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As powerful pre-trained vision-language models (VLMs) like CLIP gain
prominence, numerous studies have attempted to combine VLMs for
downstream tasks. Among these, prompt learning has been validated as
an e�ective method for adapting to new tasks, which only requires a small
number of parameters. However, current prompt learning methods face two
challenges: first, a single soft prompt struggles to capture the diverse styles
and patterns within a dataset; second, fine-tuning soft prompts is prone to
overfitting. To address these challenges, we propose a mixture-of-prompts
learning method incorporating a routing module. This module is able to capture
a dataset’s varied styles and dynamically select the most suitable prompts for
each instance. Additionally, we introduce a novel gating mechanism to ensure
the router selects prompts based on their similarity to hard prompt templates,
which both retains knowledge from hard prompts and improves selection
accuracy. We also implement semantically grouped text-level supervision,
initializing each soft prompt with the token embeddings of manually designed
templates from its group and applying a contrastive loss between the resulted
text feature and hard prompt encoded text feature. This supervision ensures
that the text features derived from soft prompts remain close to those from
their corresponding hard prompts, preserving initial knowledge and mitigating
overfitting. Our method has been validated on 11 datasets, demonstrating
evident improvements in few-shot learning, domain generalization, and base-
to-new generalization scenarios compared to existing baselines. Our approach
establishes that multi-prompt specialization with knowledge-preserving routing
e�ectively bridges the adaptability-generalization tradeo� in VLM deployment.
The code will be available at https://github.com/dyabel/mocoop.

KEYWORDS

prompt learning, vision-language model, mixture-of-experts, multi-modal, few-shot

classification

1 Introduction

Recently, pre-trained vision-language models (VLMs), such as CLIP (Radford et al.,

2021), have gained increasing prominence. Numerous studies have explored their

applications in various downstream tasks, including image classification (Zhou et al.,

2022b), visual question answering (VQA) (Eslami et al., 2021), and cross-modal generation

(Crowson et al., 2022; Saharia et al., 2022). Among these, prompt learning has emerged

as an effective approach for enhancing performance on downstream tasks by optimizing

the prompts fed into the model. This method achieves significant improvements without

requiring large-scale fine-tuning of the entire model.

In the context of image classification, for example, a prompt essentially serves as a

template that can be positioned before, after, or around the class name. Traditionally,

manually designed text templates, known as hard prompts, were employed during CLIP’s
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training to guide the model in associating textual descriptions

with visual content. Prompt learning builds upon this approach

by replacing these fixed text templates with learnable continuous

vectors, referred to as soft prompts. By fine-tuning these vectors

with a small number of samples, soft prompts can significantly

improve performance on downstream tasks, offering a more

flexible and efficient alternative to hard prompts.

A foundational contribution to this area is the Context

Optimization (CoOp) model (Zhou et al., 2022b), which optimizes

prompt contexts to enhance the performance of models like CLIP

(Radford et al., 2021) in few-shot learning scenarios.

Building upon this, researchers have proposed vision prompts

(Zang et al., 2022; Khattak et al., 2023), where learnable vectors

are appended to the inputs of a vision encoder, akin to how

text prompts are used in language models. While this approach

demonstrates significant performance improvements, it comes at

the expense of increased computational costs. In this paper, we

focus exclusively on text-based prompts, and our methodology

could be extended to incorporate vision prompts in future work.

Despite the success of prompt learning, many methods face a

trade-off between classification accuracy and robustness. Improper

fine-tuning of soft prompts can degrade performance, causing the

model to underperform compared to the zero-shot capabilities

of the original Vision-Language Models (VLMs) (Radford et al.,

2021; Zhou et al., 2022b). This issue arises primarily due to over-

training on base classes, which leads to catastrophic forgetting of

domain-general knowledge (Zhu et al., 2023).

To address this, several approaches have sought to constrain

the optimization of soft prompts by utilizing features derived

from manual templates (Zhou et al., 2022a; Yao et al., 2023;

Bulat and Tzimiropoulos, 2022; Zhu et al., 2023). These

approaches commonly restrict gradient updates or employ

knowledge distillation techniques.

Among these methods, ProGrad (Zhu et al., 2023) mitigates the

issue of prompt tuning that forgets general knowledge in VLMs by

updating prompts only when their gradients align with the “general

direction,” as represented by the gradient of the KL divergence loss

from a predefined prompt. Additionally, KgCoOp (Yao et al., 2023)

reduces the discrepancy between textual embeddings generated by

learned prompts and those derived from hand-crafted prompts.

