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On automatic decipherment of
lost ancient scripts relying on
combinatorial optimisation and
coupled simulated annealing
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This paper introduces a novel method for addressing the challenge of

deciphering ancient scripts. The approach relies on combinatorial optimisation

along with coupled simulated annealing, an advanced technique for non-

convex optimisation. Encoding solutions through k-permutations facilitates the

representation of null, one-to-many, and many-to-one mappings between

signs. In comparison to current state-of-the-art systems evaluated on

established benchmarks from literature and three new benchmarks introduced

in this study, the proposed system demonstrates superior performance in

enhancing cognate identification results.
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1 Introduction

Numerous ancient scripts around the world remain undeciphered, with many of them

dating backmillennia. The challenges in deciphering these scripts stem from factors such as

insufficient inscriptions, the absence of known language descendants utilizing these scripts,

and uncertainty about whether the symbols truly form a writing system.

In the Aegean region, for instance, three syllabic scripts — Linear A, Cretan

Hieroglyphs, and the Cypro-Minoan script — despite their historical interconnectedness,

have resisted decryption efforts. While this study addresses general decipherment

challenges, its primary focus lies in investigating undeciphered scripts from the eastern

Mediterranean during the Bronze Age or early Iron Age.

Unraveling an ancient script is generally a highly intricate task, often necessitating the

division of the challenge into distinct subproblems. This approach serves to derive specific

answers or simplify the task by breaking it down into more manageable components.

In literature, numerous contributions address these subproblems, offering computational

methods tailored to each, frequently focusing on a particular script. The sequential tasks

typically involve: (a) determining if a set of symbols genuinely constitutes a writing system,

followed by (b) devising procedures to segment the symbol stream into individual signs.

Subsequently, (c) reducing the set of signs to the minimal collection for the given writing

system, thereby forming the alphabet (or syllabary, or sign inventory), and identifying all

allographs. Once this minimal yet comprehensive symbol set is established, the process

involves (d) assigning phonetic values and, ultimately, (e) attempting to align phonetic

transcriptions with a specific language.
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The subsequent sections provide an in-depth exploration of

the computational perspective regarding the five points mentioned

earlier.

1.1 Pictures or language?

When presented with symbols etched onto stones or inscribed

on tablets and other mediums, one of the initial tasks involves

determining if these symbols signify a form of language or another

means of communication not linked to a natural language.

In this context, two primary lines of computational studies have

tackled this issue nearly simultaneously. Rao et al. (2009, 2010)

conducted an analysis of the undeciphered Indus Valley script

to establish whether it indeed represents a natural language. The

authors provide supporting evidence for the linguistic hypothesis

by demonstrating that the script’s conditional entropy aligns more

closely with that of natural languages than with various types of

non-linguistic systems.

Around the same period, Lee et al. (2010) employed a two-

parameter decision-tree technique capable of discerning the nature

of communication within very small corpora. When applied to

a collection of a 100 stones intricately carved by the Picts, an

Iron Age culture in Scotland, featuring stylised symbols, the study

concluded that these symbols did not exhibit randomness or

sematographic (heraldic) characteristics. Instead, they displayed

attributes indicative of a written language.

Regrettably, achieving a consensus on such approaches

remains elusive. A study by Sproat (2010) strongly critiques

this method, utilizing a more extensive set of non-linguistic and

comparative linguistic corpora than those employed in previous

studies. The study demonstrates that none of the previously

proposed methods are reliably effective in decisively determining

whether the considered symbols truly represent a writing system.

Simultaneously, it introduces a novel measure based on repetition

that classifies them as non-linguistic, contradicting the conclusions

of earlier works.

1.2 Script segmentation

A major hurdle in deciphering undeciphered scripts lies

in the segmentation of words and signs. Identifying these

two fundamental units is essential before commencing the

decipherment process, whether through manual efforts or with

the assistance of computational techniques. This challenge

is also evident when endeavoring to construct electronic

corpora for undeciphered scripts, a crucial initial step in

computational epigraphy. The preparation of these corpora from

raw archaeological data demands substantial human effort.

Palaniappan andAdhikari (2017) introduced an automated tool

leveraging machine learning algorithms to assist in epigraphical

research. This tool presents a deep learning pipeline designed to

take input images of the undeciphered Indus script and generate,

as output, a string of graphemes suitable for integration into

a standard corpus. The process involves initial decomposition

of the input image into regions and subsequent classification

using a convolutional neural network to distinguish textual and/or

graphical elements. This network adeptly classifies the graphemes

with remarkable accuracy, underscoring the substantial promise

of employing deep learning methodologies in the realm of

computational epigraphy.

Furthermore, Luo et al. (2021) introduces a comprehensive

approach that simultaneously addresses word segmentation and

cognate alignment. This method utilizes phonological constraints

within a generative stochastic model and includes a novel technique

for discerning closely related languages.

As an illustration, examining Rongorongo, a script potentially

documenting the local Rapanui language on Easter Island,

poses challenges. The segmentation of this script into linguistic

units—be they sounds, syllables, or morphemes—remains unclear.

Additionally, various small shapes, nearly identical, intricately

combine in different configurations to create complex signs

(Davletshin, 2012; Valério et al., 2022).

1.3 Building a uniform set of signs

Upon successfully devising a method to segment the script into

meaningful linguistic units, scholars encounter the initial challenge

of identifying a sign-list. This task proves intricate due to variations

introduced by scribe writing styles and the evolution of symbols

over time, complicating the identification and management of

allographs.

In addressing this challenge, Skelton (2008) and Skelton and

Firth (2016) applied phylogenetic systematics to the realm of

writing systems. Their focus was particularly on Linear B, a pre-

alphabetic Greek script. Through this method, they scrutinized the

evolution of the Linear B script over time, taking into account

scribal hands as an additional source of variation. This application

showcased the efficacy of phylogenetic analysis in understanding

the development of writing systems.

