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Recent advances in MRI reconstruction have demonstrated remarkable success 
through deep learning-based models. However, most existing methods rely heavily 
on large-scale, task-specific datasets, making reconstruction in data-limited settings 
a critical yet underexplored challenge. While regularization by denoising (RED) 
leverages denoisers as priors for reconstruction, we propose Regularization by 
Neural Style Transfer (RNST), a novel framework that integrates a neural style transfer 
(NST) engine with a denoiser to enable magnetic field-transfer reconstruction. 
RNST generates high-field-quality images from low-field inputs without requiring 
paired training data, leveraging style priors to address limited-data settings. Our 
experiment results demonstrate RNST’s ability to reconstruct high-quality images 
across diverse anatomical planes (axial, coronal, sagittal) and noise levels, achieving 
superior clarity, contrast, and structural fidelity compared to lower-field references. 
Crucially, RNST maintains robustness even when style and content images lack 
exact alignment, broadening its applicability in clinical environments where precise 
reference matches are unavailable. By combining the strengths of NST and denoising, 
RNST offers a scalable, data-efficient solution for MRI field-transfer reconstruction, 
demonstrating significant potential for resource-limited settings.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a critical medical imaging tool that provides crucial 
diagnostic insights, significantly influencing clinical decision-making and improving patient 
outcomes. The continual advancements in MRI technology, particularly the increase in field 
strength, have led to improved signal-to-noise ratio (SNR), thereby enhancing image quality 
(Schick et al., 2021; Runge and Heverhagen, 2022). However, despite its numerous advantages, 
MRI is inherently limited by long acquisition times. These extended scan durations introduce 
multiple challenges, including susceptibility to motion artifacts, delays in diagnosis, restricted 
patient accessibility, and constraints in scanning critically ill patients who may greatly benefit 
from this imaging technique. To address these limitations, Compressed Sensing (CS) has been 
introduced as an effective approach, enabling accelerated MRI acquisition by acquiring fewer 
k-space measurements (Lustig et al., 2007; Donoho, 2006; Candes and Wakin, 2008). While 
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CS-based methods effectively reduce scan time, they also introduce 
inherent trade-offs, such as loss of fine image details and potential 
misalignment artifacts.

To mitigate these issues, recent research efforts have increasingly 
focused on leveraging deep learning-based techniques for MRI 
reconstruction (Hammernik et al., 2018; Sriram et al., 2020; Shen 
et al., 2023; Shen et al., 2024; Hao et al., 2023). These approaches 
typically rely on supervised learning with large, high-quality paired 
datasets to train networks for deblurring and reconstruction tasks 
(Zbontar et al., 2019; Guo et al., 2024). However, their dependency on 
extensive labeled datasets presents a significant limitation, particularly 
when acquiring high-quality paired data is impractical. This challenge 
becomes particularly relevant in the context of field-transfer 
reconstruction, where scans obtained at lower magnetic field strengths 
need to be  reconstructed to mimic high-field MRI images. In 
situations where high-field scanners are unavailable or scans were 
originally conducted at lower field strengths, a robust reconstruction 
technique that can generate high-field quality images from limited 
data would be highly desirable.

To address inter-scanner and inter-field variations, MRI 
harmonization techniques have been explored to enhance consistency 
in quantitative measurements (Stamoulou et al., 2022; Liu et al., 2021). 
These methods have shown promising results in reducing disparities 
between different scanner models and field strengths (Dewey et al., 
2020; Wada et al., 2024). However, many of these approaches still rely 
on the availability of large-scale paired datasets, making their 
widespread application challenging. Consequently, the problem of 
MRI image transformation with limited data remains an open research 
challenge that requires innovative solutions.

