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This manuscript explores how human irrationality in decision-making can contribute 
to artificial intelligence (AI) development, particularly in the domain of creativity. 
While irrational behavior is typically seen as a cognitive flaw, we argue that certain 
forms of irrationality, such as those demonstrated by the conjunction fallacy (CF), 
may represent context-sensitive reasoning that reveals creative problem-solving. 
Traditional AI research has primarily focused on rational, logic-driven models, 
overlooking the productive role of non-linear and seemingly illogical human 
thinking in generating novel insights. Drawing on interdisciplinary insights and 
recent neuroscientific findings, particularly the interaction of the Default Mode, 
Executive Control, and Salience Networks, we propose a model that integrates 
both rational and irrational cognitive dynamics. This framework may inform the 
design of AI systems that are more adaptive, context-aware, and capable of 
emulating human-like creativity.
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Introduction

The rise of artificial intelligence (AI) has ushered in a new era of both technological 
advances and a deeper understanding of mind and reasoning (Lake et al., 2017; Poldrack and 
Yarkoni, 2016; Mnih et al., 2015; Zhang et al., 2025). While Deep Neural Networks (DNNs) 
mimic neural structures in the brain, researchers use this statistical algorithm to study actual 
neuronal mechanisms (Marblestone et al., 2016; Kriegeskorte and Douglas, 2018). AI thus 
opens twin horizons—technological and cognitive—that complement each other. Given that 
cognitive findings can significantly advance AI development, it makes sense to update 
established cognitive science paradigms with recent discoveries in neuroscience and potentially 
use them as a source for AI improvement (Hassabis et al., 2017).

This manuscript offers a novel contribution by re-evaluating the role of irrationality in 
cognitive science. It proposes that certain forms of irrational decision-making—long treated 
as fallacies or biases—may actually support creative thinking. Building on recent findings in 
neuroscience, we aim to update definitions of rational and irrational behavior and (re)connect 
ideas from cognitive psychology (e.g., heuristics and biases), scientific methodology (e.g., 
fallacies in reasoning), and brain network dynamics. These elements are brought together as 
an attempt to form a unified framework for modeling human-like creativity in AI. Unlike 
traditional approaches that view irrationality as a flaw in reasoning and AI models that 
prioritize logic, optimization, and consistency, we  suggest that irrationality, under some 
conditions, can be a valuable source of creative insight.

Why could irrationality be important for AI, especially generative AI? Recent studies have 
shown that AI has or potentially may have a “creativity crisis.” Hataya et al. (2023) demonstrated 
that a classical image generation task (specifically generating an elephant) became less creative 
as algorithms increasingly repeated patterns from reference images. This decline can stem from 
a loop where previously generated images (outputs) become reference materials (inputs) for 
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newer algorithms. This phenomenon can be  described as the 
“ouroboros problem,” an analogy to the ancient symbol of a self-
consuming snake. The ouroboros problem extends beyond image 
generation to language models as well. Guo et al. (2023) established 
this as a widespread issue in language models, noting that output 
quality and diversity decrease when language generation tasks require 
a higher degree of creativity.

Moreover, Laverghetta et  al. (2025) conducted a comparative 
analysis between human experts and Large Language Models (LLMs) 
in evaluating outputs by their creativity. Their findings demonstrated 
that LLMs can accurately predict human creativity assessments, 
however, the underlying mechanisms and evaluation criteria used by 
these models remain unspecified:

"LLMs can achieve impressive accuracy in predicting human 
creativity assessments, yet we know little about how they arrive at 
their judgments, what features they prioritize, or whether their 
evaluation strategies align with those of human experts." 
(Laverghetta et al., 2025)