Born et al. (2019) and Born et al. (2023b) employed

computational linguistics techniques to analyse Proto-Elamite, an

ancient script from the 3rd millennium BC used across the Iranian

plateau. Their approach involved utilizing three distinct clustering

algorithms to create and explore sign groups based on their

occurrences and co-occurrences within texts.

Corazza et al. (2022) delved into the analysis of the

Cypro-Minoan syllabary. Their methodology aimed to scrutinize

the tripartite division (CM1, CM2, CM3) of Cypro-Minoan,

evaluating its consistency through a multi-disciplinary approach.

This encompassed considerations related to paleography and

epigraphy, along with the application of deep learning-based

strategies. Using an unsupervised state-of-the-art convolutional

neural model without prior knowledge of the script, they found

that the use of different media significantly influences the

uniformity of sign shapes and highlighted graphic proximity

among signs inscribed on similar supports. Notably, their results

consistently supported the validation of a unitary, single Cypro-

Minoan script, countering the current literature’s discussion

of a division into three subgroups. This conclusion suggests

that most sign differences arise from the choice of epigraphic

supports, providing insights into the rationalization of the sign
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inventory proposed by Olivier (2007) and suggesting potential

sign mergers.

1.4 Assigning signs values
(phonetic/numeric)

This represents a crucial phase in the decipherment process.

However, as discussed in the following section, most literature

works tend to address this step concurrently with the challenge of

identifying the language associated with the examined script.

A noteworthy exception is found in the work of Corazza

et al. (2021), who utilized computational techniques — primarily

constraint programming and optimisation methods — to assign

for the fraction symbols present in Linear A. Minoan Linear

A, an undeciphered script prevalent for administrative purposes

in Bronze Age Crete, poses challenges regarding the precise

mathematical values of its numerical fractions. Building upon

previous analyses that proposed hypothetical values for certain

fractions, they expanded their investigation to assess values for

more challenging cases. The results, derived from meticulous

palaeographical analysis and employing computational, statistical,

and typological strategies, revealed a significant convergence. They

pointed toward a systematic assignment of mathematical values for

the fraction signs in Linear A.

A comparable study by Born et al. (2023a) addresses

the task of disambiguating between various numerical

interpretations in Proto-Elamite, aiming to determine the

values of numeric quantities documented in ancient texts. The

authors algorithmically extracted a list of potential readings for

each numeral notation and proposed disambiguation techniques

based on structural properties of the original texts and classifiers

trained using the bootstrapping algorithm.

1.5 Define signs values and match sign
sequences with a known language

Every contemporary endeavor to decrypt ancient scripts using

computational tools relies on contrasting a missing script or

language wordlist with words from a deciphered and known

language. These computational methods need to address two main

challenges:

• The initial challenge arises when there is a potential lack

of alignment between the two scripts; in such instances,

the phonological values of the lost symbols may remain

unidentified, requiring a preliminary matching between the

scripts before aligning the two wordlists;

• The second challenge entails finding a way to match the two

wordlists by identifying “cognate” words1.

Certain scholarly works focus exclusively on detecting cognates

within the same script (Bouchard-Côté et al., 2009) or directly

1 Words with similar meanings in di�erent languages that share an

etymological ancestor in a common parent language.

utilizing sound representations from the International Phonetic

Alphabet (Hall and Klein, 2010). Notably, these studies primarily

involve languages that share strong typological similarities.

In contrast, the most sophisticated studies presented in the last

years on the automatic decipherment of lost languages propose

systems that generate both sign mappings between different scripts

and mappings of words into their corresponding cognates (e.g.,

Snyder et al., 2010; Berg-Kirkpatrick and Klein, 2011; Luo et al.,

2019, 2021). These studies adopt a shared computational approach,

structuring the algorithm as a two-step procedure inspired by

the Expectation–Maximization (EM) algorithm — an iterative

method for finding (local) maxima or minima. The initial step

suggests a provisional workingmatch between the two “alphabets”2.

The subsequent step, building upon the established script match,

endeavors to align the two word lists by proposing potential

cognates. Initially, the script matching and cognate matching may

be nearly random, but through multiple iterations, the process

is expected to converge, offering both a script match and a

list of potential cognates. The crucial aspect revolves around

identifying a suitable function, optimized through this iterative

process, that effectively captures the concept of word matching

while incorporating linguistic constraints related to scripts, words,

and potentially sounds. The following section provides an overview

of the most pertinent analyses, in the authors’ perspective, that

address the decipherment problem in an automated manner, all

adhering to the general scheme just discussed.

The pioneering work by Snyder et al. (2010) marked

the initiation of the modern approach to the computational

decipherment problem. Their approach depends on utilizing a

non-parallel corpus in a recognized, closely related language,

producing both alphabetical mappings and translations of words

into their corresponding cognates. Their work, based a non-

parametric Bayesian framework, captures both low-level character

mappings and high-level correspondences at morphological level.

They tested this approach comparing Ugaritic with Old Hebrew

obtaining promising results: the model accurately mapped 29 of 30

signs to their Old Hebrew counterparts and deduced the correct

cognate for 60% of Ugaritic words. Unfortunately, the code for this

method is not available.

In a distinct approach, Berg-Kirkpatrick and Klein (2011)

created a straightforward objective function that, when

optimized, yields precise solutions for both decipherment

and the identification of cognate pairs. The proposed solution,

characterized by its simplicity and elegance, employs binary

variables to control the alignment between symbols in the two

scripts and the correspondence between the two lexicons. Relying

solely on an integer combinatorial optimisation procedure, their

system exhibited efficacy in solving the identical problem presented

by Snyder et al. (2010) and on a new task involving romance

languages. While the code for this method is unfortunately

unavailable, replicating the approach appears feasible as it is clearly

described in the paper.

