
the existing methods have some limitations, such as overfitting, class
imbalance problems, and overtime duration. To overcome those
problems, introduce a Novel DeTr-DiGAtt. Figure 5 shows the
architecture of the deep novel DeTr-DiGAtt.
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FIGURE 5
Architecture of DeTr-DiGAtt.

The inputY e RM*L ¢4 the transformer encoder (Gao et al., 2022)
consists of two modules namely multi-head self-focusing (MSA) and
MLP modules, which is calculated according to the following
Equations 17, 18.

y;n:MSA(LN(ym—I))+ym—l (17)

I =MSA(LN (y))+ ym-m=1.2,...M (18)

Where LN, MLP, Two layers utilize the GELU activation
function for non-linearity, while Layer Normalization (LN) is applied
to each sample. It is computed using the following Equation 19:

IN(y)=L"Epr+p (19)

o

Where u represent the mean derivation of feature, y represent the
sample, O represent the standard derivation of feature, p represent the
element-wise dot operation, ¥ and [ represent the learnable
parameters of affine transformation. A dilated convolution layer is
introduced to extract the high-level and fine low-level semantic
information features. Dilated convolution layers have been shown to
be a good alternative to segmentation tasks and pooling layers with
significant improvement in ACC. In the expanded CNN, they use a
pooling layer to control over-fitting and maintain in-variance, which
is help reduces the spatial resolution information. It is Equation 20
given as following:

x(j,k): iiy(j+mxn,k+mxo)v(n,o)

n=lo=1

(20)

Where v(n,o) represent the filter with J length and K width,
x( j,k) represent the output of dilated convolution y( j,k) represent
the input of dilated convolution and m represent the parameter of
dilated rate. The traditional convolutional get 3 x 3 kernel size receptive
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field. Then two dilated convolutions get 5x5 and 7x7 kernel size
receptive field. It can shows expand the respective field without loss of
feature resolution. Global attention is a mechanism that calculates the
attention weight of all elements of the input sequence. It was used to
global context and capture long-range dependencies to gather the
complex structure of images. It can be defined as following
Equations 21, 22:

G, =P3(G1)®G, (1)

G3 =P (G,)®Gyy (22)

Where Gl > G2 > PB > Pq € mLXMXN) PB (Gl) map the input feature to get the channel
weight feature map B> (Gz) represent the intermediate map e Py (Gz)
represent the spatial weight feature map multiplied with (Gz) and G;
represent the output feature map. Then ® represent the multiplication
between pixels. Then L, M and N represent the height, width and
number of channels of the feature map. Finally, the classifier model
has been carefully tuned for hyperparameters; however, the current
optimization techniques, like Grey Wolf Optimizer, Particle Swarm
Optimization, and Satin Bowerbird Optimizer, have certain
drawbacks, e.g., complex structures, decreased effectiveness,
vulnerability to capture, and higher computational complexity. In
order to overcome such concern, suggest a novel Ad-GreLop. Greylag
Goose Optimization (GGO) approach (Elshewey et al., 2025) is a
meta-heuristic optimization method that mimics the feeding pattern
of Greylag geese and adjusts their locations to determine the optimal
solution. Exploration stage in the GGO approach gives top priority to
determining promising areas in the search space while avoiding
stagnation both in location and inner goals by progressing towards an
optimum solution. The GGO re-evaluates agent placements based on
specific calculations and maximizes these locations as depicted below
Equation 23.

¥ (n+1) =Y (n)=B-|D-¥" ()Y (n) (23)
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Where B and C represent the updating vector, Y (n) represents the
agent’s position at n, y* (n) represent the leader’s position. Then
N paddie1> N paddie2 and N paddles represents the three randomly chosen
search agents, which is used to upgrade agent locations. It can
be defined as the following Equations 24, 25.

Y (n+1)=vi-Ypaddier +x-v1 - (Ypaddlez - Ypaddle3)
+(1-x).v3 (Y —Ypaddlel ) (24)

z=1-(t/rmax)2 (25)

Where vy, v, and v3 represents the upgraded in the range of [0, 2].
Then rma represents the number of maximum iterations, ¢ represents
the iteration number. Progressing toward the best optimal solution is
define as the following Equations 26-28.

