
Frontiers in Artificial Intelligence 01 frontiersin.org

Oral squamous cell carcinoma 
grading classification using deep 
transformer encoder assisted 
dilated convolution with global 
attention
Singaraju Ramya   and R. I. Minu  *

Department of Computing Technologies, School of Computing, SRM Institute of Science and 
Technology, Chennai, India

In recent years, Oral Squamous Cell Carcinoma (OSCC) has been a common tumor 
in the orofacial region, affecting areas such as the teeth, jaw, and temporomandibular 
joint. OSCC is classified into three grades: “well-differentiated, moderately 
differentiated, and poorly differentiated,” with a high morbidity and mortality 
rate among patients. Several existing methods, such as AlexNet, CNN, U-Net, and 
V-Net, have been used for OSCC classification. However, these methods face 
limitations, including low ACC, poor comparability, insufficient data collection, 
and prolonged training times. To address these limitations, we introduce a novel 
Deep Transformer Encoder-Assisted Dilated Convolution with Global Attention 
(DeTr-DiGAtt) model for OSCC classification. To enhance the dataset and mitigate 
over-fitting, a GAN model is employed for data augmentation. Additionally, an 
Adaptive Bilateral Filter (Ad-BF) is used to improve image quality and remove 
undesirable noise. For accurate identification of the affected region, an Improved 
Multi-Encoder Residual Squeeze U-Net (Imp-MuRs-Unet) model is utilized for 
segmentation. The DeTr-DiGAtt model is then applied to classify different OSCC 
grading levels. Furthermore, an Adaptive Grey Lag Goose Optimization Algorithm 
(Ad-GreLop) is used for hyperparameter tuning. The proposed method achieves 
an accuracy (ACC) of 98.59%, a Dice score of 97.97%, and an Intersection over 
Union (IoU) of 98.08%.
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1 Introduction

Oral Squamous Cell Carcinoma (OSCC) is one of the most prevalent malignancies 
affecting the oral cavity and remains a major cause of morbidity and mortality worldwide. 
Despite advances in diagnostic tools, the prognosis of OSCC patients continues to depend 
largely on the stage and grade of the disease at the time of detection (Chu et al., 2021). Early 
and accurate identification of tumor grade is therefore crucial for guiding treatment strategies 
and improving survival outcomes.

Traditional histopathological diagnosis, while effective, relies heavily on the expertise of 
pathologists and is prone to inter-observer variability, leading to inconsistencies in 
classification (Sukegawa et al., 2023). With the growing volume of biopsy samples, manual 
examination has become increasingly challenging, often resulting in delays and diagnostic 
inaccuracies (Yoshizawa et al., 2022). These challenges highlight the need for automated, 
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reliable systems that can assist clinicians in achieving more consistent 
and efficient diagnostic outcomes.

In recent years, deep learning (DL) has emerged as a powerful 
tool in medical image analysis, enabling significant progress in 
cancer detection, segmentation, and classification. Several studies 
have explored CNN-based and transformer-based approaches for 
OSCC and related cancers. For instance, Wako et al. (2022) applied 
transfer learning (TL) with CNNs for margin classification of 
squamous cell carcinoma, reporting strong performance but noting 
reduced accuracy in the absence of hybrid models. Alanazi et al. 
(2022) introduced an intelligent DL-enabled OSCC detection 
framework combining NasNet features with a deep belief network, 
achieving promising accuracy but limited generalization to unseen 
data. Similarly, Albalawi et al. (2024) employed EfficientNet B3 for 
OSCC classification on histopathological images, though 
performance was constrained by dataset size. Peng et  al. (2024) 
investigated various TL models such as Inception v4, ShuffleNet V2, 
and ResNet 50 for Oral Epithelial Dysplasia (OED) grading, but 
accuracy improvements remained modest. Das et  al. (2024) 
developed an ensemble model combining CNN classifiers, achieving 
97.88% accuracy, though their work was restricted to binary 
classification. Beyond histopathology, Flügge et al. (2023) utilized 
transformers for OSCC detection in clinical photographs, while Li 
et al. (2024) combined MRI-based transformers with radiomics for 
early- and late-stage OSCC detection.