Luo et al. (2019) introduce a sophisticated neural approach

that, in our assessment, stands out as one of the most

2 Here, “alphabet” denotes a broad concept of inventories of signs, glyphs,

etc., constituting a writing system.
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promising methods for the automatic decipherment of lost

languages. Addressing the challenge of limited supervision

information, their model incorporates known language change

patterns documented by historical linguistics. Sign mapping

is executed by a bidirectional recurrent neural network, and

the cognate matching procedure is formalized as a minimum-

cost flow problem. The method was applied to the benchmark

problem posed by Snyder et al. (2010) and to a novel dataset

encompassing Linear B and ancient Greek lexica, yielding

highly favorable mapping results. Notably, the code and datasets

necessary to reproduce their results are made available to

the community.

In a subsequent work, Luo et al. (2021) addressed a more

complex task dealing with scripts that were not completely

segmented into words and situations where the closest known

language was unknown. By utilizing extensive linguistic constraints

that mirror consistent patterns in historical sound change, the

authors captured the natural phonetic structure by acquiring phone

embeddings based on the International Phonetic Alphabet. The

resulting generative framework concurrently incorporates models

for both word segmentation and cognate alignment, guided by

phonetic and phonological constraints. They tested their method

on deciphered languages, namely Gothic and Ugaritic, as well as an

undeciphered language, Iberian, demonstrating that incorporating

phonetic geometry yields clear and consistent improvements.

Additionally, the authors introduced a measure for language

closeness, correctly identifying related languages for Gothic and

Ugaritic. The code and data for their work are made accessible to

the community.

1.6 Other computational tools

Epigraphy, the study of inscriptions, plays a crucial role in

extracting evidence related to the thoughts, language, society,

and history of past civilisations. However, many inscriptions

have suffered damage over time. The endeavor to restore these

invaluable sources, to the extent possible, holds the potential to

provide additional information that can enhance and deepen our

understanding of a particular population.

A notable contribution in this realm comes from Assael et al.

(2022), who introduce Ithaca, a deep neural network specifically

crafted for restoring text, determining geographical origins, and

assigning chronological attributes to ancient Greek inscriptions.

Ithaca is specifically crafted to support historians in their work,

demonstrating its capability to enhance accuracy in reading and

attributing inscriptions.

Similarly, Fetaya et al. (2020) present a method that employs

recurrent neural networks to model the language inscribed on

clay cuneiform tablets. This approach aims to assist scholars in

reconstructing fragmented sections of ancient Akkadian texts from

the Achaemenid period in Babylonia.

An important factor influencing the interpretation of ancient

writing systems is the inherent variation introduced by different

scribal hands. Paleography faces the challenge of identifying the

authorship or distinguishing differences when the writing style

varies.

In a study by Srivatsan et al. (2021), neural feature extraction

tools were employed to analyse scribal hands in the Linear B writing

system. Their system assigns a shared vector embedding to each

sign written by the same scribal hand, representing the author’s

stylistic patterns. Additionally, signs representing the same syllable

share a vector embedding that captures the identifying shape of the

character.

Similarly, a study by Popović et al. (2021) focused on the

Great Isaiah Scroll, one of the Dead Sea Scrolls. By employing

pattern recognition and artificial intelligence techniques, the

research revealed that two main scribes, each exhibiting distinct

writing patterns, were responsible for inscribing the scroll. This

finding contributes new insights into the ancient scribal culture of

biblical texts, indicating that ancient biblical manuscripts were not

exclusively copied by a single scribe.

Finally, in the work by Lastilla (2022), evidence is presented

that automatic techniques, specifically self-supervised learning

applied to convolutional neural networks, can effectively address

the challenge of handwriting identification for medieval and

modern manuscripts. This emphasizes the strong capabilities of

self-supervised methods in digital paleography, particularly in

scenarios where unlabelled data is prevalent and generating labeled

data poses difficulties.

2 Materials and methods

The primary benchmarks for our proposal are the studies

conducted by Berg-Kirkpatrick and Klein (2011) and Luo et al.

(2019).

In their work, Berg-Kirkpatrick and Klein (2011) introduced an

approach that serves as an inspiration for our work, emphasizing

the potential of addressing the decipherment problem as a pure

function optimisation problem. However, their results no longer

represent the state-of-the-art, as subsequent works have surpassed

them.

Conversely, the study by Luo et al. (2019) demonstrates a

system capable of achieving commendable results, although it

lacks the flexibility required for our purposes. In this system,

a recurrent Neural Network (NN) is employed to establish the

mapping between lost and known signs, despite the advantage

of using contextual information to perform the task, it lacks the

adaptability necessary for addressing two practical decipherment

challenges. Firstly, paleographers often possess partial knowledge

about the mapping of certain signs, and this information needs

to be incorporated into the system. Secondly, real inscriptions

are frequently broken or damaged, leading to unreadable signs,

requiring the incorporation of uncertainty into the system,

potentially through the use of wildcards or other special symbols.

Implementing such treatments proves challenging in a recurrent

NN. Additionally, deep NNs typically demand substantial data

for effective training, a condition not always met in real-world

situations. As mentioned earlier, our focus is on examining

undeciphered scripts from the Aegean region, necessitating a

more adaptable system capable of accommodating partial readings,

incorporating fixed knowledge, and operating effectively with

limited data.
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Inspired by the work in Berg-Kirkpatrick and Klein (2011),

we will introduce a flexible encoding of potential solutions and

an “energy function" designed to assess the quality of a given

solution. This assessment considers both signs matching and lexica

matchings. By minimizing the energy function, our goal is to

explore viable solutions to a decipherment problem.

To facilitate discussions in the following sections, we introduce

some notation. Ls and Ks represent two linearly ordered sets (a

set with a total order) containing respectively the signs in the lost

and known languages, respectively. The cardinalities of these sets

are denoted as |Ls| and |Ks|, with li and kj representing the i-

th and j-th elements in the ordered sets. Additionally, Llex and

Klex represent the two lexica, with |Llex| and |Klex| denoting their

respective numbers of words.

2.1 Solution coding

The fundamental tool for encoding a solution to the problem is

the k-permutation without repetition. Consider n objects denoted

as p1, . . . , pn. Let s1, . . . , sk represent k slots (k ≤ n), where k objects
can be assigned. A k-permutation of n objects refers to one of the

possible ways to select k objects and place them into the k slots.