Inspired by these approaches, our work distills knowledge from

original text features into each expert soft prompt. Furthermore,

we introduce gating regularization to distill prior knowledge from

discrete text templates into the router, thereby improving prompt

selection accuracy.

However, these methods generally overlook the diverse context

styles present in different images. A single soft prompt may fail to

capturemultiple styles. As illustrated in Figure 1, different instances

in the same dataset may align better with distinct prompts. Thus,

using multiple prompts is more effective in representing these

variations.

From this motivation, we propose a mixture-of-prompts

learning method. This method integrates a routing module that

dynamically selects the most suitable prompts for each instance.

The selected prompts are encoded by a text encoder to generate

multiple sets of class text features. These features are then

weighted and averaged to produce a final set of class text features,

which are compared with image features to compute similarities.

Conceptually, this process can be viewed as selecting the most

compatible style prompts for each instance, thereby enhancing the

system’s adaptability and performance.

To improve the router’s effectiveness, we introduce a hard-

prompt-guided gating loss. This loss function ensures that the

router selects the soft prompts whose corresponding hard prompt

encoded text features align most closely with the corresponding

image features. By incorporating this mechanism, we distill the

knowledge embedded in the hard prompt templates into the router,

encouraging it to make more accurate and contextually relevant

prompt selections.

Additionally, to mitigate overfitting, we propose semantically

grouped text-level supervision. Each soft prompt is associated with

a set of manually designed templates (hard prompts) that share

relatively similar semantic contexts. The token embeddings of one

template from each set are used to initialize the corresponding soft

prompt. During training, the text features generated by the text

encoder for each soft prompt are constrained to remain close to

the text features of their associated hard prompts. This ensures that

the initial knowledge from the manual text templates is preserved

and effectively integrated into the soft prompts.

We validated our method across 11 datasets, evaluating its

performance in few-shot learning, and base-to-new generalization.

Our approach consistently outperformed existing baselines,

demonstrating improvements in adaptability and generalization.

Furthermore, we conducted extensive ablation studies to assess the

contribution of individual components, confirming their roles in

driving the observed performance gains.

In summary, our contributions are as follows:

• We propose a mixture-of-prompts learning method that

incorporates a routing module to dynamically select the most

suitable prompts for each instance.

• We introduce a hard prompt-guided gating loss, which

ensures that the router selects prompts based on their

similarity to hard prompt templates, thereby improving

selection accuracy.

• We implement semantically grouped text-level supervision to

preserve the initial knowledge frommanual text templates and

mitigate overfitting.

• We validate our method across 11 datasets, demonstrating

improvements in few-shot learning and base-to-new

generalization scenarios compared to existing baselines.

2 Method

2.1 Overview

As illustrated in Figure 2, our MoCoOp framework consists

of three key components: (1) a router module that dynamically

selects the most suitable prompts for each image, (2) multiple

learnable soft prompts that capture different context styles, and (3)

amechanism for combining these prompts to generate effective text

features.

During inference, an input image is first processed by the CLIP

image encoder to extract its visual features. These features are fed

into the router module, which calculates selection probabilities
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FIGURE 1

For the image classification task based on CLIP (Radford et al., 2021), hard templates can be grouped into di�erent sets based on the contexts and
patterns they describe in the images (e.g., varying contents within di�erently colored blocks). Di�erent images are usually present with di�erent
context styles and a single image may simultaneously exhibit multiple styles. Traditionally, only one soft prompt is used to represent all images, which
limits adaptability. In contrast, our method utilizes multiple soft prompts, with each soft prompt representing a distinct context. A routing module
dynamically selects the most suitable prompts for each image. By accounting for di�erent styles, this approach more e�ectively bridges the gap
between visual and textual features.

for each available soft prompt. The router then selects the top-k

prompts with the highest probabilities.

Each selected soft prompt is concatenated with all class names

and processed by the CLIP text encoder, generating k sets of

class text features. These sets are then combined using a weighted

average, with weights determined by the normalized probabilities

from the router’s gating distribution. This weighted combination

produces a single, contextually enriched set of class text features

that better aligns with the image content. Finally, the cosine

similarity between this combined text feature and the image feature

determines the classification logits.

By activating only k soft prompts at inference time (where k

is typically set to 2 in our experiments), our approach maintains

computational efficiency while leveraging the benefits of multiple

specialized prompts. This design effectively balances the trade-off

between model expressiveness and inference cost.