Collectively, these studies demonstrate the potential of deep 
learning for OSCC analysis. However, challenges such as limited 
datasets, over fitting, computational inefficiency (Deif et al., 2022), 
absence of hybrid approaches, and poor real-time applicability persist. 
Moreover, most existing works focus on binary classification rather 
than multi-class grading (Ananthakrishnan et  al., 2023), which is 
critical for clinical decision-making.

Motivated by these gaps, this work introduces a robust hybrid 
framework for OSCC classification and grading from 
histopathological images (Yang et al., 2022). The proposed approach 
incorporates GAN-based augmentation to address data scarcity, 
adaptive filtering for noise removal, an improved multi-encoder 
residual squeeze U-Net for segmentation, and a transformer encoder-
assisted dilated convolution with global attention (DeTr-DiGAtt) for 
classification (Ahmad et al., 2023). Additionally, hyperparameters are 
optimized using the Adaptive Grey Lag Goose Optimization 
algorithm to enhance model efficiency. The results demonstrate that 
the proposed method not only achieves higher accuracy but also 
improves generalization, thereby reducing diagnostic subjectivity and 
supporting clinicians with a reliable decision-support tool (Rahman 
et al., 2022; Lin and Chen, 2022).

2 Proposed methodology

The proposed methodology is designed to achieve accurate 
classification and grading of Oral Squamous Cell Carcinoma (OSCC) 
from histopathological images through a structured multi-stage pipeline 
(Panigrahi et al., 2023; Das et al., 2023). First, data augmentation is 
performed using Generative Adversarial Networks (GANs) to address 
the challenge of limited and imbalanced datasets. The images are then 
pre-processed through resizing, normalization, and color 

standardization to ensure consistency across the dataset (Fatapour et al., 
2023). In the next stage, segmentation is carried out using advanced 
deep learning-based architectures to isolate tumor regions and enhance 
relevant features (Haq et  al., 2023; Mohan et  al., 2023). Following 
segmentation, discriminative features are extracted using statistical and 
texture-based descriptors, which capture both local and global image 
characteristics. Finally, classification models—including hybrid deep 
learning networks and optimized transformers—are applied to 
categorize the images into normal, tumor, and graded OSCC classes 
(Meer et  al., 2025; Dhanya et  al., 2024; Kumar et  al., 2024). This 
systematic approach enhances diagnostic accuracy while overcoming 
challenges related to data scarcity, intra-class variability, and complex 
tissue structures.

2.1 Data augmentation

GAN-based data augmentation (Zhang et al., 2022) can be used 
to reduce overfitting problems and obtain reliable improvements 
from the proposed method. GANs are useful for diversifying 
datasets by generating new models. Where C  and E  represent the 
generator and a discriminator, which is defined as following 
Equation 1.
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Where ( )data yq  represents the probability distribution of data 
variables y, ( ),W C E  represents the value function, ( )x xq represents 
noise variables yand and ( )E y  represents fake samples that are 
generated from the random noise y (Ghaznavi et al., 2024; Suiçmez, 
2025). This has significantly augmented the overall sample count in 
the dataset using the GAN model (Figure 1).

2.2 Pre-processing

Traditional filters such as median filters and Gaussian filters have 
some limitations, including low-quality images and high noise. To 
overcome these limitations, the new method uses an adaptive bilateral 
filter (Bedi et  al., 2024). The adaptive bilateral filter effectively 
removes noise from the input image defined by the following 
Equation 2.
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Where ξ  represent the range of image, σ s represent the width of 
the image, 0 0,m p  represents the center of pixel window, σc  and σ s 
represents the standard derivation of the domain. This model has been 
effectively de-noised the image.
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2.3 Segmentation using improved 
multi-encoder residual squeeze U-net 
model

The existing segmentation methods had some limitations, such as 
overtime duration, blurred image quality, and insufficient edges 
(Abuhayi et al., 2024; Islam et al., 2024). To overcome those existing 
limitations, introduce Figure 2 which is shown as a novel improved 
multi-encoder residual squeeze U-Net model.