Thus, there is a lack of creativity or understanding of how machines 
interpret creativity at least for some kinds of tasks. Considering this 
problem, we aim to define creativity with its complexity and discuss how 
such a definition can contribute to AI development. First, we examine 
one of the main concepts in decision-making theory: the conjunction 
fallacy, illustrating the complexity of human decision-making and its 
relation to strict probabilistic norms. More precisely, CF challenges 
traditional probability theory by showing how human decision-making 
often deviates from purely rational calculations (based on Kolmogorov’s 
probability theory). Research has extensively demonstrated that 
individuals frequently assign higher probabilities to a conjunction of 
specific conditions than to a single event [P(a) & P(b) > P(a)]—violating 
basic laws of probability. Tversky and Kahneman (1983) labeled such 
behavior as a fallacy (irrational). But is it truly a fallacy? Above 
mathematical contra-argument, which will be discussed in the next 
chapter, one intuitive argument suggests that people who do not work 
directly with statistics or probability theory should not be expected to 
apply its calculations to real-life examples. Furthermore, even 
participants with sophisticated statistical knowledge in Kahneman and 
Tversky’s experiments committed the conjunction “fallacy.” To 
understand the roots of this seemingly irrational behavior, we  will 
examine key critical points of the CF and contexts in which such 
behavior, while not based on classical probability theory, can be justified 
by reasoning in a particular context.

While rational thinking is necessary and sometimes even vital in 
many areas, such as legal, financial, and medical decision-making etc., 
irrationality may not always be disadvantageous. What is classified as 
“irrational” behavior can contribute significantly to creative problem-
solving, especially in situations where conventional rules and protocols 
are unable to lead to novel solutions. This is evident in scientific 
research, where strict adherence to rational and/or statistical methods 
without considering contextual nuances can paradoxically lead to less 
meaningful or even unreliable results. Typically, such a problem is 
labeled as a methodological fallacy in the research context, which will 
be discussed in detail in the next section, taking concrete examples 
from sociology, biomedicine, and linguistics. While the methods and 
formulas may be performed technically correctly, the results and their 
interpretation may be biased or may not provide sufficient insights 

into the subject matter under study, mostly due to its complexity. So, 
if AI struggles with creative reasoning, could an examination of 
human irrationality give some insights to improve it?

Trying to answer this, we will examine the concept of creativity, 
both from psychological and neurobiological perspectives. Studies in 
neuroscience suggest that creativity arises from a dynamic interplay 
between the Default Mode Network (DMN), responsible for free-
flowing thought, and the Executive Control Network (ECN) or 
focused mode, which helps refine and structure those ideas. 
Considering this insight and some cognitive theories, we will define 
creativity as a balance between the rational and the irrational and 
discuss how it could improve AI’s ability to generate novel and 
meaningful outputs.

Conjunction fallacy

The Conjunction Fallacy is a phenomenon in cognitive 
psychology defined by Kahneman, Nobel Prize winner in economics, 
two scientists who contributed enormously to the development of the 
field of behavioral economics and decision-making theories (Morier 
and Borgida, 1984; Tversky and Kahneman, 1983; Moro, 2009; 
Gigerenzer, 1996; Tentori et al., 2004). This phenomenon belongs to 
a family of cognitive biases that includes Prospect Theory, the Allais 
Paradox, and the Framing Effect—all examining how context, risk, 
and uncertainty shape the assessment of probabilities in decision-
making (Tversky and Kahneman, 1974). While each of these 
phenomena deserves a separate study, this manuscript focuses solely 
on the conjunction fallacy, which provides a sufficient foundation for 
a thorough discussion.

Conjunction fallacy: concept

The conjunction fallacy can be explained by its name. Conjunction 
means judgment of the probability of two events occurring together 
[P(A) & P(B)] higher than the probability of one of the constituent 
events occurring alone [P(A) or P(B)]. Fallacy means, according to 
Kahneman and Tversky, that such a judgment is a violation of 
probability theory, which states that the probability of two events 
occurring together cannot be greater than the probability of either event 
occurring individually. The way to test the CF, respondents were asked 
to solve a task, which was named the “Linda problem.” In this example, 
participants are given a description of Linda: “Linda is 31 years old, 
single, outspoken, and very bright. She majored in philosophy. As a 
student, she was deeply concerned with issues of discrimination and 
social justice, and also participated in anti-nuclear demonstrations.”

Next, they are asked to rank the probability of various statements 
about Linda, including: (A) Linda is a bank teller; (B) Linda is a bank 
teller and is active in the feminist movement.

In this design, which was named a transparent test (p. 299), 85% 
of respondents ranked B (the conjunction) as more probable than A 
(the single event). When researchers manipulated the response format 
by changing the probability assessment to a scale from 1 to 9, the 
conjunction fallacy still persisted among the majority (82%), with 
participants rating A at 3.5 and A&B at 5.6. In addition to Linda’s task, 
there were other tasks with a male character named Bill to test a 
possible gender bias, there were experiments with a wider range of 
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response options, and experiments with different levels of statistical 
knowledge among respondents (from sophisticated to minimal) - all 
of these manipulations did not solve the CF problem.