During training, there are three parts of gradient flow. First,

we apply a cross-entropy loss between the final classification

probabilities and the ground truth labels. Second, for the router,

we calculate the similarity between the image feature and the

representative text features from each hard prompt template

set which are obtained by averaging across all classes and all

templates in the set. These similarities serve as a reference

distribution for the router’s gating mechanism. Next, we use

a KL divergence loss to align the router’s gating distribution

with this reference distribution. Finally, for the soft prompts, we

apply another cross-entropy loss to ensure that the text features

generated by the soft prompts closely match the corresponding

class features produced by the associated hard prompts. By aligning

the router’s gating distribution with the reference distribution

and ensuring consistency between soft and hard prompts, the

model learns to both specialize and generalize effectively for

accurate classification.

2.2 Preliminary of CoOp

Here we give a brief introduction of CoOp (Zhou et al., 2022b),

the pioneering work in prompt learning of VLMs.

Context Optimization (CoOp) is a method for adapting vision-

language models like CLIP to downstream tasks with limited

labeled data. CLIP was originally trained using text templates such

as “a photo of a [CLASS]” to generate text features. Instead of

using these fixed templates, CoOp replaces them with learnable

vectors while keeping the pre-trained CLIP encoders frozen. These

learnable vectors, called soft prompts, can capture task-specific

knowledge during fine-tuning and have proven more effective

than manually designed prompts. CoOp only requires optimizing

a small number of parameters (the soft prompts), making it

particularly efficient for few-shot learning scenarios.

Notation:

First, here are some notations used in prompt learning

of VLMs.

• x: Input image

• p: Text prompt

• fimg: CLIP image encoder

• ftxt: CLIP text encoder

• hx = fimg(x): Encoded image feature
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FIGURE 2

Overview of MoCoOp. The orange lines signify the extra flow for training while the black lines are shared by training and inference. During inference,
two soft prompts with the highest probabilities are selected and combined with the available classes for text encoding. The resulting text features are
averaged and used for classification. During training, the hard prompt guided routing and semantically grouped text level supervision are introduced
to supervise the router and soft prompts respectively.

• hp = ftxt(p): Encoded text feature

• SP: Soft prompt vectors (also referred to as context vectors)

(learnable parameters)

2.2.1 Prompt representation
The text prompt p is represented as a sequence of tokens,

including learnable soft prompt tokens and a class token.

p = [SP, CLASS]

The soft prompt tokens can also be placed after or around the

class token.

2.2.2 Context
• The soft prompt is learnable vectors SP = [sp1, sp2, . . . , spM],

where spi ∈ R
d andM is the number of soft prompt tokens.

• All classes share the same soft prompt SP or each class c has its

own soft prompt SPc.

2.2.3 Training objective
Given a dataset with images {xi} and corresponding labels {yi},

the goal is to find the optimal soft prompt vectors SP (or SPc for

class-specific soft prompts) by minimizing the cross-entropy loss:

L = −
∑

i

log
exp(sim(hix, h

yi
p )/τ )

∑

c exp(sim(hix, h
c
p)/τ )

where

• hix = fimg(xi) is the image feature for image i.

• hcp = ftxt([SP, CLASSc]) is the text feature for class c.

• sim(·, ·) denotes a similarity function, such as cosine similarity.

• τ is the temperature.

2.2.4 Optimization
The soft prompt vectors SP are updated through

backpropagation to minimize the loss L, while keeping the

pre-trained parameters of fimg and ftxt fixed.

In summary, CoOp involves learning optimal soft prompt

vectors SP for text prompts, which are used to synthesize

classification weights for downstream tasks. This process
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automates prompt engineering and enhances the adaptability and

performance of vision-language models like CLIP (Radford et al.,

2021) on various image recognition tasks.

2.3 Mixture of prompts learning

The essential idea of this work is to extend the concept of

context vectors in CoOp to a mixture-of-experts framework. While

CoOp learns a single context vector shared across all instances,

our approach learns multiple soft prompts (which are essentially

context vectors) and dynamically selects the most suitable ones for

each input.

In our framework, the router selects the top K soft prompts

for each input image. These selected soft prompts are concatenated

with the class names and encoded by the text encoder to obtain

several sets of class features:

hpk = ftxt([SPk, CLASS]) (1)

for k = 1, 2, . . . ,K, where SPk is the soft prompt for the k-th

selected expert.