Y1 =Yeem _Dl~|E1~Ysen1 _Yl (26)
Yo =Yoen2 - D2~|E2~Ysen2 - Y| (27)
Y3 =Yeen3 = D3| E3 Yeen3 = Y| (28)

Where Dy, D,, D3 Ej, E, and Ej represents the updates vector and
Yeent> Ysenz and Ys,3 represent the anticipated position of the prey
based on three sentry solutions. GGO periodically rotates leadership
among individuals in the population to prevent stagnation. It can
be define as following Equation 29.

_ Xn+1

leader

Xn+1

leader

n n
+ m'(Xleader - Xleader ) (29)

Where Y;" represents the £t goose position in the population at
n'™ iteration, Xl’;é ., represent the leader position and Xl’gpli o, Tepresent
the randomly chosen position from the population and m represent
the random factor in [0, 1]. Then chaotic function has been add to
update the grey lag goose optimization algorithm ch- represent the
chaotic function in the range [0, 1]. It can be define as the following
Equations 30, 31:

10.3389/frai.2025.1575427

Where s represent the chaotic index sequence and F; represent the
number of qth element. In fitness function, the model’s ability to
identify entire negative or positive case instances, which is calculated
as the following Equation 32.

UR+UV
UR+UV +GR+GV

Acc= (32)

Where UR represent the true positive, UV represents the true
negative, GR represent the false positive and GV represent the false
negative. Algorithm 1 represents the Pseudocode for Ad-GreLop.

The suggested technique has been successfully categorised with
DeTr-DiGAttand the Adaptive Grey Lag Goose Optimization Algorithm.

3 Result and discussion

The proposed methodology is compared with other existing
methodologies are “ResNet, Inception Net, Xception Net, AlexNet,
U-Net, V-Net, SegNet along with VGG16 and ResNet. The proposed
method has been evaluated using its dataset. Afterwards, some
performance evaluation measures like ACC, PRE, recall, F1 score,
specificity, and dice score were utilized for OSCC classification (Table 1).

3.1 Dataset description

The dataset was collected from vishnu dental college Bhimavaram,
AP, contains 34 moderately differentiated samples, 11 poorly
differentiated samples, and 35 well-differentiated sample images.
Before augmentation, the dataset included 34 moderate, 11 poor, and
34 well-differentiated sample images. After augmentation, the dataset
was expanded to 204 moderate, 66 poor, and 204 well-differentiated
sample images. In Table 2 shows all grading images of segmented and
processed. The efficacy of hyperparameter optimization for the
suggested methodology encompasses the following primary
parameters: a dropout rate of 0.5, ReLU activation function, global
average pooling enabled, a learning rate of 0.001, a patch size of 32,
and 300 training epochs. All these settings were optimized to enhance
the ACC and efficiency of the OSCC classification model. Ethical
clearance number for Real Time Dataset 8,758/IEC/2023.

n+l  _ yn+l . n _yh
Xleader = Aeader + ch (Xleader Xleader) (30) A i
3.1.1 Performance analysis of segmentation
-1 Figure 6 illustrates the comparative performance of the proposed
ch=P; 4 =cos(scos (P )) (31) . . . L .
4 hybrid segmentation approach with existing methods. In Figure 6A,
TABLE 1 Existing methods analysis.
Reference Method Limitation
Wako et al. (2022) CNN based TL model Absence of hybrid model leads to reduce the model performances.
Albalawi et al. (2024) EfficientNet B3 Broader dataset was not used in this research was one of the major limitations in this model.
Peng et al. (2024) DL Very limited amount of ACC were obtained for this approach was one of the major limitations.
Das et al. (2024) CNN Binary classification has performed, there was an absence of multi-class approach in this model.

Fliigge et al. (2023) DL based approach based on Swin-

Transformer (ST)

This method had lack of real time environment problem.

Lietal. (2024) DL

The suggested method had insufficient data collection.
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represented as?, . and F,
Step 2: Initialize GGO parameters

Step 4: Set B =position of best agent

Step 6: While 7<¢,__ do

Step 7: for(pzl:p<m1+1) do
Step 8: if (1 %2=0) then
Step 9: if (r3 <0.5) then
Step 10: ifQB] < 1) then

Step 12: else

Step 19: end if

Step 21: Adjust the parameters accordingly
Step 22: Set t=¢ +1

Step 25:
Step 26:
Step 27: end if

Step 28: Return best agent P

ALGORITHM 1
Pseudocode for Ad-Grelop.