The multi-encoder (Wang et  al., 2022) input × ×∈ B L MY P  
feature map, convolution layer is assed to each upsampling to 
obtain essential information of 1D channel attention map and a 
2D spatial attention map. It can be  define as following 
Equations 3, 4.

	 ( )′ = ⊗BY N Y Y 	 (3)

	 ( )′ ′ ′= ⊗′ OY N Y Y 	 (4)

Where ⊗ represent the element-wise multiplication, ( )′ON Y  and 
( )BN Y  represent the spatial and the channel attention map, which is 

calculated by following Equations 5, 6.

	 ( ) ( ) ( )( )( )σ= +0 maxavgN Y MLP q Y q Y
	

(5)

	
( ) ( ) ( )( ){ }σ′ ×  = ′ + ′

7 7
maxo avgN Y Y q Y q Y

	
(6)

Where ( )•avgq  and ( )max •q  represent the maximum and average 
pooling, ( )•MLP  represent the multi-layer of perceptron, ×7 7Y  
represent the operation of convolution with ×7 7 filter size.

2.3.1 Encoder
The input feature map × ×

∈

I IB
q q

eY P
 Processed through the multi-

encoder to generate a one-dimensional feature map of a predefined 
length. The encoder includes M layer of multi-layer perceptron (MLP) 
and multi-head attention (MHA). Here encode the location 
information by directly adding learnable level embedding to the 
feature map. To construct the encoder’s input sequence as 
Equation 7 follows:

	 { }= + + ………0 1 1 2.. xY q n n n 	 (7)

The output of the MHA is then switched with the residual 
connection through an MLP block, which is defined as following 
Equation 8.

	 ( )( ) ( )( )( )( )− −= +1 1x x xY MHA LN Y MLP LN MHA LN Y
	

(8)

Where xY  represent the output of the thx  layer and LN  represent 
the normalization operator.

2.3.2 Decoder
For better ischemia stroke segmentation, skip-connectors are 

connected to decoder parallels with low-level features. The decoder 
system of the U-Net framework uses the Squeeze and-Excitation (SE) 
module (Suiçmez, 2025) to optimize the combination of “high-level and 
low-level characteristics.” The squeeze operation is achieved global 
average ensemble compress global spatial information into a single 
channel representation, which is calculated as following Equation 9.
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(9)

FIGURE 1

Overall flow diagram.
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Where bv  represent the input, cY  represent the data after squeeze 
operation, seqE  represent the squeeze function, L and M  denote the width and 

height of the feature map. For Excitation Layer, here consider ∈1

B yB
sV Q and 

∈2

BBy
sV Q  is the Weights of the first and second fully correlated layer, 

δ  ReLU activation function. Excitation Layer are define as following 
Equation 10:

	 ( )( )σ δ= 2 1P V V y 	 (10)

Convolution is coupled with a residual connection, which retains 
valuable information from previous layers and helps reduce possible 
information loss during processing. It can be address vanishing and 
exploding gradients problems. It can calculated as following 
Equations 11, 12.

	 ( ) ( )= +,x x x xz E j K l j 	 (11)

	 ( )+ =1x xy e v 	 (12)

Where ( )•E  represent the residual function, xy  and +1xy  represent 
the I/o of the residual unit, ( )•l  represent the identity mapping 
function. With the suggested method, the picture has been 
divided well.