The features are then weighted and averaged to produce the

final set of class features:

hp =

K
∑

k=1

wk
routerftxt([SPk, CLASS]) (2)

where wk
router are the weights assigned to each prompt feature. A

cross entropy loss is utilized to optimize these prompts:

Lcls = −
∑

i

log
exp(cos(hix, h

yi
p )/τ )

∑

c∈C exp(cos(hix, h
c
p)/τ )

(3)

where C is the set of all classes.

2.4 Hard prompt guided routing

Given G sets of hard prompts (I1, I2, ...IG), each concatenated

with every class and encoded through the CLIP text encoder, we

obtain G sets of hard text features for all classes. Specifically,

for a hard prompt concatenated with a specific CLASSc, the

corresponding hard text features can be similarly obtained using

the CLIP text encoder, resulting in:

hhardc = ftxt([hard_prompt, CLASSc]) (4)

where c denotes the specific class.

These hard text features are then averaged to generate G group

text features, each representing one of theG groups. Specifically, the

group text feature hg for the g-th group is computed by averaging

the hard text features for all classes and all templates within that

group as:

hhardg =
1

|Ig |

∑

i∈Ig

1

|C|

∑

c∈C

hhardi,c (5)

where C represents the set of all classes, and hi,c represents the i-th

hard text feature for class c in the g-th group.

The cosine similarity between the image feature v and each

group’s text feature, is calculated. The hard prompt guided gating

distributionWhard is then derived by applying the softmax function

to these similarity scores, expressed as:

Whard = Softmax













cos(hhard1 , v)

cos(hhard2 , v)
...

cos(hhardG , v)













(6)

The router’s output gating distribution is denoted by Wrouter.

To ensure coherence between the two distributions, KL divergence

is employed as a constraint, with the loss function defined as:

Lrouter = DKL(Wrouter ‖ Whard) (7)

2.5 Semantically grouped text level
supervision

To mitigating the overfitting issue, we introduce semantically

grouped text level supervision. The semantically similar groups

of hard prompts are primarily manually curated based on their

contextual and semantic relationships, though GPT-4 could also

be employed to assist with automated grouping. We grouped

templates that describe similar visual aspects or characteristics

together through a combination of domain knowledge analysis and

semantic similarity assessment. This process could be enhanced

using large language models like GPT-4 to analyze prompt

semantics and automatically cluster them into coherent groups.

For example, prompts like “a photo of a {class}” and “an image

showing a {class}” naturally form a group through their shared

general descriptive patterns, while prompts like “a close-up photo

of a {class}” and “a detailed view of a {class}” cluster into a detail-

oriented group—relationships that could be automatically detected

using GPT-4’s semantic understanding capabilities.

The hard prompts are semantically grouped into G sets

I1, I2, ...IG. For each learnable soft prompt tsg and its corresponding

hard prompt group Ig , the probability of a class y filled in this soft

prompt being classified as its labeled class y is given by:

P(y|SPg) =
1

|Ig |

∑

i∈Ig

Pi(y|SPg)

Pi(y|SPg) =
exp

(

cos
(

HP
y
i , ftxt([SPg , y])

)

/τ
)

∑

c∈C exp
(

cos
(

HPci , ftxt([SPg , c])
)

/τ
)

(8)

where Pi(y|SPg) is the probability of class y being correctly classified

when using the g-th soft prompt SPg and compared with the i-th

hard template in group Ig . Here, HP
y
i represents the hard prompt

text feature for class y using the i-th template, ftxt([SPg , y]) is the
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FIGURE 3

The few-shot learning results on 11 datasets. We plot the results across 1,2,4,8,16 shots. It can be seen that our MoCoOp consistently and
significantly surpasses CoOp (Zhou et al., 2022b), ProGrad (Zhu et al., 2023), and the Linear Probe approach across most datasets. This is evident in
the average accuracy displayed in the top left corner.

text feature obtained by concatenating the g-th soft prompt with

class y, cos(·, ·) denotes the cosine similarity, τ is a temperature

parameter, and C is the complete set of classes.

Next, we use the cross-entropy loss to minimize the distance

between the encoded learnable soft prompts and the manually

defined text prompts in the encoded space. The loss function can

be expressed as:

Ltext = −
1

G

G
∑

g=1

∑

c∈C

1

|C|
log P(c|SPg) (9)

The overall training objective is

L = Lcls + λ1Lrouter + λ2Ltext (10)
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Where λ1 and λ2 are weights that balance the importance of each

loss term.