Step 13: Randomly select three search agents for the next iteration X' ., X 015 X

2
Update (z) using the exponential formulation of: z=1— (LJ

Algorithm 1: Pseudocode for Ad-GreLop

Step 1: Initialize GGO population X ,(p =1,2,...m), size, iteration and objective function is

Step 3: For each agents X ,» objective function F, has been evaluated

Step 5: Adjust the solutions dynamically in the exploration and exploitation groupm, and m,

Step11: Compute and update the new position of the search agent as:
X(+1)=Xx*(t)-B.|C.X*(t)- X (¢)

paddle?

t

max

Step 14:

Step 15: Update the position of the current search agent
Step 16: end if

Step 17: else

Step18: Modify each individual's position using the update formula:
X +1)=X()+D(+z2)xws(X - X0 )

Step 20: Evaluate the objective function F for each X search agent

Step 23: Adjust solutions that go beyond the defined search space
Step 24: if the best fitness value remains unchanged for two consecutive iterations, then
Expand the solution space through the exploration group m,

Decrease solution of exploitation group m,

the proposed method achieves an IoU of 98.08%, outperforming
U-Net + ResNet (92.20%) and VGGI16 + U-Net (90.72%). This
demonstrates the stronger generalization capability of the proposed
model compared to prior approaches, which often struggled with
segmentation quality. Similarly, Figure 6B compares Dice coefficients,
where the proposed method attains a Dice score of 97.97%,
significantly higher than U-Net (87.24%) and SegNet (84.41%). These
results highlight the ability of the proposed model to overcome

Frontiers in Artificial Intelligence

limitations of earlier methods, such as low-quality segmentation and
reduced accuracy.

Figure 7 presents the mean Intersection-over-Union (mIoU)
analysis. The proposed approach achieves an mIoU exceeding 97.01%,
while V-Net and U-Net record comparatively lower values of 81.69%
and 88.39%, respectively. This indicates that existing segmentation
models often face challenges such as increased complexity, limited
applicability, and dependency on large annotated datasets. In contrast,
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TABLE 2 Sample of input, pre-processed and segmented images.

Sample Original image Pre-processed image Segmented image
Moderate Il : |
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FIGURE 6

(A,B) Performance analysis of loU and dice score.

b3

P
P

®
-

the proposed method consistently delivers superior segmentation ~ 3.1.2 Performance analysis for classification

performance across different evaluation metrics. A consolidated This section provides a comparison of the suggested methodology
comparison of these results is further provided in Table 3, emphasizing ~ with several contemporary techniques. Figure 8 illustrates the
the robustness of the proposed approach. performance of ACC and PRE.
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Figure 8 presents the classification performance of the
proposed method compared to existing models. In Figure 8A, the
proposed strategy achieves an accuracy (ACC) of 98.59%,
outperforming AlexNet (95.74%) and XceptionNet (92.91%). This
confirms the superior classification ability of the proposed method,
while earlier techniques such as AlexNet also exhibited longer
computational times. Figure 8B illustrates the precision (PRE)
values, where the proposed approach attains 97.53%, significantly
higher than XceptionNet (91.35%) and InceptionNet (89.13%). The

10.3389/frai.2025.1575427

lower accuracy and precision of InceptionNet highlight its

increased  complexity

OSCC classification.
Figure 9 evaluates additional performance metrics of Recall and

and reduced effectiveness in

F1-score. As shown in Figure 9A, the proposed method achieves a
recall value of 98.45%, whereas AlexNet and InceptionNet obtain
only 89.76% and 95.35%, respectively. This improvement
demonstrates the ability of the proposed approach to handle class
imbalance issues that hindered prior models. Figure 9B shows
F1-score comparisons, where the proposed method records 97.99%,

clearly surpassing InceptionNet (89.44%) and ResNet (86.98%). The
' higher F1-score indicates the robustness of the proposed model in
98 o VoNet ‘
9 Seghet ’
®  U-Net
94° & U-Net+VGGI16 ‘ TABLE 3 Segmentation analysis for proposed method.
~92 * U-Net+ResNet
g\",w . Sy ety Ooet . Methods loU (%) Dicescore mloU (%)
3 )
Chd
86- Imp-MuRs-Unet 98.08 97.97 97.01
84 ’ ’ U-Net + ResNet 9220 91.49 93.28
824 ‘ ‘ U-Net + VGG16 90.72 89.34 89.75
50z == U-Net 89 87.24 88.39
FIGURE7 , SegNet 85 84.41 84.64
Performance analysis of mloU.
V-Net 82.26 81.69 81.69
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FIGURE 8
(A,B) Performance analysis of ACC and precision.
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FIGURE 9
(A,B) Performance of recall and F1- score for proposed method.
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minimizing both false positives and false negatives, thereby
improving the detection of OSCC cases.
Figure 10 highlights the specificity analysis. The proposed

10.3389/frai.2025.1575427

and testing loss values remain below 1 within the same epoch range,

confirming the stability and efficiency of the learning process.