2.4 Feature extraction using ensemble VGG 
assisted Mobile Net model

The Mobile VGG framework is built using deep separable curves. 
Existing methods such as ResNet, InceptionNet, and so on had some 
limitations, such as complex textural features, size, and shape for 
feature extraction. To overcome that limitation, introduce a novel 
VGG-Mob. The VGG (Albalawi et al., 2024) network was built with 
very small convolutional filters for image recognition. VGG 16 

structure follows convolution and pooling layer. It contains 
Hierarchical Deep Features like Edge, Texture, Shape, Tumor 
Clustering, Color Intensity shown in Figure 3.

It is built with three fully connected layers. The first and 
second layers are ReLU, and the third is Soft max-activated. Images 
can be obtained with an input layer of 224 × 224 pixels and this 
format has 16 layers and 138 Millions of parameters. 
MobileNetV2’s Ochoa-Ornelas et al. (2025) efficient architecture 
improves the model’s capacity to capture feature inter-class 
differences, making it highly suitable for clinical image analysis 
that relies on common visual features. Figure  4 shows the 
architecture of Mobile Net.

That has included several other pivotal architectural innovations 
like Depthwise Separable Convolutions, Inverted Residuals and 
Linear Bottlenecks, and ReLU6 Activation Function. In Depthwise 
Separable Convolutions, the operation separates the common basic 
convolution into two layers like depthwise convolution and point-
wise convolution, which convolve the input channels individually 
and sum these filtered output images to create new level features. It 
can be represented as the following Equations 13, 14.

	 + − + −= =
= ⋅∑ ∑, , 1, 1, , ,1 1

J K
m n o m k n k o j k oj kx y v

	
(13)

	 =
= ∗∑, , ,1

O
m n m n o ooy x q 	 (14)

Where , ,j k ov  represent the depthwise convolution kernel, , ,m n ox  and 
, ,m n oy  represent “the input and output feature map,” J  and K  represent 

the dimensions of the kernel. Then oq  weight parameter and ,m ny  shows 
the final output after point-wise convolution. MobileNetV2 uses inverse 
residuals in I/P thin moderate layers and extended intermediate of layers. 
Linear bottlenecks prevent nonlinearities such as ReLU information loss. 
Which can be defined as the following Equation 15.

	 ( )= ⋅ ⋅expmax 0, prox V y V 	 (15)

FIGURE 2

Diagram for Imp-MuRs-Unet.
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Where proV  represent the projection matrix, expV  represent the 
matrix of expansion. MobileNetV2 uses the ReLU6 activation 
function to reduce the size error and prevent information loss in 
low-PRE calculation, which is defined as the following Equation 16.

	 ( ) ( )( )=Re 6 min max 0,LU y y 	 (16)

Where y input tensor. Using the VGG-Mob model, the suggested 
method was able to successfully extract the feature.

2.5 Classification using deep optimized 
transformer encoder assisted dilated 
convolutional with global attention

Several methods have been developed for OSCC grade classes, but 
the existing methods have some limitations, such as overfitting, class 
imbalance problems, and overtime duration. To overcome those 
problems, introduce a Novel DeTr-DiGAtt. Figure  5 shows the 
architecture of the deep novel DeTr-DiGAtt.

FIGURE 3

Architecture of VGG.

FIGURE 4

Architecture of Mobile Net.
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The input ×∈ℜM LY  to the transformer encoder (Gao et al., 2022) 
consists of two modules namely multi-head self-focusing (MSA) and 
MLP modules, which is calculated according to the following 
Equations 17, 18.