Image domain transfer, a well-studied problem in computer 
vision, offers a compelling framework for addressing MRI field 
transfer reconstruction. This technique involves transforming an 
image to adopt the characteristics of another domain while preserving 
its core content. Deep learning-based methodologies, particularly 
Neural Style Transfer (NST) (Gatys et  al., 2015a) and Generative 
Adversarial Networks (GANs) (Goodfellow et  al., 2014), have 
demonstrated remarkable success in image transformation tasks 
(Chen et al., 2018; Luan et al., 2017; Jing et al., 2020; Azadi et al., 2018). 
GAN-based approaches, while effective in generating high-quality 
images, often suffer from training instability and mode collapse, 
making them challenging to optimize for limited data applications. 
Meanwhile, recent advancements in denoising diffusion probabilistic 
models (DDPMs) (Ho et al., 2020; Saharia et al., 2023) have shown 
impressive results in generating high-fidelity images with sharper 
details. However, DDPMs typically require larger datasets to function 
properly and are more computationally expensive due to their multi-
step image generation (Liu et al., 2024). Moreover, DDPMs poses a 
significant hindrance in semantically meaningful data representations 
due to their diffusion process for data deconstruction (Kazerouni 
et al., 2023). NST, on the other hand, presents a viable alternative with 
several unique advantages. Unlike GANs and DDPMs, NST benefits 
from a stable training process and a flexible network architecture for 
quick and easy deployment. The core principle of NST involves 
optimizing two key loss functions: content loss, which preserves the 
semantic structure of the image, and style loss, which captures the 
statistical correlations (Gram matrix) of extracted feature maps across 
multiple network layers. A pre-trained convolutional neural network 
(CNN), such as VGG, is commonly used as a feature extractor, 

separating the style transfer process from the feature extraction 
process. This separation is particularly advantageous in scenarios with 
limited paired data, as it allows for a more scalable and adaptable 
pipeline. By leveraging pre-trained feature extractors, NST facilitates 
effective field-transfer reconstruction without necessitating extensive 
retraining on domain-specific medical datasets.

Beyond direct image transformation techniques, Regularization 
by Denoising (RED) has emerged as a powerful framework for image 
reconstruction by integrating image priors through a denoising engine 
(Romano et al., 2017). As an evolution of the Plug-and-Play (PnP) 
Prior approach (Venkatakrishnan et  al., 2013), RED eliminates 
reliance on Alternating Direction Method of Multipliers (ADMM)-
based optimization, offering greater flexibility in selecting denoising 
algorithms and iterative optimization strategies. This adaptability 
makes RED particularly suitable for MRI field-transfer reconstruction, 
as it can effectively handle variations in between low-field and high-
field images. Since low-field MRI inherently exhibits increased 
background noise and altered contrast characteristics due to variations 
in relaxation times, a reconstruction method that incorporates robust 
denoising and transformation is crucial for achieving high-quality 
results. RED has demonstrated impressive performance across various 
imaging applications, particularly when combined with advanced 
deep-learning networks (Mataev et al., 2019; Metzler et al., 2018; Wu 
et al., 2019). In MRI, RED has been successfully applied to accelerated 
imaging, motion deblurring, and semi-supervised reconstruction 
tasks (Gan et al., 2020; Gan et al., 2022; Liu et al., 2020).

Building on these advancements, we propose Regularization 
by Neural Style Transfer (RNST), an MRI field-transfer 
reconstruction framework that integrates NST within the RED 
paradigm, as illustrated in Figure  1. RNST extends RED by 
incorporating an NST engine with a denoiser, leveraging the 
pre-trained CNN feature extractor for style transfer without 
requiring extensive paired training data. This enables RNST to 
perform effective field-transfer reconstruction with limited data 
availability, making it highly suitable for real-world clinical 
applications where paired high-field and low-field datasets are 
scarce. As the NST engine uses a pre-trained CNN-based feature 
extraction network with general image contents, RNST provides a 
plug-and-play solution that can be  adapted to different MRI 
settings without requiring domain-specific retraining. We validated 
the effectiveness of RNST using multiple MRI datasets obtained 
from different scanning conditions, evaluating its ability to 
reconstruct high-field quality images from limited data while 
mitigating noise-induced artifacts. Our results demonstrate that 
RNST achieves superior reconstruction quality with limited data 
availability. By leveraging the complementary strengths of RED 
and NST, RNST provides a novel, flexible, and efficient solution for 
MRI field-transfer reconstruction, addressing the challenge of 
transforming MRI images across different field strengths without 
the need for large-scale paired datasets.

2 Materials and methods

2.1 Neural style transfer (NST)

NST is a paradigm of deep learning-based style and content 
separation and recombination. Consider a content image cx  and a 
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style image sx , NST seeks to give an output image combx  which is the 
combination of the content and style images (Gatys et al., 2015a). A 
deep convolutional neural network typically consists of layers of 
computational units which process visual information hierarchically. 
The output from a certain layer includes a branch of feature maps. This 
hierarchically organized network provides a computational 
representation of the input image where lower layers capture pixel 
value details and textures while higher layers capture general image 
contents and shapes (Zhang and Zhu, 2018; Mahendran and Vedaldi, 
2015; Gatys et al., 2015b).