3 Experiment

3.1 Settings

We conduct experiments under two settings: base-to-

new generalization and few-shot learning. For base-to-new

generalization, we split the classes into two groups, one as base

classes and the other as new classes. We train on the base class, and

test on both the base classes and new classes. For few-shot learning,

we train and test on all classes. The few-shot capability reflects

the method’s fitting ability, while base-to-new generalization can

measure the model’s robustness.

3.2 Implementation and training details

For each expert, we use different context positions depending

on the handcrafted template object used to initialize it. We

used 4 to 20 experts. The number of experts and corresponding

templates varies for datasets. For selecting the number of experts,

we recommend starting with a smaller number (4–8) for datasets

with clearly defined visual categories and increasing to 10–

20 for datasets with diverse visual characteristics. The optimal

number can be determined through validation performance. As a

general guideline, specialized datasets (e.g., aircraft, flowers) work

well with 4–8 experts, general datasets with diverse categories

(e.g., ImageNet) benefit from 15 to 20 experts, and datasets

with moderate diversity perform best with 8–12 experts. These

guidelines are based on our empirical observations during

experimentation and provide a reasonable starting point for

practitioners applying our method to new datasets. For example,

for FGVCAircraft, we use the template “a photo of a {}, a type

of aircraft.” For the OxfordFlowers dataset, we use “a photo of

a {}, a type of flower.” Generally, a custom template for each

dataset is combined with some general templates like “a photo

of a ”. Since ImageNet covers a wide range of categories, we use

20 groups of templates. Specific templates can be found in the

Supplementary material.

Regarding the router architecture, we employ a simple design

consisting of a single linear layer. The input to the router is the

image feature from CLIP’s image encoder (dimension 512), and

the output is a distribution over the available prompt groups

(dimension = number of experts). We intentionally kept the router

architecture simple to maintain computational efficiency while still

providing effective routing capabilities. This linear layer directly

projects the image features to the number of experts.

Following the standard comparison setup inmost recent works,

we use different backbone architectures for different experimental

settings: ViT-B/16 for base-to-new generalization and ResNet50 for

few-shot learning. Specifically, we use the publicly available CLIP

models (https://github.com/openai/CLIP). The resolution of CLIP’s

feature map is 14× 14 for CLIP-ViT-B/16. The λ1 and λ2 are set as

1 and 5, respectively. The τ in Equations 3, 8 is set to 0.07. Our

training schedule is consistent with CoOp (Zhou et al., 2022b), and T
A
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TABLE 2 Impact of the number of selected experts (K) on base-to-new generalization performance.

Dataset
Caltech101 EuroSAT UCF101 Flowers102

Base New H Base New H Base New H Base New H

Baseline 95.40 98.11 93.52 91.54 54.44 68.15 85.14 64.47 73.57 97.63 69.55 81.35

+ MoE 98.38 92.03 95.10 94.90 58.79 72.60 85.78 69.50 76.79 97.63 70.64 81.97

+Lrouter 98.39 92.47 95.34 95.17 57.05 71.34 86.97 73.88 79.89 97.34 72.77 83.28

+Ltext 98.43 94.87 96.61 94.79 85.18 89.73 85.28 79.31 82.17 97.18 77.21 86.05

We sequentially add the components MoE, Lrouter and Ltext . Our baseline is CoOp (Zhou et al., 2022b).

TABLE 3 Comparing randomly grouped hard templates and semantically grouped hard templates.

Dataset
K = 2 K = 3 K = 4

Base New H Base New H Base New H

Caltech101 98.43 94.87 96.61 98.39 94.43 96.37 98.00 94.87 96.41

EuroSAT 94.48 77.02 84.75 94.38 75.0 83.58 94.02 74.36 83.04

UCF101 85.28 79.31 82.17 84.23 68.63 75.63 86.40 79.23 82.66

Flowers102 97.18 77.21 86.05 98.10 71.42 82.66 97.34 76.67 85.78

Bold values indicate the best performance for each metric.

TABLE 4 Comparing randomly grouped hard templates and semantically

grouped hard templates.

Dataset Template Base New H

Caltech101 Random 98.31 93.56 95.88

Semantic 98.43 94.87 96.61

EuroSAT Random 94.78 79.77 86.63

Semantic 94.79 85.18 89.73

UCF101 Random 83.26 77.25 80.14

Semantic 85.28 79.31 82.17

Flowers102 Random 97.53 75.95 85.40

Semantic 97.18 77.21 86.05

Bold values indicate the best performance for each metric.

both training and testing are conducted on four NVIDIA GeForce

RTX 3090 GPUs.