Conjunction fallacy: critical points

“Outside the laboratory, however, outcomes and probabilities are 
rarely known with certainty and served up to the decision-maker 
on a platter.” (Hertwig and Gigerenzer, 2011, p. 1)

The research of Kahneman and Tversky demonstrated very clearly 
that humans often make decisions based on cognitive biases and heuristics 
rather than a probabilistic approach. The researchers manipulated words, 
and their positions in a sentence, study design, answer type, male/female 
figures in the vignettes, and more features to demonstrate that humans 
tend to deviate from probability calculation. However, such a deviation 
could be called irrational if one takes probability theory as a reference, 
which is not the case in real-life events. Moreover, what is the number of 
people who keep assumptions of classical probability theory every day 
and apply it by making real-life decisions?

In general, criticism of the CF could be divided into two elements: 
method and study design.

On method: Kolmogorov probability theory (Kolmogorov, 1956) 
implies the assumption of infinity, meaning that a situation must 
be repeatable an infinite number of times. However, the Linda example 
cannot satisfy this assumption. In fact, most real-life scenarios lack 
this ability per se. Therefore, applying a method with such a condition 
is inadequate for analyzing situations that cannot meet this 
requirement. Alternative methods that eliminate infinity requirements 
are the Bayesian approach and other mathematical methods, such as 
fuzzy logic and possibility theory (Jaynes, 2003; Zadeh, 1965; Dubois 
and Prade, 1988).

On study design: The Linda task lacks an indication that it should 
be solved by operating with a purely probabilistic approach. Among 
other CF issues, this critical point was clearly demonstrated in Hertwig 
and Gigerenzer (1999) study—a highly relevant critique of the 
conjunction fallacy existing in the literature. The researchers found that 
the conjunction fallacy decreases significantly when tasks are 
formulated using probabilistic language, which serves as a signal of the 
mathematical context to respondents. More precisely, they first tested 
and proved that the initial context of the task was not taken in 
mathematical terms among the respondents. Next, they studied 
precisely which words would be associated with a mathematical context 
for the Linda problem. Finally, they applied these semantic findings to 
test the CF with a clear indication of the probabilistic context, using a 
language of frequency. After doing this, the CF was committed to only 
13% of respondents (the original result was 82%). This has 
demonstrated that one can set up a context or method to solve the 
issue, indicating this directly and not post-factum. This phenomenon 
is consistent with the concept of framing in psychology (Tversky and 
Kahneman, 1981) because the way Linda’s problem is presented 
influences respondents’ interpretations and decision-making strategies, 
demonstrating that changes in wording can affect the outcome.

The next study by Polakow et al. (2021) has shown that the CF rate 
can also drop if one designs the task by choosing between two rank 
orders of options instead of freely ranked multiple statements (free 
ranking), with 61 and 32%, respectively. Participants made fewer 

conjunction errors when providing probability estimations compared 
to making categorical choices. This suggests that requiring individuals 
to think in terms of numerical probabilities can reduce the likelihood 
of the conjunction fallacy.

The study design could be reviewed not only internally (within the 
original paper), but also externally (further CF experiments). Since 
the seminal papers were published in 1983, there have been thousands 
of new studies and experiments conducted, even in recent years. This 
may signal two issues:

 1 The misalignment between Linda’s scenario and the application 
of Kolmogorov probability theory is not obvious to the 
scientists conducting such experiments.

 2 Such experiments are conducted without taking into account 
the critical points on the study design described above (Veloz 
and Sobetska, 2023).

Conjunction fallacy: what did we learn?

The analysis of the conjunction fallacy reveals more than just a 
cognitive bias. It exposes a fundamental issue in how problems are 
framed and how methods are applied. It can further be seen as a 
tendency to judge complex phenomena using tools without regard 
for contextual fit. Humans do not usually rely on probability theory 
to make life-relevant decisions, but they are able to solve a problem 
using probability theory if they are semantically given that context. 
As a result, applying classical probability theory to a real-life scenario, 
without ensuring that participants interpret it mathematically, leads 
to misleading conclusions about human rationality. This is especially 
relevant in creative problem-solving, where solutions may appear 
irrational by Kahneman’s and Tversky’s standards but are rational 
within their specific context. This insight thus motivates one to 
consider problem solving strictly within the nature of the problem, 
rather than manipulating it.