NST utilizes a CNN network CNNU  to separate the style and 
content of the original images and recombine them in the output 
image so that combx  is close to the cx  content-wise, while close to sx  
style-wise. More specifically, consider the feature maps of an image x  
in layer l where they consist of lN  maps in total and each map has the 
size lM . In this case, all feature maps can be represented by a matrix 

×∈ l ll N MF   where l
ijF  corresponds to the i th feature map at position 

j . The content loss between the content image cx  and input image x  
in layer l is defined as the squared-error loss between their 
feature representations:

FIGURE 1

The overall framework of regularization by neural style transfer (RNST). (a) shows the overall structure of RNST. It contains two main parts in the 
optimization iteration. The first one is a neural style transfer (NST) network that provides a set of style transferred images from the input. Then, a 
gradient step update is applied for denoising and reconstruction. The final reconstruction is generated after N iterations. (b) Demonstrates a closer look 
at the NST engine. It takes a style image as guidance and a content image for reconstruction. The loss is a combination of the style loss measuring the 
feature correlations among multiple layers and a content loss measuring the content difference between the output and content feature maps.
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Style loss represents the correlations between different feature 
maps. The correlation is given by the Gram matrix ×∈ l ll N NG  , where 
l
ijG  is the inner product of two feature maps i and j  in layer l:
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Thus, the matching of the style for a given image in a certain layer 
is done by minimizing the mean-squared loss between the entries of 
Gram matrices from the style image and input image:
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Then, the style loss among multiple layers is:

 
( ) ( )ω=∑, , ,style s l style s

l
x x x x l 

 
(4)

where ωl  is the weighting factor representing the contribution of 
each layer. The total loss is the combination of content loss and 
style loss:

 ( ) ( ) ( )α β= +, , , ,total c s content c style sx x x x x x x  
 (5)

where α  and β  are the weighting factors of content and style loss, 
respectively.

2.2 Regularization by denoising (RED)

RED (Romano et  al., 2017) provides a flexible pipeline for 
image reconstruction. Consider a classic reconstruction 
case where:

 
= +y Hx e

 (6)

where H  is a degradation operator and e  is the additional noise. x  
represents the unknown reconstruction target and y  is the noisy 
measurement. A typical reconstruction brings the following form:

 ( ) ( )λρ= +argmiˆ n ,xx y x x
 (7)

where x̂  is the estimated reconstruction of x , and l and ρ  are 
penalty and regularization terms. This form includes a branch of 
image reconstruction tasks such as denoising, deblurring, super-
resolution, tomographic reconstruction, and so on. The noise 
contamination of the measurements can also be  probability 

distributions such as Gaussian, Laplacian, or Poisson depending on 
the setting.

Previous work such as the PnP prior (Venkatakrishnan et  al., 
2013) algorithm gives the reconstruction in a block-coordinate-
descent fashion where one step is for solving the inverse problem and 
the other step is for denoising the updated reconstruction. While PnP 
prior does not specifically refer to a certain choice of the denoising 
engine as a prior, it comes with the limitation of activating a denoising 
algorithm and departing from the original setting without an 
underlying cost function. As the name suggests, regularization by 
denoising advocates the regularization term as:

 
( ) ( )( )ρ = −

1
2

T fx x x x
 

(8)

where f  refers to the denoising engine. In this way, RED comes 
with much more flexibility for the choice of the optimization method 
and denoising engine.

2.3 Regularization by neural style transfer 
(RNST)

In this section, we demonstrate the RNST method for magnetic 
field transfer reconstruction. RNST includes a neural style transfer 
and a denoising engine. The magnetic field transfer reconstruction 
from a lower-field image to a higher-field requires a process of 
denoising without loss of features in the tissues. However, since the 
original image was obtained with a lower magnetic strength, the image 
quality and noise level are much worse compared to the higher-field 
one. Though the denoising of background noise can be achieved by a 
denoising engine, the shifting in contrast ratio and feature loss in the 
reconstruction still exists. Thus, we employ an NST engine as part of 
our regularization optimizer to update the lower-field images 
iteratively such that the correlations between different features become 
as close as possible to the higher-field references.