Each object can only be chosen once and the objects order matters.

The number of possible k-permutations is given by Pn,k = n!
(n−k)! .

For this work, we consider the k-permutation of the first n integer

numbers.

To identify an appropriate sign assignment between the lost

language and the known language, a generic solution σ should have

the flexibility to represent multiple assignments in both directions,

while being mindful of the combinatorial explosion issue.

Let’s consider the scenario where |Ls| ≤ |Ks|. In this case, some

lost signs must be mapped to more than one known sign. This

situation can be efficiently encoded using a single k-permutation

σ with n = N · |Ls| and k = |Ks|, where N = 2, 3, .... Each

known sign kj, positioned at j ≤ k in the k-permutation σ =

〈σ1, ..., σk, ..., σn〉, is then mapped to a set of lost signs through the

functionMapSσ
: Ks → P(Ls),

MapSσ (kj) = lσj mod |Ls|

where P(Ls) is the power set of Ls.
In the alternate scenario where |Ls| > |Ks|, we can define

a solution σ comprising M k-permutations, where M = 2, 3, ...,

concatenated successively. Each permutation is handled in the same

manner as described earlier, but now N can also be equal to 1.

By structuring the possible solutions σ in this manner, every

symbol in the lost language has the capacity to be assigned from

0 to a maximum of N × M potential assignments of known signs,

offering a considerable degree of flexibility in signsmatching. Given

that, in the definition of k-permutations the parameter N governs

the well-formedness of the fundamental structure supporting

solution definition. It ensures that every known sign is assigned

to at least one lost sign, addressing the various situations that

arise when |Ls| ≤ |Ks|. Additionally, M dictates how many times

a known sign will be assigned to a lost sign. N and M are not

independent parameters as they interact in a complex manner to

regulate the number of multiple assignments in both directions.

FIGURE 1

Here are two straightforward examples of solution coding: (a) When

M = 1, the initial |Ks| cells encode the mapping MapS for the known

signs to the lost signs (depicted on the right). Using k-permutations

of size N · |Ls| accommodates one-to-many mappings from lost to

known signs (refer to the definition of MapS). (b) When M = 2, two

k-permutations are employed, allowing for one-to-many

assignments from known to lost signs. In both cases, there is a

possibility that a lost sign may not receive any assignment (not

illustrated in the picture).

Figure 1 illustrates two concise examples of the suggested

schema for encoding solutions.

An additional advantage of k-permutations regards the facts

that it exists an isomorphism between k-permutations and natural

numbers (Patel, 2022). Consequently, each solution encoded using

our schema can be translated into M integers, and, for practical

problems with M ≤ 2, fragments of the search space can be

inspected using a 2D/3D graph.

2.2 Energy function

The second essential component in the proposed approach

involves devising a suitable energy function capable of assessing the

quality of a provided solution for a decipherment problem.

As previously mentioned, Luo et al. (2019) divided the

optimisation process into two distinct, iteratively repeated steps.

The first step calculates the optimal match between signs given a

lexicon match, and once the signs match is fixed, the second step

determines the best match between lexica. In contrast, we opted for

a different approach, formulating an energy function that evaluates

the quality of both aspects simultaneously.

2.2.1 Lost words expansion and transliteration
To transliterate the lost lexicon, it is necessary to define the

inverse function of MapS, denoted as invMapSσ
: Ls → P(Ks),
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TABLE 1 Example of transliteration and expansion using the same sets of

signs as depicted in Figure 1b.

li invMapSσ (li) lW TrExpσ (lW)

A {Z,X} AA {ZZ,ZX,XZ,XX}

B {W,Z} BC {WX,WY,ZX,ZY}

C {X,Y} ABC {ZWX,ZWY,ZZX,ZZY,

XWX,XWY,XZX,XZY}

which assigns each lost sign to the set of known signs mapped to

it, as

invMapSσ (li) = {kj|li ∈ MapSσ (kj)} .

Expanding upon this definition, we can introduce the

transliteration and expansion function TrExpσ for a given lost

word lW = 〈lW1, ..., lWn〉, with lW1, ..., lWn the sequence of signs

forming lW, as

TrExpσ (lW) = {tW|tW = 〈q1, ..., qn〉, qj ∈ invMapSσ (lWj)}.

TrExp transliterates each lost word into the known alphabet and
links it to a set of transliterated words formed by any combination

of known signs permitted by the mapping invMapS. While this

approach could potentially result in a combinatorial explosion, the

fact thatN andM are typically very small integers (almost always≤

3) mitigates the severity of this issue. Table 1 provides an example

of this process.

2.2.2 Word matching
A conventional method for comparing strings involves the use

of the so-called edit distance (ED), also known as Levenshtein

distance. We employed this measure to compare the expanded

transliterations of lost words to known words. The standard

ED definition counts the number of sign insertions, deletions,

and substitutions required to transform the first string into the

second. We adapted this definition, following the ideas presented

in Wang et al. (2021), to incorporate two wildcards that can be

particularly useful in real settings. In actual inscriptions, signs are

often damaged or indistinguishable; in such situations, it might be

preferable to process this data while acknowledging the reading

challenges. For this purpose, we introduced the special sign “?”

to indicate a single unreadable sign and “*” to indicate multiple

unreadable signs, both allowed only in lost words.

Consider two words to be compared, X = 〈x1, ...xn〉 and Y =

〈y1, ...ym〉, with n andm being their respective lengths. The ED with

wildcards used in this study, denoted as EDWX,Y (n,m), is defined

as shown in Figure 2.

The general edit distance, including our variation with

wildcards, does not consider word lengths and is not ideal for

comparing the distance between sets of words. Consequently, many

studies have introduced a form of normalization for edit distance

values. Recognizing the valuable properties (Fisman et al., 2022) of

the Generalized Edit Distance proposed by Li and Liu (2007)3, we

3 The Generalized Edit Distance is a metric, its upper bound is 1 and it does

not escalate repetitions remaining simple and quick to calculate.

normalized EDW as

EDWX,Y =
2 · EDWX,Y

|X| + |Y| + EDWX,Y

where | · | represents the word length.