However, this type of mismatch is not limited to psychology but 
recurs across disciplines, where methodology can oversimplify the 
nature of the object under study. The next section explores this 
broader issue as the “methodological fallacy,” using examples from 
sociology, biomedicine, and linguistics to show how such 
misalignments affect reasoning and interpretation in diverse fields.

Methodological fallacy

The misalignment between the nature of the object under study 
and the method that studies it can be  found not only in the CF 
(Mugur-Schächter, 2002). This misalignment is a cross-disciplinary 
phenomenon, which is called a methodological fallacy.

Sociology

“Perhaps it is not so wrong to compare a social scientist with a spy 
in a foreign country. A good scout not only reports obvious and 
desirable facts, but also hidden and unpleasant ones.” (Diekmann, 
2018, p. 60)
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In sociology, a methodological fallacy known as the ecological 
fallacy occurs when drawing conclusions about individuals based 
on group-level data. The term “ecological” refers to the collective 
dimension, and this concept was introduced by sociologist 
W. S. Robinson. In his extensive study (Robinson, 1950) examining 
literacy and foreign birth rates across U. S. states, Robinson 
demonstrated the difference between individual and collective 
correlations. He discovered a paradox: while states with higher 
proportions of foreign-born residents had higher literacy rates 
overall, individual-level data revealed the opposite trend. This 
contradiction points out the dangers of misinterpreting aggregate 
data and has made a huge contribution to the design of surveys 
and quantitative research methods.

Shortly: the ecological fallacy appears when one concludes 
(generalizes) from collective to individual levels.

Example: Supposedly, we  have a hypothesis about alcohol 
consumption and life expectancy, so it can be formulated as follows:

H1: Countries with high alcohol consumption have a higher 
life expectancy.

Based on Figure 1, alcohol consumption is a collective (social) 
attribute [1] inside a country; an emerging social phenomenon here 
is a (collective) higher life expectancy [4]. Ecological fallacy is the 
conclusion that alcohol increases life expectancy [1 → 4] without 
testing alcohol consumption and life expectancy by individuals 
[2 → 3]. Theoretically, such countries could be wealthier, have better 
health care systems, healthier lifestyles in general, or, as an obvious 
example, invest better in sociological research, thereby improving the 
quality of population data.

To avoid ecological fallacy, we  should build and test 
additional hypotheses:

[1 → 2] Context hypothesis: Which (collective) factors influence 
individual alcohol consumption behavior? For example, higher 

incomes and a higher standard of living in a country 
(Macro–Micro).

[2 → 3] Action/behavior hypothesis: Which individual factors 
lead to higher life expectancy? For example, a person with moderate 
consumption could be less affected in terms of health because other 
lifestyle factors (healthy diet, high-quality sleep, medical care, sport, 
good stress management, and social connections) offset the negative 
effects of alcohol (Micro–Micro).

[3 → 4] Transformation/aggregation hypothesis: How do 
individual decisions lead to emerging/aggregated social phenomena? 
A country with a high life expectancy may have many healthy people 
with moderate consumption and good medical care. In another 
country with lower life expectancy, health problems may be caused 
more by poverty, poor medical care, and work conditions than by low 
alcohol consumption (Micro–Macro).

Biomedicine and statistical 
misinterpretation

Biomedical research is one area where misuse of the p-value is 
a frequent methodological fallacy (for details, see Steyerberg et al., 
2018; Benjamin et  al., 2018; Greenland et  al., 2016; Gao, 2020; 
Gliner et al., 2001; Ioannidis, 2019; Benjamin and Berger, 2019). 
The p-value is a statistical measurement used to calculate the 
probability that an observed outcome occurs by chance, assuming 
that the null hypothesis (e.g., null treatment effect) is true. If a drug 
study has a p > 0.05 (a generally accepted level at which a result is 
considered nonsignificant), it may still have medical significance. 
In other words, the study may contribute to much of the research 
in other areas of medicine. Thus, the p-value should not 
be  considered as a measure of success or failure, but rather a 
filtering tool (Sobetska, 2023). Moreover, this (un)significant 
outcome can be manipulated by sample size because the p-value 