Consider a magnetic field transfer reconstruction with the form 
of Equation 6:

 
= +hx Hx e

 (9)

where hx  is the unforeseen higher-field target and x  is the lower-
field noisy measurement. As shown in Equations 7, 8, this 
reconstruction process can be written in the form:

 ( ) ( )( )τ= + −argmin ,ˆ T
x Dhx x x x x x

 (10)

where the latter term is a regularization term with a denoiser D  
integrated and τ  is the corresponding weighting factor. Notice that 
although the degradation operator H  can be hard to define since 
modeling the imaging process from different magnetic strengths and 
setups is difficult, the higher-field target hx  can be  implicitly 
represented by a guidance scan guidx  coming from the same magnetic 
field. Thus, (Equation 10) can be solved by embedding an NST engine 
in the reconstruction pipeline.
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The overall structure of our RNST is demonstrated in Figure 1a. 
As an optimizer to reconstruct the low-field input image, it contains 
two main parts in the optimization iteration. The first one is an NST 
network that provides a set of directional style transferred images 
from the raw input. As mentioned above, the NST engine works based 
on the handling of the content image and style image as shown in 
Figure 1b. By computing the style and content loss between the input 
and style guidance image, the NST engine updates the input with 
respect to this loss combination. After a number of iterations, the 
output contains content of the original input but has a feature style, or 
pixel correlations closer to the style image. NST benefits from the fact 
that it works based on a deep convolutional neural network usually 
pre-trained on a large-scale dataset such as ImageNet and the network 
is frozen for feature extraction during the style transfer process. 
However, the image contents in our work are different from these 
pre-trained datasets and might lead to a mismatch in feature 
extraction. Considering this, we applied an online update with the 
NST engine to search for directions of our gradient descent optimizer. 
This online update generates multiple candidates from the NST engine 
with different style transfer levels and these output images with 
different style transfer levels play the role of guidance for the gradient 
evaluation. The second part is a line-search gradient descent engine 
(Stanimirović and Miladinović, 2010) as an iterative approach for 
reconstruction. Newton’s method provides a faster convergence speed 
than the classic gradient descent method, yet it requires the calculation 
of a higher order derivative of the objective function (Deuflhard, 
2005). However, since our reconstruction optimization contains the 
NST engine outputs and it can be hard to define a numeric derivative 

of the objective function, we employ a line-search gradient descent as 
an approximation.

The pseudo-code of our RNST via the line-search gradient 
descent is formulated as Algorithm 1. Beginning with a noisy 
lower-field raw input inx  and a higher-field style guidance guidx , 
the denoiser D  first generates a denoised image dx  from the input. 
Then, a list of style transferred images tx  are given by the NST 
engine  . Here the subline index 0N  is an initial number and stepN  
is the step size increase for the iteration number of  . After 
preparation of the style transferred image list tL , a line-search 
gradient descent is implemented to find the best gradient descent 
direction with respect to the objective loss . In order to overcome 
the potential convergence to a local optima of the non-convex 
objective function, we scan the possible solutions based on the list 
of style transferred images tx , and apply a line-search of different 
step-sizes µ  as a further exploration. With a batch of candidates 
in the list covering multiple step sizes, the best one is selected 
from the list with respect to the objective function in each 
iteration. Note that the step-size µ  can be adjusted dynamically 
per iteration. For instance, by applying an Armijo step-size rule 
(Armijo, 1966), the value of µ  can be updated with respect to the 
estimation of local gradient and the objective function. Herein, to 
keep things simple, we  set µ µ= i . The gradient direction is 
calculated by combining the gradient of the style transfer image 
tx and the denoising image dx  to produce an intermediate 

candidate x :

 ( )( )µ λ= − − + −
 t dx x x x x x

 (11)

ALGORITHM 1

Pseudo-code of our RNST via line-search gradient descent algorithm.
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To evaluate the performance of candidate x , a one-step neural 
style transfer loss is calculated:

 

( )
( ) ( ) ( )α β

′
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′ ′ ′

=

= +

 

  

0 1 ,
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content style
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in guid

x x x
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(12)

And the best candidate is kept as the input for the next iteration.

2.4 Model comparisons and 
implementation details

RNST offers great flexibility in selecting the underlying deep 
neural network structure for style transfer. In this work, we explored 
three different network architectures as our NST engine for 
performance comparison: VGG16 (Simonyan and Zisserman, 2015), 
ResNet50, and ResNet152 37 (He et  al., 2016). These models, 
pre-trained on large-scale general visual recognition tasks (Gatys 
et  al., 2015a), are readily accessible through PyTorch (Paszke 
et al., 2019).

For feature extraction in VGG16, we utilized the first eight 
layers for computing the style loss and the fourth layer for the 
content loss. For ResNet50 and ResNet152, style loss calculations 
were based on features extracted from the 7 × 7 convolutional layer 
and the 3 × 3 convolutional bottleneck layers 1, 2, and 3, while 
content loss was computed using features from the 7 × 7 
convolutional layer and the 3 × 3 convolutional bottleneck layers 1 
and 3. Additionally, we observed that substituting the traditional 
L2 loss with L1 loss in both content and style loss computations 
enhanced the sharpness of the reconstructed images, leading to 
improved performance.