We utilized EDW to compare the transliterated and expanded

lost lexicon, generated by applying the TrExp function to each word
in Llex, against the known words in Klex (as discussed in the next

section). We implemented the EDW function in an efficient code

that is compatible with GPUs4.

2.2.3 Lexica matching
Cognacy relations within the two examined language lexicons

may involve 1-to-many, many-to-1, or many-to-many mappings

between cognate words. To appropriately address these possibilities

and facilitate accurate evaluation, we introduced a specialized

variant of the standard Linear Sum Assignment (LSA) problem,

also known as the Hungarian algorithm, for lexica matching.

Instead of matching individual words, our method involves

matching groups of words on both the lost and known sides. On

the lost language side, this accommodates different transliterations

of the same lost word resulting from multiple assignments to the

same lost sign (as defined by functions invMapS and TrExp). On
the known language side, it considers sets of possible cognates

associated with the lost word(s) in a given benchmark dataset.

To introduce our modified version of the LSA algorithm, let’s

establish a partition KlexG = K1
lexG, ...,K

G
lexG of Klex, where K

j
lexG

denotes a set of known cognates in the dataset. Subsequently, we

can define the variables Ai,j ∈ 0, 1 to represent the lexica alignment

obtained by the LSA algorithm (with Ai,j = 1 if and only if lWi

is assigned to K
j
lexG). The LSA problem to be solved can then be

expressed as

min

|Llex|
∑

i=1

|KlexG|
∑

j=1

Ai,j ·









min
X∈TrExpσ (lWi)

Y∈K
j
lexG

EDWX,Y









s.t.
∑

i

Ai,j = 1, j = 1, 2, ..., |KlexG|

∑

j

Ai,j = 1, i = 1, 2, ..., |Llex|

and, after solving the LSA and determining the values for the

matching variables A, the Energy function E for a given problem

solution σ can be defined as

E(σ ) =
|Llex|
∑

i=1

|KlexG|
∑

j=1

Ai,j ·









min
X∈TrExpσ (lWi)

Y∈K
j
lexG

EDWX,Y









(1)

See Table 2 for a simple example of the lexica matching process.

It is noteworthy that the calculation of the energy function E
for a specific solution σ is inherently derived from the solution.

4 https://github.com/ftamburin/EditDistanceWild
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FIGURE 2

Definition of the edit distance with Wildcards: wD, wI, and wS represent the weight penalties for sign deletion, insertion, and substitution,

respectively. For this study, all these weights have been set to 1. “?” and “*” are the two wildcards considered in this study.

TABLE 2 An illustrative instance of the lexica matching process is presented here.

Llex Klex

lW TrExp WX WW XX XWY XWZ

AA ZZ 2 2 2 3 2

ZX 1 2 1 3 3

XZ 2 2 1 2 1

XX 1 2 0 2 2

BC WX 0 1 1 2 2

WY 1 1 2 1 2

ZX 1 2 1 3 3

ZY 2 2 2 2 3

ABC ZWX 1 2 2 2 2

ZWY 2 2 3 1 2

ZZX 2 3 2 3 3

ZZY 3 3 3 2 3

XWX 1 2 1 1 1

XWY 2 2 2 0 1

XZX 2 3 1 2 2

XZY 3 3 2 1 2

The lost lexicon mirrors the example in Table 1, while the known lexicon comprises five words organized into three sets of cognates. On the left side, the cost matrix is generated using the

edit distance (normalized version not utilized for clarity). The values enclosed in a box highlight the minimum costs considering the respective groups. On the right side, these minimal values

represent the costs for an LSA problem, determining the minimum-cost matching (indicated by thick lines) between the two lexica while adhering to the groupings in the lost and known lexica.

This process involves translating the solution coding into sign

assignments using the function TrExp and subsequently aligning

the two lexica through the LSA procedure outlined above.

2.2.4 Penalty factors
To regulate the entire process and facilitate the optimisation

procedure in discovering reliable solutions, we introduced

regularization factors into the energy function E. Given that our

method relies on a flexible assignment schema, permitting no

assignments to lost signs and multiple assignments of known

signs, it is essential to ensure that the optimisation procedure does

not overuse these options. Generally, having no assignments to

lost signs rarely leads to a satisfactory solution, and exaggerating

with multiple assignments of known signs can be detrimental. To

discourage solutions with these characteristics, we incorporated

two penalisation factors. If we denote #UA(σ ) as the number of

lost signs without any assignment and #MA(σ ) as the number of

known signs with multiple assignments for a given solution σ , the

final energy function to be minimized is

E′(σ ) = E(σ )+ λ · [#UA(σ )+ #MA(σ )] (2)

where the parameter λ allows to weight the contribution of

penalisation factors on the energy function.
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2.3 Energy optimisation using coupled
simulated annealing

Structuring our problem as a comprehensive global

optimisation process has guided us to minimize the energy

function E′, as defined earlier, employing various metaheuristic

techniques found in the literature, such as tabu-search, genetic

and evolutionary methods, ant colony optimisation, simulated

annealing, and others.

The Coupled Simulated Annealing (CSA) method, introduced

by de Souza et al. (2010), is a global optimisation technique

based on Simulated Annealing (SA). CSA involves a set of parallel

SA processes (with #Anns denoting the number of annealers),

interconnected by their acceptance probabilities. The coupling

mechanism incorporates a term in the acceptance probability

function that relies on the energies of the ongoing states of all

SA processes, fostering cooperative behavior through information

exchange among parallel annealing processes. Furthermore, the

coupling aspect offers insights that can guide the overall

optimisation process toward the global optimum. The original

authors present a system capable of utilizing the acceptance

temperature to regulate the variance of acceptance probabilities

through a straightforward control scheme (referred to as “CSA-

MwVC” in the original work). This contributes to enhanced

optimisation efficiency by mitigating the algorithm’s sensitivity to

initialization parameters while steering the optimisation process

toward quasi-optimal states.