	 ( )( )′
− −= +1 1m m my MSA LN y y 	 (17)

	 ( )( ) ′= + = …, 1,2,.m m my MSA LN y y m M 	 (18)

Where LN and MLP, Two layers utilize the GELU activation 
function for non-linearity, while Layer Normalization (LN) is applied 
to each sample. It is computed using the following Equation 19:

	
( ) µ γ β

δ
−

= +
yLN y p

	
(19)

Where µ  represent the mean derivation of feature, y represent the 
sample, δ  represent the standard derivation of feature, p represent the 
element-wise dot operation, γ  and β  represent the learnable 
parameters of affine transformation. A dilated convolution layer is 
introduced to extract the high-level and fine low-level semantic 
information features. Dilated convolution layers have been shown to 
be a good alternative to segmentation tasks and pooling layers with 
significant improvement in ACC. In the expanded CNN, they use a 
pooling layer to control over-fitting and maintain in-variance, which 
is help reduces the spatial resolution information. It is Equation 20 
given as following:

	
( ) ( ) ( )

= =
= + × + ×∑∑

1 1
, , ,

J K

n o
x j k y j m n k m o v n o

	
(20)

Where ( ),v n o  represent the filter with J  length and K  width, 
( ),x j k  represent the output of dilated convolution ( ),y j k  represent 

the input of dilated convolution and m represent the parameter of 
dilated rate. The traditional convolutional get ×3 3 kernel size receptive 

field. Then two dilated convolutions get ×5 5 and ×7 7 kernel size 
receptive field. It can shows expand the respective field without loss of 
feature resolution. Global attention is a mechanism that calculates the 
attention weight of all elements of the input sequence. It was used to 
global context and capture long-range dependencies to gather the 
complex structure of images. It can be  defined as following 
Equations 21, 22:

	 ( )= ⊗2 1 1BG P G G 	 (21)

	 ( )= ⊗3 2 21qG P G G 	 (22)

Where × ×∈ℜ1 2, , , L M N
B qG G P P , ( )1BP G  map the input feature to get the channel 

weight feature map BP , ( )2G  represent the intermediate map feature, ( )2qP G
represent the spatial weight feature map multiplied with ( )2G  and 3G
represent the output feature map. Then ⊗ represent the multiplication 
between pixels. Then L, M  and N  represent the height, width and 
number of channels of the feature map. Finally, the classifier model 
has been carefully tuned for hyperparameters; however, the current 
optimization techniques, like Grey Wolf Optimizer, Particle Swarm 
Optimization, and Satin Bowerbird Optimizer, have certain 
drawbacks, e.g., complex structures, decreased effectiveness, 
vulnerability to capture, and higher computational complexity. In 
order to overcome such concern, suggest a novel Ad-GreLop. Greylag 
Goose Optimization (GGO) approach (Elshewey et al., 2025) is a 
meta-heuristic optimization method that mimics the feeding pattern 
of Greylag geese and adjusts their locations to determine the optimal 
solution. Exploration stage in the GGO approach gives top priority to 
determining promising areas in the search space while avoiding 
stagnation both in location and inner goals by progressing towards an 
optimum solution. The GGO re-evaluates agent placements based on 
specific calculations and maximizes these locations as depicted below 
Equation 23.

	 ( ) ( ) ( ) ( )∗ ∗+ = − ⋅ ⋅ −1Y n Y n B D Y n Y n
	

(23)

FIGURE 5

Architecture of DeTr-DiGAtt.

https://doi.org/10.3389/frai.2025.1575427
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Ramya and Minu� 10.3389/frai.2025.1575427

Frontiers in Artificial Intelligence 07 frontiersin.org

Where B  and C  represent the updating vector, ( )Y n  represents the 
agent’s position at thn , ( )∗Y n  represent the leader’s position. Then 

1 2,paddle paddleN N  and 3paddleN  represents the three randomly chosen 
search agents, which is used to upgrade agent locations. It can 
be defined as the following Equations 24, 25.

	

( ) ( )
( ) ( )

+ = ⋅ + ⋅ ⋅ −

+ − −
1 1 1 2 3

3 1

1
1 .

paddle paddle paddle

paddle

Y n v Y x v Y Y
x v Y Y

	 (24)

	 ( )= −1 / max 2z t r 	 (25)

Where 1 2,v v  and 3v  represents the upgraded in the range of [0, 2]. 
Then rma  represents the number of maximum iterations, t  represents 
the iteration number. Progressing toward the best optimal solution is 
define as the following Equations 26–28.