We incorporated the widely used Block-Matching and 3D 
Filtering (BM3D) algorithm (Dabov et al., 2007) as the denoising 
engine. For the RNST algorithm, we set = 3styleN  and = 5lineN . The 
NST engine directional steps were set to =0 500N  and =100stepN . 
The weighting factor ratio in the NST engine was set to α β −= 6/ / 10  
for VGG16 and α β −= 4/ / 10  for ResNet50 and ResNet152.

2.5 Dataset details and evaluation metrics

We evaluated our method using two datasets: one from the 
National Alzheimer’s Coordinating Center (NACC) and another from 
our institution. Institutional Review Board (IRB) approval was 
obtained for this study and informed consent was obtained from the 
participant imaged in this study. The NACC dataset includes 22 scans 
of 11 subjects, including three patients with pathological recordings 
and the rest of them have no notable neuropathological assessments. 
These scans were collected from 5 ADRCs (Alzheimer’s Disease 
Research Center) conducted between January 2000 and January 2019, 
acquired on 1.5 T and 3 T scanners, with six 3D scans reconstructed 
in axial, coronal, and sagittal planes. The remaining scans were 
reconstructed in the axial plane based on their original acquisition. 
The institutional dataset comprised scans obtained on both 3 T and 
1.5 T scanners (Ingenia Philips Healthcare) from a healthy subject. 
The measurements were taken using the ELGAN-ECHO MRI 
protocol (McNaughton et  al., 2022) for the same subject in both 

magnetic strengths. It included two concatenated scans with identical 
geometry and receiver settings implemented, which is called a dual-
echo turbo spin-echo (TSE) and a single-echo TSE, combined as a 
triple TSE. The scanning is a triple-weighting acquisition including 
directly acquired (DA) image 1 for proton density-weighted, DA2 for 
T2-weighted and DA3 for T1-weighted, voxel = × ×0.5 0.5 2mm. Echo 
times =12 msec, 102 msec for the first and second effective echo; long 
repetition time =10 seconds, short repetition time = 5 seconds. Each 
DA generated 80 slices, leading to 240 slices for each magnetic strength.

We used the unregistered 3 T scan as the style guidance and the 
1.5 T scan as the content images. The resolution for each slice is 
256 × 256 for the NACC dataset and 512 × 512 for the triple TSE 
dataset. We  then performed a 3D registration on the 3 T scan 
corresponding to the 1.5 T scan to give the registered 3 T scan 
using 3DSlicer (Pieper et  al., 2004; Fedorov et  al., 2012). This 
registered 3 T scan worked as the reconstruction reference in our 
performance evaluation. For the NACC dataset, reconstruction 
tasks were performed with images further corrupted by additive 
white Gaussian noise (AWGN) at a level of 0.08 (σ = 20 /255). The 
number of iterations iterN  was set to 10 for ResNet50 and 
ResNet152, and 30 for VGG16. For all models, the parameters were 
set to µ = 0.1 and λ = 0.3.

For the triple TSE dataset, two reconstruction tasks were 
performed. The first utilized the original 1.5 T and 3 T scans, while 
the second incorporated additive white Gaussian noise (AWGN) at 
a level of 0.08, consistent with the NACC dataset. For VGG16, iterN  
was set to 10 with µ = 0.13 and λ = 0.2 for the first task, and to 50 
with µ = 0.15 and λ = 0.3 for the second. For ResNet50 and 
ResNet152, iterN  was set to 30 with µ = 0.12 and λ = 0.2for both 
tasks. Our RNST magnetic field transfer reconstruction includes a 
matched guidance and frozen guidance setup. In the matched 
guidance setup, the slice number of the guidance image and noisy 
content image were matched. Note that their image contents were 
still quite different due to the subject movement. To further 
demonstrate that RNST benefits from the fact that the guidance 
guidx  encodes the image style and implicitly represents the 

reconstruction, we froze the guidance image index to = 55guidi  and 
performed reconstruction on the truncated brain portion of slices 

=  40,60braini . During the evaluation, each reconstruction x̂  was 
compared to the registered 3 T scan with the matched slice index 
registeredx . Our quantitative metrics include peak signal-to-noise 

ratio (PSNR) in dB and structural similarity (SSIM):

 
( ) ( )

