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Two-wheeler traffic offenses are a well-known fact about the Indian Road scenario. 
In addition to endangering the offenders, these offenses also endanger other 
commuters. Two-wheeler traffic violations can take many different forms, such 
as overloading, triple riding, and helmetless riding. Effective identification and 
enforcement strategies are necessary for these offenses since they pose a serious 
risk to public safety. Due to the inadequacy of traditional traffic monitoring and 
enforcement techniques, advanced technology-based solutions are now required. 
Deep learning-based systems have demonstrated significant promise in identifying 
and stopping such infractions in recent years. We propose a two-step deep learning 
approach that leverages the strengths of pre-trained object detection models to 
detect two-wheeler riders and specialized helmet classifiers to identify helmet 
wear status as well as detect number plates. In the first stage, we utilized a highly 
efficient, robust, and accurate object identification DetectNet (Model 1) framework 
developed by NVIDIA, and it uses the ResNet18 Convolutional Neural Network 
(CNN) architecture as part of the Transfer Learning Toolkit known as TAO (Train, 
Adapt, Optimize). The second stage demands accurate detection of a helmet on 
the identified rider and extracting numbers from the violator’s license plates using 
the OCR module in real time. We employed YOLOv8 (Model 2), a deep learning-
based architecture that has proven effective in several applications involving 
object detection in real time. It predicts bounding boxes and class probabilities 
for objects within an image using a single neural network, making it a perfect 
choice for real-time applications like rider helmet violations detections and number 
plate processing. Due to a lack of publicly available traffic datasets, we created 
a custom dataset containing motorcycle rider images captured under complex 
scenarios for training and validating our models. Experimental analysis shows that 
our proposed two-step model achieved a promising helmet detection accuracy 
of 98.56% and a 97.6% number plate detection accuracy of persons not wearing 
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helmets. The major objective of our proposed study is to enforce stringent traffic 
laws in real-time to decrease rider helmet violations.
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traffic violations, deep learning, DetectNet, Resnet18, NVIDIA TAO, YOLOv8, OCR

1 Introduction

High rates of traffic infractions, especially from two-wheelers, can 
be commonly seen in Indian road scenarios. In addition to the cyclists 
themselves, other commuters on the road are also at risk from these 
violations. To solve this problem, deep learning-based detection 
algorithms that can precisely recognize and categorize various 
two-wheeler traffic offenses are in high demand. In India, two-wheelers 
are the most popular form of transportation, and they make up more 
than 78% of all vehicles on the road. Due to ignorance or a lack of 
safety concern, they frequently break traffic laws and are responsible 
for roughly 29% of traffic accidents (Road Accidents in India, 2022). A 
total of 74,897 people were killed in two-wheeler accidents, accounting 
for approximately 44.5% of all traffic fatalities according to a road 
accident report (Road Accidents in India, 2022). Two-wheelers 
accounted for the largest percentage (44.5%), followed by pedestrians 
(19.5%) and vehicles such as cars, cabs, and vans (12.5%), according to 
Figure 1. One of the main contributing factors to most two-wheeler 
accidents is the carelessness of motorcyclists who fail to wear helmets, 
which frequently leads to head injuries that cause trauma 
(Gopalakrishnan, 2012) to the skull or brain. 12% of motorcycle riders 
wearing helmets experience head injuries, compared to 20% of those 
not wearing them (Ravikumar, 2013). If there is a system in place to 
enforce helmet laws on motorists, they will be effective in reducing 
fatalities and injuries to the motorists. The number of people wearing 
helmets has increased after such laws requiring their usage have been 
imposed (Hagel et al., 2011). Manually monitoring traffic laws at every 
road and intersection in a city is very challenging and prone to errors. 

Thus, developing a real-time automated system that can identify and 
notify of traffic violations is crucial. These days, there is a lot of research 
being done on the detection and categorization of moving objects, 
which is largely utilized in applications like human motion capture and 
Intelligent Transportation Systems (ITS). Traffic monitoring and 
accident management are the two main ITS problems. It is undeniable 
that many traffic accidents are caused by careless and reckless 
motorbike riders. It is a need of the hour to have an automated system 
that uses computer vision to detect motorcycle riders who are not 
wearing helmets and punish them as per the law. As a result, traffic 
cops might have reduced the helmet violation monitoring burden. This 
can also lower the fatality rate, which has been sharply rising recently 
because of motorcycle accidents (Gopalakrishnan, 2012). Global 
research assessments demonstrated that the presence of surveillance 
cameras decreased the number of fatal accidents that resulted in 
serious injuries from 40 to 11% (Wilson et al., 2010). The development 
of an automated system that uses security cameras to automatically 
identify bikers who are not wearing helmets is therefore clearly vital.