FIGURE 1

Model of ecological fallacy. Own representation, adapted initially from Coleman’s bathtub model (Coleman, 1990) and complemented by 
argumentations and models by Boudon (1979, 1980), Esser (1999), Lindenberg (1977) and Opp (2002). [1, 4]—collective (macro) levels, [2, 3]—individual 
(micro) levels.
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function refers to it, and this is the second point where a 
methodological fallacy arises:

“(…) two studies into new treatments for a certain disease are 
published with only the p values, stating that the effect of the first 
drug was statistically not significant, while that of the second was. 
The naive reader might think that the second drug should be used, 
and the first one dismissed. However, the difference may have 
been the result of differences in sample size, and in reality the 
non-significant study may have had a more pronounced and 
clinically relevant effect, worthwhile to explore further, whereas 
the large study yielded a statistically significant result, but a 
clinically irrelevant effect.” (Rosendaal, 2016, p. 22)

Unlike p-values, confidence intervals provide a range of plausible 
values for the estimated effect, providing a sense of precision and 
uncertainty. As another alternative, effect sizes quantify the strength 
of a relationship or difference, allowing comparisons across studies 
and contexts. However, despite the availability of alternative methods 
and the restriction of the p-value test in scientific publications, the 
problem of understanding the null hypothesis significance test 
(NHST) remains at the educational and research levels (Haller and 
Kraus, 2002; Badenes-Ribera et al., 2015, 2016; Lyu et al., 2020; Lytsy 
et al., 2022; Sobetska, 2023).

Linguistics

In linguistics, a highly relevant cognitive science field, the 
methodological fallacy occurs almost in the same way as in the 
example of sociology - in generalization. Evans and Levinson (2009) 
paper postulates the need to treat each language separately, which can 
be considered as a counterargument against the theory of universal 
grammar, promoted by Noam Chomsky. The researchers argue further 
that language emerges from a combination of cognitive processes, 
cultural evolution, and environmental adaptation, rather than having 
a universal grammar.

A key methodological fallacy arises when linguistic exceptions are 
treated as anomalies rather than as evidence against universality. For 
example, the Pirahã language lacks recursion (Everett, 2005), 
contradicting claims that it is a defining feature of human language 
(Hauser et al., 2002), yet many generative linguists have attempted to 
reinterpret the data rather than revise their models (Nevins et al., 
2009). Similarly, languages such as Indonesian Riau (Gil, 2005) and 
Salish (Wiltschko, 2003) challenge assumed grammatical universals. 
Rather than imposing Indo-European structures on all languages, 
Evans and Levinson (2009) were motivated to apply a language 
diversity approach, recognizing linguistic variation (inconsistency) as 
fundamental. In other words, a bottom-up rather than top-down 
approach to linguistic theory, meaning that theories of language 
should be  derived from extensive research and analysis of global 
linguistic diversity.

These few examples demonstrate the importance of matching the 
problem to the tool, and the ability to delve into the complexity of 
phenomena without simplifying results only to a computational and/
or generalized level. Applying a straightforward, rational approach to 
inference can miss meaningful data points that can reveal the deeper 
nature of the objects being studied. However, due to the complexity of 

phenomena, this is irreversible in many cases. This irreversibility is 
due to both technical (methodological) and cognitive limitations. 
Therefore, recognizing and respecting both the computational and 
chaotic aspects of decision-making becomes essential for a deeper 
understanding of cognitive processes.

Concept of creativity

“The subject of creativity has interdisciplinary appeal. This is true 
because the phenomenon to which the term creativity applies is 
the phenomenon of synthesizing knowledge. Hope for greater 
unification of knowledge lies in the continuance of studies of 
creativity.” (Rhodes, 1961, p. 310)

Defining creativity is in itself a complex and daring process. This 
section provides a brief overview of the evolution of creativity theory, 
but with full respect for its richness.