	 = − −1 1 1 1 1. .sen senY Y D E Y Y 	 (26)

	 = − −2 2 2 2 2. .sen senY Y D E Y Y 	 (27)

	 = − −3 3 3 3 3. .sen senY Y D E Y Y 	 (28)

Where 1D , 2D , 3D  1E , 2E  and 3E  represents the updates vector and 
1senY , 2senY  and 3senY  represent the anticipated position of the prey 

based on three sentry solutions. GGO periodically rotates leadership 
among individuals in the population to prevent stagnation. It can 
be define as following Equation 29.

	 ( )+ += + −1 1 .n n n n
leader leader leader leaderX X m X X

	
(29)

Where n
tY  represents the tht  goose position in the population at 

thn  iteration, +1n
leaderX  represent the leader position and +1n

leaderX  represent 
the randomly chosen position from the population and m represent 
the random factor in [0, 1]. Then chaotic function has been add to 
update the grey lag goose optimization algorithm ⋅ch  represent the 
chaotic function in the range [0, 1]. It can be define as the following 
Equations 30, 31:

	 ( )+ += + ⋅ −1 1n n n n
leader leader leader leaderX X ch X X

	
(30)

	 ( )( )−
+= = 1
1 cos coss qch P s P

	
(31)

Where s represent the chaotic index sequence and qP  represent the 
number of thq  element. In fitness function, the model’s ability to 
identify entire negative or positive case instances, which is calculated 
as the following Equation 32.

	
+

=
+ + +

UR UVAcc
UR UV GR GV 	

(32)

Where UR represent the true positive, UV  represents the true 
negative, GR represent the false positive and GV  represent the false 
negative. Algorithm 1 represents the Pseudocode for Ad-GreLop.

The suggested technique has been successfully categorised with 
DeTr-DiGAtt and the Adaptive Grey Lag Goose Optimization Algorithm.

3 Result and discussion

The proposed methodology is compared with other existing 
methodologies are “ResNet, Inception Net, Xception Net, AlexNet, 
U-Net, V-Net, SegNet along with VGG16 and ResNet. The proposed 
method has been evaluated using its dataset. Afterwards, some 
performance evaluation measures like ACC, PRE, recall, F1 score, 
specificity, and dice score were utilized for OSCC classification (Table 1).

3.1 Dataset description

The dataset was collected from vishnu dental college Bhimavaram, 
AP, contains 34 moderately differentiated samples, 11 poorly 
differentiated samples, and 35 well-differentiated sample images. 
Before augmentation, the dataset included 34 moderate, 11 poor, and 
34 well-differentiated sample images. After augmentation, the dataset 
was expanded to 204 moderate, 66 poor, and 204 well-differentiated 
sample images. In Table 2 shows all grading images of segmented and 
processed. The efficacy of hyperparameter optimization for the 
suggested methodology encompasses the following primary 
parameters: a dropout rate of 0.5, ReLU activation function, global 
average pooling enabled, a learning rate of 0.001, a patch size of 32, 
and 300 training epochs. All these settings were optimized to enhance 
the ACC and efficiency of the OSCC classification model. Ethical 
clearance number for Real Time Dataset 8,758/IEC/2023.

3.1.1 Performance analysis of segmentation
Figure 6 illustrates the comparative performance of the proposed 

hybrid segmentation approach with existing methods. In Figure 6A, 

TABLE 1  Existing methods analysis.

Reference Method Limitation

Wako et al. (2022) CNN based TL model Absence of hybrid model leads to reduce the model performances.

Albalawi et al. (2024) EfficientNet B3 Broader dataset was not used in this research was one of the major limitations in this model.