After experimenting with various techniques, we opted for

CSA for two primary reasons: (a) it offers easy parallelisation

on a multicore CPU, facilitating highly parallel computations

with minimal information exchange, and (b) its inherent

control mechanism over the variance of acceptance probabilities

autonomouslymanages the annealing process, eliminating the need

for intricate annealing schemes often requiring tuning for specific

problems and datasets.

For the implementation of CSA we relied on a code

specifically tailored for permutation-based problems5, configured

to incorporate 16 parallel annealers.

The generic SA algorithm is straightforward: given a solution,

we must perturb it to obtain a new solution in its neighborhood,

which is then accepted or rejected based on a stochastic decision

influenced by the new solution’s energy and the current global

system temperature. The selection of a neighboring solution

involves a critical step to ensure a proper sampling of the solution

space. Fortunately, a comprehensive study by Tian et al. (1999)

examined the most promising “moves” for solutions based on

permutations, with the swapping of two items in the permutation

deemed the most effective move for assignment problems. To

prevent the system from becoming trapped in a local minimum, we

also introduced a random p-swap perturbation with a probability of
0.1, where p decreases with the generation temperature governed by

the CSA schedule.

Concerning the stopping criterion for the CSA process, we

opted to conclude the annealing after 100 temperature updates

without observing any improvement in the best solution (best_σ ).

5 https://github.com/structurely/csa

Data: Ls,Ks,Llex,Klex,N,M,#Anns

Result: the optimized solution best_σ

• Init one solution σj for each annealer j

• Init annealing and generation temperatures

Ta and Tg

while best_σ has been modified in the last 100

steps do

• Generate #Anns perturbed solutions σ ′
j

by swapping two indices in each σj

• Compute E′(σ ′
j),j = 1,...,#Anns using

equations (1) and (2)

for j = 1,...,#Anns do

if E′(σ ′
j) ≤ E′(σj) then

• σj = σ ′
j

else

• Accept σ ′
j following the

CSA-MwVC algorithm

end if

end for

• Decrease Ta and Tg according to

CSA-MwVC temperature schedules

• best_σ = minj E′(σj)

end while

Algorithm 1. CSA_OptMatcher.

Refer to Algorithm 1 for an overall overview of the entire

optimisation process.

3 Experiments and results

In this section, we will detail the datasets employed to evaluate

our method, along with the experiments conducted to simulate

an automatic decipherment process. We utilize both established

benchmarks introduced by prior works in this domain and novel

datasets developed to contribute new benchmarks to the research

community.

3.1 Datasets and corpora

Taking into account the introductory discussion, a practical

decipherment problem may encompass various scenarios:

matching Different Scripts used to write the Same Language

(DS/SL), matching the Same Script for writing Different Languages

(SS/DL), or, in the most challenging scenario, matching Different

Scripts used to write Different Languages (DS/DL). Depending on

the nature of the problem, two distinct mapping procedures need

to be considered.

3.1.1 Reference benchmarks from the literature
Some datasets have been employed in previous studies and have

established themselves as standard benchmarks for assessing the

effectiveness of computational tools designed to assist scholars in

the decipherment process:
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• Ugaritic/Old Hebrew - U/OH. Ugaritic, an ancient Semitic

language closely related with Old Biblical Hebrew, was

inscribed using a cuneiform script variant, while the latter

employed the Hebrew alphabet. This scenario exemplifies a

DS/DL problem category.

Originally introduced by Snyder et al. (2010) for testing

their system, the Ugaritic dataset has become a standard

benchmark in the field. Consistent with Luo et al. (2019),

our system evaluation involves two distinct settings: (a)

Testing the model in a noiseless condition, akin to Berg-

Kirkpatrick and Klein (2011), where only 2,214 cognate

pairs are considered in both lexica. (b) Employing a slight

modification of the Snyder et al. (2010) setting, which

introduces a more challenging and realistic scenario by

incorporating unpaired words in Ugaritic and Old Hebrew

into the dataset (noisy setting). The original dataset comprised

7,267 Ugaritic and 39,635 Old Hebrew words, with only 2,214

forming cognate pairs. While the second setting may seem

less realistic due to the abundance of data in both languages,

it provides a valuable testbed. We reduced the number of

non-cognate words, creating a dataset of 2,214 cognate words,

1,119 unpaired Ugaritic words, and 1,108 Old Hebrew words

without corresponding cognates. These words were randomly

selected from the dataset proposed in Snyder et al. (2010).

• Linear B/Mycenaean Greek - LB/MG. Linear B, a syllabic

writing system employed for Mycenaean Greek dating back

to approximately 1450 BC. Luo et al. (2019) curated a dataset

by extracting pairs of Linear B and Greek words from a

compiled lexicon, eliminating some ambiguous translations

and resulting in 919 cognate pairs. This dataset holds

particular significance for us, aligning with our emphasis on

syllabic scripts from the Aegean region.

For Linear B, the signs inventory is defined as the original

set of signs in Linear B. Regarding Greek, given the syllabic

nature of the mapping, complex signs comprised of all open

syllables (excluding those indicating vowel quantity, such as

syllables ending in η or ω) were included to streamline the

signs inventory dimension on the Greek side.

This dataset exemplifies a DS/SL problem category.

The same authors introduced an additional, more

challenging and noisy benchmark, presenting a scenario more

realistic from a paleographic perspective. This benchmark uses

the same Linear B lexicon but compares it with a pared-down

Greek lexicon containing only proper nouns (LB/MG-names).

3.1.2 New datasets
Considering our principal focus, it appeared justified to

introduce novel datasets to serve as benchmarks for the

decipherment of scripts/languages originating from the same

expansive geographical region (East Mediterranean) and existing

during a parallel timeframe (Bronze Age and early Iron Age).