3.3 Evaluation metrics and baselines

For few-shot experiments, we use top-1 accuracy. For base-to-

new generalization, we evaluate by base class accuracy, new class

accuracy, and the harmonic meanH of base and new classes.

In the few-shot experiment, we compared with Linear Probe,

CoOp (Zhou et al., 2022b), and ProGrad (Zhu et al., 2023) using

ResNet50 as backbone, while in the base-to-new generalization

experiment, we compare with CoOp (Zhou et al., 2022b), CoCoOp

(Zhou et al., 2022a), KgCoOp (Yao et al., 2023) and ProGrad

(Zhu et al., 2023) using ViT-B/16 as backbone. Our selection of

comparison methods for few-shot learning was based on several

factors: (1) ResNet50 is commonly used as the standard backbone

for few-shot learning comparisons, and these methods only provide

complete results with ResNet50 backbone, (2) approaches that

focus specifically on text prompt optimization (as opposed to

visual prompt methods). We note that the research community

has recently shifted focus more toward base-to-new generalization

scenarios rather than few-shot learning, which is why our few-

shot experiments are more targeted. We chose not to include

general few-shot learning methods that don’t specifically target

prompt learning (e.g., prototypical networks, matching networks)

as they represent different paradigms and would not provide a fair

comparison with our prompt-based approach.

Note that CoCoOp (Zhou et al., 2022a) is instance-conditioned,

while other methods are textual-only methods. Textual-only

methods typically have poorer generalization to unseen classes

within the same task, even lagging behind the original CLIP

on some datasets. Instance-conditioned methods improve the

generalization by generating different contexts based on various

image visual features, and then obtain different text features

through the CLIP text encoder. Therefore, they require significant

computational resources. Our method, MoCoOp, also partially

relies on visual information but does not generate new contexts.

Instead, it combines different text features for different images,

thus eliminating the heavy computational cost of the text encoder

during inference.

Following the previous baselines, we primarily evaluate the

accuracy of our approach across a total of 11 datasets. The datasets

used include: ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei

et al., 2004), Oxford-Pets (Parkhi et al., 2012), Stanford Cars

(Krause et al., 2013), Flowers102 (Nilsback and Zisserman, 2008),

Food101 (Bossard et al., 2014), FGVC Aircraft (Maji et al., 2013),

SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT

(Helber et al., 2019), and UCF-101 (Soomro et al., 2012).

3.4 Main results

3.4.1 Results of few-shot experiment
In the Figure 3, we plot the performance curves of ourMoCoOp

and the baselines across 11 datasets for various shots, along with the
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average accuracies of all datasets. The results show that MoCoOp

consistently outperforms the other methods, particularly in low-

shot scenarios (1–2 shots), where its advantage is most pronounced

on challenging datasets like FGVC Aircraft, UCF101, and DTD.

As the number of shots increases, MoCoOp continues to maintain

higher accuracy across all datasets, with the performance gap

narrowing slightly at higher shot counts. These results highlight

MoCoOp’s superior generalization ability and robustness, making

it effective in diverse few-shot learning tasks.

3.4.2 Results of base-to-new generalization
In the Table 1, we list the comparison results of MoCoOp and

several baselines. The best results are marked in bold font.

It shows that MoCoOp (Ours) achieves strong performance

in base-to-new generalization across 11 datasets, with the highest

average Base accuracy (83.56%), New accuracy (76.98%), and

Harmonic mean (H) (80.14%). Compared to other methods like

CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), ProGrad

(Zhu et al., 2023) and KgCoOp (Yao et al., 2023), MoCoOp

demonstrates consistent improvements, particularly in achieving

a better balance between Base and New class performance. This

indicates that MoCoOp is effective in handling both seen and

unseen classes across a variety of datasets.

3.5 Ablation results

3.5.1 Component analysis
Table 2 presents the performance as we progressively include

components. Our baseline is CoOp (Zhou et al., 2022b). As can be

seen in Table 2, adding MoE alone has already achieved significant

improvement. Adding hard prompt guided routing provides a

slight improvement, while incorporating semantically grouped text

supervision brings a huge enhancement.