Peng et al. (2024) DL Very limited amount of ACC were obtained for this approach was one of the major limitations.

Das et al. (2024) CNN Binary classification has performed, there was an absence of multi-class approach in this model.

Flügge et al. (2023) DL based approach based on Swin-

Transformer (ST)

This method had lack of real time environment problem.

Li et al. (2024) DL The suggested method had insufficient data collection.
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the proposed method achieves an IoU of 98.08%, outperforming 
U-Net + ResNet (92.20%) and VGG16 + U-Net (90.72%). This 
demonstrates the stronger generalization capability of the proposed 
model compared to prior approaches, which often struggled with 
segmentation quality. Similarly, Figure 6B compares Dice coefficients, 
where the proposed method attains a Dice score of 97.97%, 
significantly higher than U-Net (87.24%) and SegNet (84.41%). These 
results highlight the ability of the proposed model to overcome 

limitations of earlier methods, such as low-quality segmentation and 
reduced accuracy.

Figure  7 presents the mean Intersection-over-Union (mIoU) 
analysis. The proposed approach achieves an mIoU exceeding 97.01%, 
while V-Net and U-Net record comparatively lower values of 81.69% 
and 88.39%, respectively. This indicates that existing segmentation 
models often face challenges such as increased complexity, limited 
applicability, and dependency on large annotated datasets. In contrast, 

ALGORITHM 1

Pseudocode for Ad-GreLop.
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the proposed method consistently delivers superior segmentation 
performance across different evaluation metrics. A consolidated 
comparison of these results is further provided in Table 3, emphasizing 
the robustness of the proposed approach.

3.1.2 Performance analysis for classification
This section provides a comparison of the suggested methodology 

with several contemporary techniques. Figure  8 illustrates the 
performance of ACC and PRE.

TABLE 2  Sample of input, pre-processed and segmented images.

Sample Original image Pre-processed image Segmented image

Moderate

Poor

Well

FIGURE 6

(A,B) Performance analysis of IoU and dice score.
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FIGURE 7

Performance analysis of mIoU.

TABLE 3  Segmentation analysis for proposed method.

Methods IoU (%) Dice score 
(%)

mIoU (%)

Imp-MuRs-Unet 98.08 97.97 97.01

U-Net + ResNet 92.20 91.49 93.28

U-Net + VGG16 90.72 89.34 89.75

U-Net 89 87.24 88.39

SegNet 85 84.41 84.64

V-Net 82.26 81.69 81.69

Figure  8 presents the classification performance of the 
proposed method compared to existing models. In Figure 8A, the 
proposed strategy achieves an accuracy (ACC) of 98.59%, 
outperforming AlexNet (95.74%) and XceptionNet (92.91%). This 
confirms the superior classification ability of the proposed method, 
while earlier techniques such as AlexNet  also exhibited longer 
computational times. Figure  8B illustrates the precision (PRE) 
values, where the proposed approach attains 97.53%, significantly 
higher than XceptionNet (91.35%) and InceptionNet (89.13%). The 

lower accuracy and precision of InceptionNet highlight its 
increased complexity and reduced effectiveness in 
OSCC classification.

Figure 9 evaluates additional performance metrics of Recall and 
F1-score. As shown in Figure 9A, the proposed method achieves a 
recall value of 98.45%, whereas AlexNet and InceptionNet obtain 
only 89.76% and 95.35%, respectively. This improvement 
demonstrates the ability of the proposed approach to handle class 
imbalance issues that hindered prior models. Figure  9B shows 
F1-score comparisons, where the proposed method records 97.99%, 
clearly surpassing InceptionNet (89.44%) and ResNet (86.98%). The 
higher F1-score indicates the robustness of the proposed model in 

FIGURE 8

(A,B) Performance analysis of ACC and precision.

FIGURE 9

(A,B) Performance of recall and F1- score for proposed method.
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minimizing both false positives and false negatives, thereby 
improving the detection of OSCC cases.