• Cypriot Syllabary/Arcadocypriot Greek - CS/AG. The

Cypriot Syllabary, a syllabic script employed in Iron Age

Cyprus, features a right-to-left writing system. It evolved from

the Cypro-Minoan syllabary, itself stemming from Linear A.

Predominantly used in the Arcadocypriot dialect of Greek, this

script provides another instance of a DS/SL problem.

To construct a new dataset, we referred to the alphabetic-

syllabic index in Hintze (1993). This dataset comprises 693

pairs of cognates, with the first written in the Cypriot

Syllabary and the second in the Greek alphabet. Similar to

the procedure applied in Luo et al. (2019) for the LB/MG

dataset, any diacritics were removed from the Greek alphabet.

Additionally, for Greek, only open syllables were considered,

consistent with the approach used in the previous benchmark.

• Phoenician/Ugaritic - Ph/Ug. Phoenician, an extinct language

originating from the Late Bronze Age region around Tire and

Sidon, belongs to the Northwest Semitic language family. It

exhibits notable similarities with Old Hebrew, Ugaritic, and

other languages within the same linguistic group.

To create a benchmark, we utilized the Semitic etymology

database from StarlingDB, compiled by Alexander Militarev6.

This online resource offers cognates for various Semitic

languages, connecting them to Proto-Semitic forms. The

resulting benchmark comprises 105 cognates and 58 unpaired

words, encompassing both Phoenician and Ugaritic.

This dataset exemplifies a DS/DL problem, akin to the

U/OH dataset introduced earlier, as the two languages were

written using distinct alphabetic scripts — the Phoenician

alphabet for Phoenician and the Ugaritic cuneiform for

Ugaritic.

• Luvian/Hittite - Luv/Hit. Hittite, an extinct Indo-European

language spoken by the Hittites — a prominent Bronze

Age Anatolian civilization — flourished in the 17th to 13th

centuries BC. Primarily inscribed in a variant of cuneiform,

distinct from the version used in Old Babylonian/Assyrian

texts, Hittite played a crucial role in the expansive Hittite

Empire.

Luvian (or Luwian), another ancient language from

the Anatolian branch of the Indo-European family, was

contemporaneous with Hittite in Anatolia. Luvian manifested

in two varieties: one employing cuneiform and the other using

hieroglyphs. However, for this study, our focus remains on the

cuneiform-based variant.

Drawing on the meticulous work of Ringe et al.

(2002), who compiled an etymologically verified wordlist

featuring cognates across diverse Indo-European languages,

we constructed a novel benchmark. This dataset encompasses

60 pairs of cognates between the two languages, coupled with

75 unpaired words introduced as “noise”.

Notably, this dataset serves as a unique illustration of an

SS/DL problem.

3.2 Evaluation

Regarding evaluation, we adhere to the methodology

established in prior literature, notably following the approach

delineated by Luo et al. (2019). Our evaluation focuses on

6 The Tower of Babel, https://starlingdb.org.
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quantifying the system’s accuracy in identifying pairs of lost and

known cognates enumerated in the provided dataset.

Emphasizing the guidance of Reimers and Gurevych (2017),

who underscore the potential impact of system random

initialization on results, we advocate reporting not only a

single score but also the mean and standard deviation from

multiple runs under the same configuration. This practice ensures

a more nuanced understanding of the system’s actual performance

and facilitates robust comparisons. Consequently, the results

presented in this paper include the mean and standard deviation

of system accuracy across four runs, each initiated with distinct

randomisations. This approach offers a comprehensive portrayal

of our system’s performance.

For consistency and comprehensive comparison with the

system establishing state-of-the-art results, we replicated the

experiments using the tool presented in Luo et al. (2019) on all the

proposed datasets, adhering to the same experimental protocol we

applied to evaluate our proposal. Moreover, we slightly modified

their code to remove any information from the input not available

in real decipherment settings, like the expected number of cognates

in a given benchmark dataset.

3.3 Results

The two parameters, N and M associated with the solution

shaping outlined earlier, may be viewed as hyperparameters for

the proposed method, introducing more flexibility to potential

solutions at the cost of additional parameters and potentially slower

convergence. By increasing N or M the system gains the ability

to incorporate intricate 1-to-many, many-to-1, or many-to-many

mappings between the two sign inventories, offering versatility in

specific scenarios. In our experiments, we chose to refrain from

optimizing these parameters and adopted a straightforward rule:

N = 1,M = 2 if |Ls| > |Ks| and N = 2,M = 1 otherwise.

To strongly discourage potentially degenerate solutions we set,

in general, λ = 4 and λ = 8 for the “U/OH noisy” benchmark to

further penalize inappropriate solutions.

Table 3 displays the outcomes of our experiments in

comparison with the reference literature, specifically the system

introduced in Berg-Kirkpatrick and Klein (2011) “Matcher” and in

Luo et al. (2019) “NeuroCipher”.
Our system exhibits superior accuracy compared to any other

work across almost all benchmark datasets, with a substantial

margin. It is noteworthy that our results are presented as the

mean and standard deviation of multiple runs, providing a more

comprehensive assessment than the maximum accuracy achieved

by the system, further highlighting the significance of the results.

The only exception regards the U/OH noisy dataset for which

a very large set of words is provided, a setting that clearly

advantage methods based on Deep Neural Networks. However,

this abundance of lexical items is not representative of real

decipherment problems, which typically involve a few 100 words

in each language, and it has been considered only for comparison

purposes with past studies. On the contrary, we were not able to

reproduce the results presented in Luo et al. (2019), leaving the

impression that the reported Accuracies represent the maximum

values obtained after numerous restarts. In real settings we cannot

have the gold standard decipherment and restarting the tested

method to maximize its performance is not a viable approach.

The datasets incorporating noise, such as U/OH noisy,

Ph/Ug, LB/MG names, and Luv/Hit, present the most challenging

scenarios among the seven benchmarks investigated in this study.

The accuracy in identifying cognate words for these benchmarks

is lower compared to other cases, but it remains remarkably high.