3.5.2 The number of experts selected by the
router

We also show the effect of the number of experts selected

on the performance. As seen in Table 3, the results indicate that

using the top 2 experts (K = 2) generally achieves the best balance

between Base and New accuracy, reflected in the highest Harmonic

mean (H) in most cases. While increasing K to 3 or 4 sometimes

improves Base accuracy, it often reduces New accuracy and H,

suggesting that selecting too many experts may dilute performance

on unseen classes. Overall, selecting the top 2 experts provides the

best trade-off between Base and New class generalization.

3.5.3 Randomly grouped vs. semantically
grouped templates

We compare randomly grouped hard prompt templates and

semantically grouped templates, It can be seen in Table 4, that using

semantically grouped hard prompt templates consistently improves

performance compared to randomly grouped templates across the

four selected datasets. The Harmonic mean (H), which balances

Base and New accuracy, shows consistent gains with semantic

TABLE 5 Ablation study on routing regularization loss functions.

Dataset Loss function Base New H

Caltech101 MSE 98.39 94.10 96.20

KL 98.43 94.87 96.61

EuroSAT MSE 94.17 65.64 77.36

KL 94.79 85.18 89.73

UCF101 MSE 85.37 77.66 81.33

KL 85.28 79.31 82.17

Flowers102 MSE 96.87 76.60 85.55

KL 97.18 77.21 86.05

Bold values indicate the best performance for each metric.

TABLE 6 Inference time comparison on the Caltech101 dataset.

Method Accuracy Inference time

Base New H

CoOp (Zhou et al.,

2022b)

98.11 93.52 95.76 0.09s

CoCoOp (Zhou

et al., 2022a)

97.96 93.81 95.84 1.14s

MoCoOp (Ours) 98.43 94.87 96.61 0.25s

Bold values indicate the best performance for each metric.

grouping. These results indicate that semantically grouped

templates better capture meaningful relationships, enhancing

generalization performance across both seen and unseen classes.

3.5.4 Routing regularization loss function
We also compared different routing regularization loss

functions. As shown in Table 5, using KL divergence as the loss

function generally performs better than using Mean Squared Error

(MSE). This may be because KL divergence is more sensitive

to distribution differences and can more effectively measure the

discrepancy between the predicted distribution and the target

distribution. In routing regularization, the model’s output often

involves probability distributions, and KL divergence is specifically

designed to optimize the similarity between distributions, making

it more suitable for this scenario. In contrast, MSE only penalizes

the squared numerical error, aiming to minimize the absolute

difference between the predicted and target values, but it may fail

to capture the nuances of probability distributions.

3.6 Comparison of inference time

The key differences between CoCoOp and our MoCoOp

approach span conceptual design and computational efficiency.

Conceptually, while CoCoOp generates new context vectors per

instance through a meta-network, MoCoOp selects from fixed pre-

trained prompt experts using image features. This fundamental

difference leads to substantial computational advantages: CoCoOp

requires O(N × C) text encoder calls (for N images and C classes)

by generating unique prompts per image, while MoCoOp achieves
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FIGURE 4

Ablation study on the sensitivity to hyper-parameters λ1 and λ2.

TABLE 7 Impact of expert numbers on base-to-new generalization

performance.

Dataset Metric 3
Experts

5
Experts

6
Experts

8
Experts

Caltech101 Base 97.85 98.43 98.29 98.32

New 93.95 94.87 94.32 94.76

H 95.86 96.61 96.26 96.50

EuroSAT Base 93.24 94.58 94.79 94.63

New 79.36 83.42 85.18 84.73

H 85.72 88.67 89.73 89.40

UCF101 Base 84.15 85.18 85.28 85.04

New 76.87 78.95 79.31 78.82

H 80.35 81.97 82.17 81.80

Flowers102 Base 96.92 97.18 97.05 96.83

New 76.94 77.21 77.06 76.58

H 85.86 86.05 85.92 85.54

Bold values indicate the best performance for each metric.

efficiency through (1) expert selection via a linear router and (2)

weighting of pre-computed text features, needing only E × C

initialization calls (for E experts). As shown in Table 6 (measured

on Caltech101 using an NVIDIA RTX 3090 with batch size 100),

this design reduces inference time by 78% compared to CoCoOp

(Zhou et al., 2022a), despite a slight increase over single-prompt

CoOp (Zhou et al., 2022b). The efficiency gains stem from reusing

pre-computed expert prompts rather than generating new ones per

instance, making the computational trade-off worthwhile given our

performance improvements.