Figure  10 highlights the specificity analysis. The proposed 
method achieves a specificity of 98.96%, which is higher than AlexNet 
(95.41%) and XceptionNet (92.07%). This demonstrates the enhanced 
ability of the proposed approach to correctly identify negative cases, 
reducing misclassification rates and providing more reliable 
predictions. Prior models often suffered from class imbalance, 
reducing their specificity and overall classification stability. Figure 11 
presents the training and testing performance across epochs. In 
Figure 11A, the proposed model achieves near-perfect accuracy for 
both training and testing after approximately 300 epochs, reflecting 
its strong generalization ability. Figure 11B shows that both training 

and testing loss values remain below 1 within the same epoch range, 
confirming the stability and efficiency of the learning process.

Figure  12 provides the confusion matrix for the three-class 
classification task. The distribution clearly indicates that the proposed 
method minimizes misclassifications across all OSCC grades, 
supporting its robustness and practical applicability for accurate 
disease classification.

To ensure that the observed performance improvements are not 
due to chance, the proposed model was evaluated using 5-fold cross-
validation. Additionally, a paired t-test was conducted between the 
proposed model and baseline methods. The improvements in IoU, 
ACC, F1-score, and specificity were found to be statistically significant 
(p < 0.05). This confirms that the high scores achieved by the proposed 
method represent true performance gains rather than random 
variations or dataset bias.

To identified the target classes such as well, moderate, and poor, 
which help to improve the OSCC Grading Classification. The method 
has been obtaining total target class samples of moderate at 42 
samples, poor at eight samples, and well at 42 samples. The proposed 
method obtains a moderate target class of 41 samples, a poor target 
class obtains eight samples and well obtains 41 samples. The suggested 
design has been acquiring superior target classification samples, 
hence enhancing the performance of the present model. The 
suggested classification performance indicators provide superior 
results relative to other techniques. Table 4 presents the categorization 
performance results of the study.

Here a comprehensive discussion was provided on OSCC Grading 
Classification. The proposed compared with multiple methods for 
analyzing the better classification. Traditional methods have some 

FIGURE 10

Performance analysis of specificity.

TABLE 4  Performance classification of proposed method.

Model Proposed model AlexNet XceptionNet InceptionNet ResNet

ACC (%) 98.59 95.74 92.91 90.07 87.94

Precision (%) 97.53 94.89 91.35 89.13 86.53

Recall (%) 98.45 95.35 91.86 89.76 87.44

F1-score (%) 97.99 95.12 91.60 89.44 86.98

Specificity (%) 98.96 95.41 92.07 89.45 86.29

FIGURE 11

Performance analysis of both training and testing (A) ACC and (B) loss for proposed method.
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FIGURE 12

Performance analysis of confusion matrix of proposed method.

limitations, such as handling large volumes of image data, lack of 
availability and generality during segmentation, poor contrast, and so 
on. To overcome that limitation, introduce a novel DeTr-DiGAtt for 
OSCC classification. The proposed method used the GAN model to 
control the overfitting problems. The imp-MuRs-Unet method was 
used to identify affected regions accurately for segmentation.

4 Conclusion

This study presents a unique DeTr-DiGAtt model for the 
categorisation of OSCC. The proposal involves collecting the input 
picture using its dataset. The GAN model was used for the data 
augmentation mechanism. The ad-BF method was used in the 
Pre-processing stage. After reprocessing, Imp-MuRs-Unet was used 
for segmentation. Then VGG-Mob model was used for feature 
extraction. The deTr-DiGAtt method was used for classification. 
Ad-GreLop was used to optimize for fine tune parameters in the 
classifier model. This available method has ACC, PRE, recall, dice 
score, and IoM of 98.59%, 97.53%, 98.45%, 97.97%, and 98.08%. In 
future work, explainable techniques will be added to improve the 
ACC of OSCC classification more effectively.
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