Even in these more difficult scenarios, the system demonstrates

an ability to automatically identify more than 50% of cognates in

the two lexica. Such high accuracy would undoubtedly significantly

enhance the contribution of this automated system to any

paleographer’s decipherment efforts.

4 Discussion and conclusions

We introduced a novel method for ancient scripts

decipherment demonstrating its ability to yield excellent results

in cognate identification compared to the current state-of-the-art.

None of the hyperparameters were optimized, and it appears

plausible that further improvements can be achieved by increasing

the values of N and/or M. Our intention is to conduct additional

experiments in this direction.

Another noteworthy aspect of the system pertains to its

capability to consistently converge to reasonable solutions in any

simulation. Throughout the development phase, the proposed

system avoided being trapped into highly suboptimal solutions.

While the simulations required a significant amount of time to

converge, there was no necessity to restart the process, a practice

commonly employed in methods of this nature [refer to, for

instance, Berg-Kirkpatrick and Klein (2013)]. This confirms the

efficacy of CSA as a function optimisation technique.

When replicating the experiments outlined in Luo et al. (2019)

for the NeuroDecipher system, that defined the state of the art,

and excluding all information about cognancy from the input,

we observed significant differences. Overall, the Accuracies on

the various datasets were slightly lower than reported in the

original paper. Achieving convergence necessitated restarting the

experiments multiple times using various random seeds, a practice

impractical in real-world scenarios where a gold standard for

comparison is absent.

There exist alternative approaches in the literature that we

haven’t explicitly addressed because they are not specifically

designed for deciphering ancient scripts. However, these

approaches tackle the challenge of deciphering substitution

or homophonic codes, such as the well-known Zodiac-408 cipher

or the Beale cipher (e.g., Ravi and Knight, 2011; Nuhn et al.,

2013, 2014; Lasry et al., 2021, 2023). Ravi and Knight (2011)

introduced a stochastic model incorporating both token n-grams

and dictionaries. In cases where the target language is known,

they can estimate a language model (LM) using a substantial

dataset, even if artificially generated. This approach leverages

complete lexica and frequency information specific to the known

language. Unfortunately, applying these methods to decipher

ancient languages poses challenges as the target language is

often uncertain. It might be a language from the same region,

sharing data scarcity similar to the lost language, making it
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TABLE 3 Accuracy results in cognate identification of CSA_OptMatcher compared to the reference literature.

Benchmark datasets

DS/DL DS/SL SS/DL

U/OH U/OH Ph/Ug LB/MG LB/MG CS/AG Luv/Hit

System Noiseless Noisy Names

Matcher 90.4 - - - - - -

NeuroCipher 93.5 65.9* - 84.7 67.3 - -

NeuroCipher† 90.4±0.64 87.6±0.52 71.2±2.50 75.8±0.85 67.9±1.13 75.9±0.56 18.2‡ ±2.13

(90.8) (88.26) (73.3) (76.4) (69.5) (76.5) (20.3)

CSA_OptMatcher 95.5±0.83 74.7±1.26 80.5±1.82 89.4±1.81 83.4±2.50 86.3±1.73 47.5±1.67

(96.3) (75.8) (82.9) (91.0) (87.0) (87.9) (48.3)

In boldface the best result for each dataset. ∗The comparison with the results in Luo et al. (2019) for the “U/OH noisy” dataset may not be entirely fair due to the use of a different, larger dataset.

Inside round parentheses, the maximum Accuracy value obtained in our experiments is indicated. † Results for NeuroCipher computed or recomputed by us simulating a real setting and using

the code in Luo et al. (2019). ‡ To enable the system to converge toward meaningful results we had to provide the number of cognates in the dataset, information not available in real settings.

impractical to construct useful LMs or rely on a comprehensive

dictionary. In such scenarios, everything is only partially known

or unreliable, including phonetic values, sign mappings, frequency

information, and the true underlying language. These factors make

it exceedingly challenging to apply methods like the one proposed

by these authors.

Very interestingly, Lasry et al. (2021, 2023), even if working on

a slightly different problem, successfully apply techniques similar

to those proposed in this paper to decipher papal ciphers from the

16th to the 18th Century and Mary Stuart’s lost letters from 1578-

1584. They configured the problem as a combinatorial optimisation

task and solved it by applying simulated annealing methods for

exploring the search space in an efficient way.

While our automatic decipherment of ancient scripts has

shown great promise, it would be misleading to infer that these

tools can effortlessly resolve all outstanding issues in palaeography,

epigraphy, and linguistics that have been debated by experts over

the years. Despite their potential, these techniques encounter

numerous challenges when applied in real decipherment scenarios:

(a) The need for segmented and clean corpora is paramount.

Constructing a corpus for an ancient undeciphered script, even

after addressing segmentation problems and collecting single sign

images and sign/word sequences, is a formidable task. Many

inscriptions are damaged, with numerous signs being unreadable,

and occurrences of broken words and partial sentences are

commonplace. (b) Access to an extensive cognate list is crucial,

yet in most real cases, only two word lists are available for

matching, without any assurance that cognates from the lost

language truly exist in the lexicon of the known language. (c)

In natural language processing (NLP), evaluations are typically

conducted on well-established test beds and the studies discussed

earlier focused on well-known correspondences to demonstrate

system effectiveness. On the contrary, testing these systems on real

cases involving unknown writing systems and their corresponding

languages presents an entirely different set of challenges and

uncertain comparanda.

Considering these factors, we concur with Sproat (2020), who

proposed that these tools can assist paleographers in illuminating

the decipherment process. However, we cannot solely depend on

them to offer a comprehensive solution to our actual challenges

without human intervention to guide the process and interpret the

results. Nonetheless, the excellent performance of these tools in

identifying the cognates can start the ‘domino effect’ that precedes

the decipherment by indicating to the paleographer some relevant

correspondences that will indicate her/his path to success.

Our future endeavors involve applying the proposed system to

undeciphered scripts from the Aegean area. We aim to contribute

insights that may finally address longstanding problems unresolved

for centuries.
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