Historically, the foundation of creativity research is based on the 
framework, called the 4 P’s model, proposed by Rhodes (1961), where 
he set it through four dimensions:

 1 Person—the relationship between creativity and individual 
traits, habits, intelligence, and personality. Rhodes argues 
further that a high intelligence level does not automatically 
mean the presence of creative skills, while this correlation can 
be seen in quick humor and complex temperament.

 2 Process—mental operations and strategies used in creative 
thinking. As an example of such mental operations, 
he  discusses stages of the thinking process of the German 
physicist and physiologist Hermann Helmholtz, which are 
preparation (observation and analysis), incubation (conscious 
and unconscious processing), illumination (solution 
emergence), and verification (testing).

 3 Press (Environment)—perception and sensory of external 
influences such as culture and environmental needs, and a 
personal response to them. This process explains why great 
inventions sometimes arise from different minds that may live 
in societies with the same social needs and technical 
possibilities for their satisfaction.

 4 Product (idea)—an outcome of creative efforts. Although this 
“P” is concluding, the author argues that research into the 
nature of the creative process can only go in one direction: 
from the product to the person and then to the process and the 
press:“Products are artifacts of thoughts. Through the study of 
artifacts, archeologists reconstruct the way of life of extinct 
peoples, officers of the law reconstruct the events leading up to 
a crime, and psychologists reconstruct the mental processes of 
inventing.” (Rhodes, 1961, p. 309)

Using this framework as a central model, the global research on 
creativity was split between these P’s (see Basadur et al., 2000; Runco and 
Albert, 2010; Parkhurst, 1999) for a comprehensive literature overview), 
so that some focused on attributes of creative personalities and cognitive 
traits, while others prioritized environmental factors. Thus, the main 
problem in defining creativity is whether to define creativity as an 
attribute or as a process. The standard definition of creativity proposed 
by Runco and Jaeger (2012) describes creativity as the ability to generate 
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ideas, solutions, or products that are both original (novel) and efficient 
(utilitarian, relevant to the context, and aligned with values). Glăveanu 
and Beghetto (2021) extend the standard definition with some personal 
principles (soft skills) such as open-endedness, nonlinearity, pluri-
perspectives, and future-orientation, criticizing that novelty and 
meaningfulness alone are not enough to define creativity. Besides, Kasof 
et al. (2007) add some significance to personal values in addition to 
motivation in the context of creativity.

In contrast, Green et al. (2024) make a distinction between 
creativity as an attribute and as a process. While the standard 
definition focuses on the evaluation of the creative product, their 
process-oriented approach defines creativity as “inner attention 
constrained by a generative purpose.” This means that creativity is 
not simply the creation of something new, but a dynamic interplay 
of attention, cognitive flexibility, and goal-directed idea generation.

So, how does this process emerge? This question can be explored 
from both theoretical and neurobiological perspectives. One of the 
relevant cognitive theories is the theory of divergent and convergent 
thinking, proposed by Guilford (1950, 1968). According to this theory, 
divergent thinking involves breaking rules and questioning traditional 
points of view, consequently generating multiple unique ideas or 
solutions to a given problem. Mednick (1962) also pointed out that 
creative products are formed through unconventional connections 
between seemingly unrelated concepts (like Einstein’s theory about 
space–time or juxtaposition). Runco and Jaeger (2012) contribute to 
this point with their argument that creativity often emerges from 
intuitive, unconscious, and thus uncomputable, processes rather than 
rational and logical reasoning.

From a neurobiological point of view, novelty is the difference 
between what was previously predicted about a given object or 
situation and what actually happens (Shymkiv et al., 2025). To make 
such a conclusion, researchers conducted a study on the perception of 
sound in a mouse population, focusing on neuronal responses to 
expected and unexpected auditory stimuli. Imaging the auditory 
cortex has shown that neurons responded not just to sound but also 
to its novelty, leaving an “echo” that tracked sensory inputs over time. 
Thus, novelty can be seen here as a standard or automatic function of 
mammal brains. This aligns with the Bayesian brain hypothesis, which 
suggests that the brain continuously generates expectations about 
sensory input and updates them in response to discrepancies (Friston, 
2010, p. 129). Technically speaking, some object or observation can 
be  defined as novel “if it is a statistical outlier, meaning that it is 
significantly different from other members of the sample from which 
it is drawn” (Barto et al., 2013, p. 7).