Figure 12 provides the confusion matrix for the three-class

method achieves a specificity of 98.96%, which is higher than AlexNet
(95.41%) and XceptionNet (92.07%). This demonstrates the enhanced
ability of the proposed approach to correctly identify negative cases,

classification task. The distribution clearly indicates that the proposed
method minimizes misclassifications across all OSCC grades,
supporting its robustness and practical applicability for accurate
reducing misclassification rates and providing more reliable  disease classification.
predictions. Prior models often suffered from class imbalance, To ensure that the observed performance improvements are not
reducing their specificity and overall classification stability. Figure 11 due to chance, the proposed model was evaluated using 5-fold cross-
presents the training and testing performance across epochs. In  validation. Additionally, a paired -test was conducted between the
Figure 11A, the proposed model achieves near-perfect accuracy for ~ proposed model and baseline methods. The improvements in IoU,
both training and testing after approximately 300 epochs, reflecting ~ ACC, F1-score, and specificity were found to be statistically significant
(p < 0.05). This confirms that the high scores achieved by the proposed

method represent true performance gains rather than random

its strong generalization ability. Figure 11B shows that both training

variations or dataset bias.

To identified the target classes such as well, moderate, and poor,
which help to improve the OSCC Grading Classification. The method
has been obtaining total target class samples of moderate at 42
samples, poor at eight samples, and well at 42 samples. The proposed

class obtains eight samples and well obtains 41 samples. The suggested
design has been acquiring superior target classification samples,

Specificity (%)

hence enhancing the performance of the present model. The
suggested classification performance indicators provide superior

InceptionNet .
98
96 ®  AlexNet
¢  DeTr-DiGAtt
: <>
90
o
FIGURE 10

100 ®  ResNet
®  XceptionNet
94 method obtains a moderate target class of 41 samples, a poor target
88
Performance analysis of specificity.

results relative to other techniques. Table 4 presents the categorization

performance results of the study.

Here a comprehensive discussion was provided on OSCC Grading
Classification. The proposed compared with multiple methods for

analyzing the better classification. Traditional methods have some

A 1.0 B | —— Train
0.4
0.9
z 0.3
E 0.8 A
s S
2 = 0.2
0.7
0.1
0.6 —— Train
|
Test 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs
FIGURE 11
Performance analysis of both training and testing (A) ACC and (B) loss for proposed method.
TABLE 4 Performance classification of proposed method.
Model Proposed model AlexNet XceptionNet InceptionNet ResNet
ACC (%) 98.59 95.74 9291 90.07 87.94
Precision (%) 97.53 94.89 91.35 89.13 86.53
Recall (%) 98.45 95.35 91.86 89.76 87.44
Fl-score (%) 97.99 95.12 91.60 89.44 86.98
Specificity (%) 98.96 95.41 92.07 89.45 86.29
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FIGURE 12
Performance analysis of confusion matrix of proposed method.

limitations, such as handling large volumes of image data, lack of
availability and generality during segmentation, poor contrast, and so
on. To overcome that limitation, introduce a novel DeTr-DiGAtt for
OSCC classification. The proposed method used the GAN model to
control the overfitting problems. The imp-MuRs-Unet method was
used to identify affected regions accurately for segmentation.

4 Conclusion

This study presents a unique DeTr-DiGAtt model for the
categorisation of OSCC. The proposal involves collecting the input
picture using its dataset. The GAN model was used for the data
augmentation mechanism. The ad-BF method was used in the
Pre-processing stage. After reprocessing, Imp-MuRs-Unet was used
for segmentation. Then VGG-Mob model was used for feature
extraction. The deTr-DiGAtt method was used for classification.
Ad-GreLop was used to optimize for fine tune parameters in the
classifier model. This available method has ACC, PRE, recall, dice
score, and IoM of 98.59%, 97.53%, 98.45%, 97.97%, and 98.08%. In
future work, explainable techniques will be added to improve the
ACC of OSCC classification more effectively.
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