( )
=

2

10
max

, 10log
,

ˆ
ˆ
x

PSNR x x
MSE x x

 
(13)

where ( ),ˆMSE x x  is the mean squared error between the 
reconstructed image x̂  and the reference image x .
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(14)

where µx̂, µx, σ ˆ
2
x , and σ 2

x  are the mean and variance of 
reconstructed image x̂  and reference image x , respectively. σ x̂x  is the 
covariance of x̂  and x . ( )= 2

1 1c k L , ( )= 2
2 2c k L  are two factors to 

stabilize the division. L  is the dynamic range of pixel-values. We use a 
window size of ×7 7 with =1 0.01k  and =2 0.03k .
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3 Results

3.1 MRI field-transfer reconstruction 
performance

Table  1 summarizes the performance metrics for the NACC 
dataset, where all networks achieved remarkable performance for MRI 
field-transfer reconstruction. Overall, ResNet50 and ResNet152 
provide better performance compared to VGG16. For instance, in the 
coronal plane, ResNet152 achieved a PSNR/SSIM of 22.00/0.7406, 
compared to ResNet50 at 21.95/0.7165 and VGG16 at 20.26/0.6273. 
Similarly, in axial plane reconstructions across all scans, ResNet152 
achieved a PSNR/SSIM of 21.12/0.6461, compared to ResNet50 at 
21.15/0.6271 and VGG16 at 20.50/0.5800. Figure 2 provides qualitative 
comparisons of reconstructed images across axial, coronal, and sagittal 
planes. The reconstructed images are noticeably cleaner and more 
similar in contrast and intensity to those of the reference images when 
compared to the input lower-field MRI scans.

Similarly, when being applied to the triple TSE dataset, RNST also 
demonstrated superior performance. Table 2 reports the reconstruction 
metrics on the triple TSE dataset, evaluated on original scans as well as 
scans with additional noise. Reconstruction on DA2 with ResNet152 
achieved a PSNR/SSIM of 24.30/0.7875. When further corrupted with 
noises, RNST with ResNet152 still maintained a stable performance at 
24.27/0.7820. These results highlight the flexibility of our RNST 
framework which can be applied with various deep neural networks, 
achieving stable performance under multiple scanning setups.

3.2 RNST reconstruction with unmatched 
images

The integration of an NST engine enables RNST to perform field-
transfer reconstruction even in scenarios where only limited data is 
available or style images are not directly matched to the content 
images. In Table  3, we  demonstrate comparison studies of RNST 

TABLE 1 Evaluation metrics of RNST reconstructions on the NACC dataset.

Axial Coronal Sagittal All scans (Axial)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 20.57 0.2162 19.79 0.2044 19.40 0.2572 18.55 0.1826

VGG16 24.06 0.7074 20.26 0.6273 20.96 0.5951 20.50 0.5800

ResNet50 24.38 0.7687 21.95 0.7165 21.37 0.6426 21.15 0.6271

ResNet152 24.37 0.7882 22.00 0.7406 21.40 0.6412 21.12 0.6461

FIGURE 2

Reconstruction results of our RNST on the NACC dataset.
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TABLE 3 Evaluation metrics of RNST reconstructions on the brain portion of the triple TSE scans.

PSNR SSIM

DA1 DA2 DA3 DA1 DA2 DA3

Brain portion, original scan

Input 21.24 21.10 22.50 0.3464 0.3071 0.3215

VGG16 Match guide 22.83 25.01 25.07 0.8178 0.8181 0.8210

Frozen guide 22.68 24.60 24.96 0.7917 0.8041 0.8114

ResNet50 Match guide 22.32 25.48 25.38 0.8219 0.8271 0.8228

Frozen guide 22.00 25.14 24.87 0.8032 0.8265 0.8172

ResNet152 Match guide 22.39 25.56 25.52 0.8296 0.8436 0.8308

Frozen guide 21.99 25.10 24.89 0.7991 0.8220 0.8138

Brain portion, additional noise

Input 18.89 18.77 19.55 0.1288 0.1293 0.1005

VGG16 Match guide 22.64 24.16 24.91 0.8183 0.8181 0.8212

Frozen guide 22.73 23.81 25.38 0.8116 0.8114 0.8313

ResNet50 Match guide 22.28 25.39 25.38 0.8109 0.8243 0.8210

Frozen guide 21.85 24.95 24.84 0.7853 0.8198 0.8194

ResNet152 Match guide 22.33 25.49 25.45 0.8203 0.8347 0.8268

Frozen guide 21.81 24.94 24.89 0.7852 0.8105 0.8168

under matched guidance and frozen guidance setups. In the frozen 
guidance configuration, a fixed style image was used throughout the 
reconstruction, introducing greater content variation compared to the 
matched guidance setup.