However, divergent thinking does not directly indicate or measure 
creative thinking skills (Runco and Acar, 2012) but rather serves as a 
strong predictor among other factors (Hocevar, 1981): attitude & 
interest (motivation); personality inventories (traits); biographical 
inventories (life and creative experiences). In contrast to divergent 
thinking, convergent thinking focuses on finding a single, precise 
solution, such as solving a mathematical problem. This duality shows 
that creativity can emerge through both chaotic & self-organized 
(Schuldberg, 1999) and focused & strict ways of thinking. Both of 
them can be observed in neurobiological studies. While Rhodes’s 4P 
framework is fundamental for understanding creativity, recent 
advances in neuroscience suggest that this model may require 
refinement to capture the dynamic, network-based nature of creative 
cognition fully.

Using fMRI scans, Beaty et  al. (2016) showed that divergent 
thinking engages the Default Mode Network (DMN), which is 
responsible for imaginative and spontaneous thought (Beaty, 2015). 
Moreover, active connectivity between the DMN and executive control 
networks (ECN) allows individuals to explore novel ideas while still 
applying goal-directed focus, which is mostly domain-specific (Jung 
et al., 2013). Exactly this interplay, between self-generated cognition 
(DMN) and evaluation of potential ideas in the within-goal-focus 
(ECN), is responsible for creative thinking, and thus the activity of these 
regions can predict how creative a thought or idea is (Beaty et al., 2015, 
2018, 2019). Contrary to the more isolated dimensions in the 4P model, 
this view presents creativity as a fluid, multilayered system. According 
to researchers, the activation of the SN, which plays a role in switching 
between the default and control networks, is involved in this interplay. 
Early coupling between the DM and SN was interpreted as an 
intermediate switching mechanism that later facilitated the coupling 
between the default and control networks (Beaty et al., 2016, p. 3). This 
flexible switching, activated by the SN, is vital for the general 
understanding of the creative flow in cognition (Patti et al., 2024). More 
specifically, it enables fluidly alternating between spontaneous ideas and 
critical evaluation, by breaking and re-evaluating previous ideas and 
patterns and thus identifying which thoughts deserve attention and 
further cognitive investment (Picchi, 2025).

Consider Bayes’ theorem, which is used today from spam filters 
to sophisticated artificial intelligence algorithms in medicine, finance, 
and generally in statistical methods. It was developed by Thomas 
Bayes in the 17th century and remained unrecognized until Pierre-
Simon Laplace re-evaluated and generalized his ideas - almost two 
centuries after Bayes’ death. Novelty is a pillar of any creative product, 
but its effectiveness may depend on time and scientific, technical, and 
social trends at the time of creation. The inventions and discoveries of 
Tesla and Mendel, Bruno and Galileo, the masterpieces of Vincent Van 
Gogh and Paul Gauguin - all of them (and many other creators) found 
their effectiveness only long after their creators had died. It was at the 
moment when novelty and efficiency converged that their ideas 
became the product of an incredible creative process.

Definition of creativity

Based on the definitions and findings discussed above, the 
definition of creativity can be seen as an attempt to combine cognitive 
and neurobiological insights together and thus complementing each 
other. In this manner, creativity can be defined as a state of balance 
between chaotic (synonym: irrational, non-linear, uncontrolled, 
unpredictable, spontaneous, self-organized) and focused (synonym: 
rigorous, logical, centered, organized, filtered, disciplined), which is 
influences by internal and external attributes and attracted by a 
within-domain goal. Internal and External attributes in Figure 2 are 
presented as dominant examples, deriving from the studies above, and 
thus they are open to being extended by coming psychological, 
economic, and sociological studies. The DMN, ECN, and their 
interplay-salience network are derived from recent neurobiological 
studies. Attraction by a domain-specific goal is mostly inspired by 
Chaos Theory and its explanation of the brain as a nonlinear system 
with an existing attractor (Schuldberg, 1999; Díaz et  al., 2015; 
Freeman, 1995; Skarda and Freeman, 1990; Tolchinsky, 2023) and 
complemented by studies of Baer (1998, 2012, 2015, 2016).
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Discussion: contribution of creativity 
to AI

“The technology is always an element of creativity. But it never is 
the source of the creativity.”