3.7 Sensitivity to loss weights

We conducted experiments to analyze the sensitivity of our

model to the two loss weights: λ1, which controls the weight

of the router regularization loss, and λ2, which regulates the

text-level supervision. As shown in Figure 4, we varied each

parameter while keeping the other fixed at its default value.

The results indicate that both parameters significantly influence

model performance, with λ1 primarily affecting the router’s

ability to select appropriate prompts, and λ2 impacting the

preservation of knowledge from hard prompts. We observe

that optimal performance is generally achieved when λ1 is

set between 0.5 and 1.5, and λ2 between 4.0 and 6.0. Values

outside these ranges tend to either insufficiently constrain the

model or overly restrict its adaptability. This demonstrates the

importance of balancing these regularization terms for effective

prompt learning.

3.8 Impact of the total expert number

We further investigate how the total number of experts impacts

model performance on the base-to-new generalization task. By

default, our model uses 5 experts for Caltech101 and Flowers102,

and 6 experts for EuroSAT and UCF101. To evaluate the influence

of expert count, we conducted experiments with varying numbers

of experts (from 3 to 8) while keeping other hyperparameters fixed.

We use GPT-4 (Achiam et al., 2023) to generate the hard prompt

templates.

As shown in Table 7, the optimal number of experts tends

to align with our default configurations, though the performance

differences across different expert counts are relatively small.

For Caltech101 and Flowers102, 5 experts yield slightly better

performance, while EuroSAT and UCF101 benefit marginally from

6 experts. Interestingly, using fewer experts (e.g., 3) still produces

competitive results, particularly for Flowers102 and Caltech101,

suggesting that even a small number of experts can effectively

capture diverse image contexts for certain datasets.

These results indicate that while our default configurations

generally work well, the model is somewhat robust to the choice

of expert count. The slight differences in performance suggest

that the ideal number of experts may vary based on dataset

characteristics, but not dramatically so. This relative stability

across different expert counts highlights the adaptability of our
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FIGURE 5

Visualization of prompt selection across di�erent image samples. The router dynamically selects the most suitable prompts based on the visual
content of each image, while the traditional method, such as the CoOp gives the wrong answer.

mixture-of-experts approach, which can perform effectively across

a range of configurations.

3.9 Qualitative analysis

As shown in Figure 5, our MoCoOp model dynamically selects

the most appropriate prompt templates based on image content

features. For example, in the first image of a crocodile sketch from

the Caltech101 dataset (Fei-Fei et al., 2004), the router recognizes

the artistic nature of the image, assigning higher weights to the “a

low resolution photo of the {}” template (0.21) and the “a sketch

of {}” template (0.20). This allows MoCoOp to correctly classify the

image as a “crocodile,” while CoOp incorrectly labels it as “octopus.”

Similarly, for the second image of a sailing vessel from the same

dataset, the model activates the “a low resolution photo of the {}”

template (0.21) along with the “a photo of many {}” template (0.20),

correctly identifying the vessel as a “ketch” where CoOp mislabels

it as “schooner.” This demonstrates that our routing mechanism

effectively captures the stylistic and semantic content of images

and associates them with the most relevant textual descriptions.

By activating different template combinations for different types

of images, MoCoOp achieves greater adaptability and robustness

compared to single-prompt learning methods. The router not only

learns how to select appropriate prompts but also how to allocate

weights to reflect the importance of each prompt for specific visual

characteristics.

4 Conclusion

In this work, we introduce a novel mixture-of-prompts

learning method for vision-language models, addressing key

challenges of image context style variations and overfitting.

Our approach employs a routing module to dynamically select

the most suitable prompts(styles) for each instance, enhancing

adaptability and performance. We also propose a hard prompt

guided gating loss and semantically grouped text-level supervision,

which help maintain initial knowledge and mitigate overfitting.

Our method demonstrate improvements across multiple datasets

in few-shot learning, and base-to-new generalization scenarios.

On the other hand, several aspects of this work warrant
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further research and optimization in the future. First, while

MoCoOp’s computational overhead is significantly lower than

instance-conditioned approaches like CoCoOp, it remains higher

than single-prompt methods. Future work will address this

computational cost reduction. Then, manual grouping of prompts

requires domain expertise, which may limit easy application to

entirely new domains without prior knowledge. LLMs could be

used for generating and grouping hard prompt templates in the

future. Third, our method is more sensitive to hyperparameter

tuning than simpler approaches, particularly regarding the balance

between different loss components. Last, future work could also

explore extending this methodology to include vision prompts or

instance-conditioned contexts for further enhancements.
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