Figures 3, 4 illustrate reconstructed images from both matched and 
frozen guidance setups. Notably, RNST successfully maintained 
reconstruction quality despite the absence of an exact style-content 
match. The reconstructed images exhibited similar contrast and intensity 
to the high-field reference scans, with improved noise suppression. 
Figure 5 and Supplementary Figure S1 further analyze reconstructed 
images with zoomed-in views and error maps. These results validate 
RNST’s effectiveness in field-transfer reconstructions without strict 
requirements for one-to-one style-content correspondence.

3.3 RNST performance along iterations

In Figures  6, Supplementary Figures S2, S3, we  demonstrate 
reconstruction samples along multiple iterations. Here, we present 
intermediate steps for iterations 1, 5 and 10, together with their 
intermediate evaluation metrics and error maps. The figures show that 
RNST performs reconstruction and noise reduction along iterations 
with better performance metrics as the iteration number increases. 
Overall, our experimental results highlight the capability of the RNST 
framework for limited data MRI reconstruction. This is especially 
helpful when scanning data is limited, precluding a large-scale deep 
neural network training with the potential to be further applied as an 
additional refinement to other reconstruction methods.

4 Conclusion

Deep learning-based MRI reconstruction frameworks typically 
require large-scale, task-specific datasets to achieve optimal 
performance. While these methods have achieved significant success, 
their applicability is often constrained in scenarios with limited data 
availability. The scarcity of adequately labeled medical data presents a 
major challenge, limiting the generalizability and practical deployment 
of these models. In this work, we propose a novel approach called 
Regularization by Neural Style Transfer (RNST) for MRI magnetic 
field-transfer reconstruction. RNST integrates a neural style transfer 
(NST) engine with a denoiser to generate high-field-quality images 
from noisy low-field inputs. By leveraging NST, RNST enables 
effective reconstruction with limited data, avoiding the need for 
extensive, task-specific training datasets.

Our results demonstrate that RNST consistently achieves superior 
image reconstruction quality across various experimental setups. 

TABLE 2 Evaluation metrics of RNST reconstructions on the triple TSE 
scans.

PSNR SSIM

DA1 DA2 DA3 DA1 DA2 DA3

All slices, original scan

Input 20.48 20.34 20.81 0.2659 0.2327 0.2427

VGG16 21.04 23.61 22.99 0.7605 0.7716 0.7748

ResNet50 21.60 24.23 23.89 0.7782 0.7813 0.7833

ResNet152 21.66 24.30 23.97 0.7843 0.7875 0.7859

All slices, additional noise

Input 18.39 18.29 18.53 0.1055 0.1026 0.0882

VGG16 20.75 22.81 22.37 0.7608 0.7664 0.7698

ResNet50 21.58 24.20 23.90 0.7705 0.7727 0.7804

ResNet152 21.62 24.27 23.96 0.7778 0.7820 0.7854
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Evaluation metrics presented in Tables 1, 2 highlight the flexibility of 
RNST, illustrating that the NST engine can be applied across multiple 
deep neural network architectures while maintaining stable 
performance. Reconstructions performed in axial, coronal, and 
sagittal planes confirm the broad adaptability of RNST, eliminating the 
necessity for highly specific training datasets to ensure effective 
functionality. Additionally, experiments conducted on the TSE dataset 
reveal that RNST maintains robust reconstruction performance even 
in the presence of added noise corruption. Qualitative assessments in 
Figures 2–4 further substantiate these findings, showing that RNST 
successfully enhances image clarity, contrast, and intensity, producing 
reconstructions that closely resemble higher-field MRI references 
when compared to their lower-field counterparts.

A key advantage of RNST lies in its ability to perform field-
transfer reconstruction with minimal data constraints while 
maintaining flexibility in style image selection. Comparison studies 

presented in Table 3 demonstrate that RNST achieves comparable 
reconstruction performance even when there is no exact style-content 
match. This underscores the model’s robustness in scenarios where a 
direct one-to-one correspondence between style and content images 
is unavailable. Figures 5 and Supplementary Figure S1 provide further 
insight into this phenomenon, offering zoomed-in views that validate 
RNST’s effectiveness in field-transfer reconstructions without rigid 
style-content pairing requirements. These findings indicate that RNST 
could be widely applied to diverse clinical settings where acquiring 
precisely matched reference images is impractical.