— Francis Ford Coppola

How are the concepts mentioned above relevant to AI? The 
connectivity between rational and irrational behavior can be seen in 
relativity. When a problem requires a probabilistic approach, the case 
of the conjunction fallacy indeed represents an irrational outcome. 
However, when a problem demands contextual sensitivity or real-life 
conditions, applying a purely probabilistic approach becomes 
irrational. Following this logic, creativity or creative solutions can 
be seen either as “irrational,” relating to the classical logic of solving a 
problem with a given set of components, or as rational, if the reference 
point is novelty within these components.

According to Boden (1998), there are three types of creativity that 
can be integrated into AI: (1) “by producing novel combinations of 
familiar ideas; (2) by exploring the potential of conceptual spaces; (3) 
by making transformations that enable the generation of previously 

impossible ideas” (p. 347). Even though most AI algorithms are based 
on probabilistic and divergent-thinking approaches, there have been 
a few breakthroughs in AI development toward some degree of 
creativity (Haase and Hanel, 2023; Guzik et al., 2023; Ramesh et al., 
2022), not without some persisting limitations (Koivisto and Grassini, 
2023; Grassini and Koivisto, 2024). Generally, these are the 
Transformer models (Vaswani et  al., 2017) and the model of the 
Skill-Mix evaluation (Yu et al., 2023). Transformer models, which are 
used in ChatGPT, became successful due to their context-sensitivity 
and consequently more original output. Technically, transformers’ 
“creativity” can be tuned by the parameter of temperature, which is 
responsible for the “diversity” of the next predicted word in the 
prompt (Ficler and Goldberg, 2017; Holtzman et al., 2019). More 
specifically, temperature tuning controls the degree of randomness in 
generated outputs, surfacing between originality and coherence. This 
can be seen as a computational analog to the “Process” and “Product” 
dimensions in the 4P model: exploration (high temperature) mirrors 
divergent thinking, and exploitation (low temperature) aligns with 
convergent focus. However, a high diversity or unexpected result is 
sometimes unsuccessful compared to its quality (Hashimoto et al., 
2019), i.e., it may be novel but less effective in a given context.

The skill-mix algorithm went deeper into understanding 
semantics itself and thus was able to catch the nuances of the semantic 
structure and apply the combination of its inner parameters—
language skills, such as using metaphor, specific linguistic vocabulary, 
self-serving bias, etc. (Yu et al., 2023). In the context of the 4P model, 
this algorithm could be linked to the “Press” dimension, reflecting the 
role of environment and context. The researchers found that output 
generated using skill-mix evaluation gives an unexpected and efficient 
outcome that goes beyond predictions based on a training set. Indeed, 
these mechanisms simulate a fluid, context-sensitive integration of 
cognitive skills, similar to the dynamic interplay between DMN, ECN, 
and SN in the brain.

Following the extended model of creativity in Figure 2, this could 
indicate that establishing a more precise goal within a domain with its 
nuances could potentially lead to more meaningful and creative 
outcomes. Another hypothesis could be developed by operationalizing 
the internal and external attributes into such skills and testing how 
their manipulation/tuning affects the level of creativity of the result 
being generated. Such testing could provide a sharper view of what 
parameters might influence (or have no effect on) the final creative 
outcome, a problem described above by Laverghetta et al. (2025). 
Thus, applying this model opens at least two potential windows for 
exploring creativity in AI systems: the structure of domain-specific 
goals and corresponding parameters, and internal and external 
attributes as skills.

These examples demonstrate that understanding the mechanism 
of human creativity is essential for innovative AI performance, as it is 
created and evaluated by humans. Human creativity involves a 
dynamic interplay between divergent and convergent thinking, 
rational and irrational processes, and predictable and chaotic 
elements. It also spans dimensions such as fluency, flexibility, 
originality, and elaboration. While AI systems excel at generating 
numerous novel combinations and handling huge amounts of 
corresponding data, they cannot match humans’ embodied 
knowledge, emotional understanding, ethical reasoning, and intuitive 
leaps. The proposed model thus explores how these distinctly human 
creative qualities can guide AI design, aiming to develop systems that 

FIGURE 2

Extended model of creativity. Own conceptual model. DMN, Default 
Mode Network; ECN, Executive Control Network.
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go beyond mere simulation to embrace a deeper understanding of 
creativity’s human foundations.
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