To gain further insights into the reconstruction performance 
across iterative steps, we  conducted a detailed analysis of RNST’s 
outputs at different iterations, as shown in Figures  6, 
Supplementary Figures S2, S3. These evaluations reveal that RNST 
delivers promising results even within a few iterations. Notably, RNST 
with ResNet152 achieves a PSNR/SSIM of 25.74/0.84 (DA2) in 

FIGURE 3

Reconstruction results of our RNST over the original scans on the triple TSE dataset.
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Figure 6 after only five iterations. This demonstrates the efficiency of 
RNST’s iterative process, where rapid improvements in reconstruction 
quality can be observed early in the optimization process. The ability 
to achieve high-fidelity reconstructions in a short number of iterations 
further enhances RNST’s practical utility for real-time or near-real-
time applications.

Despite these advancements, there remain several limitations and 
areas for future improvement. While RNST provides significant 
flexibility in terms of deep neural network architecture and eliminates 
the requirement for paired training datasets, it introduces additional 
challenges related to hyperparameter selection. Specifically, the choice 
of content and style extraction layers varies across different neural 
networks, necessitating careful tuning to optimize performance. As an 
iterative architecture leveraging off-the-shelf NST networks for 
reconstruction, RNST differs from conventional data-driven deep 
learning methods in architecture and data requirements. The 

computational cost of RNST mainly comes from the iterative approach. 
This can be further improved by embracing a specifically designed 
NST engine. The iterative logic inherited from RED makes it flexible 
and open to the specific models being used inside. For instance, more 
advanced denoisers could be  integrated to further enhance the 
performance. To fully leverage the potential for advanced deep neural 
networks, the core problem remains in dataset quality and availability. 
The development of more advanced deep learning-based 
reconstruction techniques fundamentally relies on high-quality 
training data. Moreover, improving the dataset diversity and availability 
across various sources would enhance the model generalizability and 
applicability in downstream tasks. Recent progress in conditional 
diffusion models (Zhan et al., 2024; Kim et al., 2023) has demonstrated 
significant potential in image synthesis, offering a promising path to 
address data scarcity. Additionally, techniques such as flow matching 
(Lipman et al., 2023; Lipman et al., 2024) suggest that diffusion-based 

FIGURE 4

Reconstruction results of our RNST with additional noise on the triple TSE dataset.
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models could serve as a viable solution for generating realistic medical 
images, as they are inherently rooted in probabilistic modeling and 
capable of capturing complex data distributions. Emerging research in 
general imaging models has begun incorporating synthetic data to 
further enhance performance (Shin et al., 2018; Kirillov et al., 2023), 
providing a compelling direction for future work. Utilizing such 
generative models could further improve reconstruction accuracy and 

robustness, particularly in settings where real-world data acquisition 
is constrained. Furthermore, the effectiveness of RNST in clinical 
practice will ultimately depend on its ability to preserve diagnostically 
relevant details while avoiding hallucination artifacts. To facilitate 
clinical integration, future work should prioritize seamless data flow 
implementation, multi-site validation, and expanded applications in 
clinical diagnostic imaging workflows. This could include evaluations 

FIGURE 5

Visual illustration of RNST results for matched and frozen guidance setups for three DAs with additional noise on the triple TSE dataset. The image 
details highlighted in the red box in each figure were enlarged on the upper right side, with the corresponding error maps compared to the registered 
reference showing on the lower right side.

FIGURE 6

Visual illustration and quantitative metrics of the RNST reconstructions across iterations under matched guidance with additional noise on the triple 
TSE dataset. We present intermediate steps for iterations 1, 5 and 10, together with their intermediate evaluation metrics and error maps.
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focusing on integration into medical imaging tasks such as automated 
tissue segmentation and abnormal region detection. Additionally, 
future studies could focus on evaluating RNST’s performance on 
clinical datasets containing subtle abnormalities, such as small strokes 
or metastatic lesions, to further assess its diagnostic reliability.

In conclusion, this work introduces Regularization by Neural Style 
Transfer (RNST) as an innovative solution for MRI magnetic field-
transfer reconstruction. RNST demonstrates superior performance 
across various imaging configurations, showcasing its flexibility in 
integrating an NST engine and its robustness in scenarios without 
exact style-content alignment. By addressing the challenge of field-
transfer reconstruction with limited data, RNST represents a 
promising framework that could significantly impact the field of MRI 
reconstruction, offering a scalable and effective approach for 
improving image quality in resource-limited environments.
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