We provide a deep learning-based method for identifying traffic 
violations involving two-wheeler vehicles that makes use of YOLOv8. 
It is a state-of-the-art object recognition model with great accuracy that 
can identify objects in real-time. Deep learning-based detection systems 
examine images and videos taken by security cameras positioned at key 
points along the highways using neural networks. Numerous traffic 
violations, including speeding, wrong-side driving, helmetless riding, 
and red-light jumping, can be  identified and categorized by these 
systems. When it comes to detecting traffic violations, deep learning-
based detection systems have a few advantages over conventional 

FIGURE 1

Road user groups and gender-specific profiles of those killed in traffic accidents (%) in 2022 (Road Accidents in India, 2022).
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techniques. These algorithms have a high degree of accuracy and can 
identify even small infractions that human observers might miss. 
Additionally, these systems can run continuously around the clock, 
guaranteeing constant road surveillance. All commuters can benefit 
from increased road safety and a deterrent effect on offenses. To 
ascertain whether a violation has taken place, our system first detects 
the two-wheeler vehicle in the picture or video frame and then 
examines its behavior. To take further action, the device records the 
license plate number and follows the movement of the two-wheeler. The 
two functional modules of this suggested approach are helmet object 
detection and license plate recognition. The most effective YOLO 
neural networks are used in the object detection module.

In this research, we  have generated the datasets by gathering 
pictures and videos of two-wheeler traffic infractions in the context of 
Indian roads. Bounding boxes and class labels were then added to the 
data to produce a labeled dataset that could be used to train the YOLOv8 
model. Preprocessing was done on the dataset to guarantee consistency 
and noise elimination. To ascertain whether a violation has taken place, 
our system first detects the two-wheeler vehicle in the picture or video 
frame and then examines its behavior. To take further action, the device 
records the license plate number and follows the movement of the 
two-wheeler. The two functional modules of this suggested approach 
are helmet object detection and license plate recognition. The system 
effectively recognizes license plates in pictures, videos, or real-time by 
utilizing YOLOv8’s potent object detection capabilities. Accurate license 
plate recognition is therefore made possible by the application of OCR 
algorithms, which extract alphanumeric characters from the detected 
plates. By combining YOLOv8 and OCR, the system becomes more 
resilient to changing circumstances, which improves performance in 
practical situations. Our suggested YOLOv8 model provided a 
promising helmet recognition and number plate detection accuracy for 
individuals who were not wearing helmets. Our main goal is to lower 
the frequency of these traffic incidents by utilizing an automated 
computer vision method that identifies the two-wheeler rider’s helmet-
wearing status. The results demonstrate that the proposed system can 
be  beneficial to the traffic department in taking the appropriate 
measures against those who break traffic laws. Undoubtedly, this 
technique will promote a great deal of discipline in drivers to adhere to 
traffic laws. It will save the government resources needed to continuously 
monitor traffic infractions.

Summary of our Novel Contributions is as follows:

 1. We developed a diverse dataset comprising 1,715 images, 
sourced from video footage captured using cameras positioned 
at various heights and angles across traffic junctions and 
intersections under varying lighting conditions.

 2. We implemented an advanced transfer learning-based data 
preprocessing pipeline featuring a ResNet18-based DetectNet_
v2 (Model 1) bounding box regressor to generate accurate 
boundary representations of two-wheelers.

 3. We deployed a YOLOv8 (Model 2) to identify the number of 
riders, detect helmet violations, and extract vehicle information 
from complex traffic scenes. Experimental results demonstrate 
the model’s effectiveness in detecting multiple objects across 
large field-of-view traffic environments.

The remainder of the paper is organized as follows: A literature 
review is provided in Section 2. The proposed helmet violation 

detection technique is presented in Section 3. Section 4 covers the 
experimental findings and observations. Section 5 finally concludes 
the work.

2 Literature survey

Computer vision techniques are increasingly being applied to the 
investigation of helmet wear compliance these days. It entails 
determining if motorcycle riders are wearing helmets while riding. 
Digital image processing and computer vision methods are utilized in 
many object recognition applications, including autonomous driving, 
automatic rider helmets, pose detection, and video surveillance 
applications (Buch et al., 2011; Vargas et al., 2010; Buch et al., 2010; Yang, 
2022; Ashiq et al., 2022). These strategies can be broadly divided into two 
categories: deep learning techniques and machine learning techniques.

2.1 Machine learning-based approaches

There are chances that a person may get confused between a safety 
helmet and with human head because of their similar shapes. John 
et al. suggested a method for detecting motorcycles and tracking their 
movements over time that makes use of Histogram Oriented Gradient 
(HOG) features (Chiverton, 2012). The technology determines if a 
helmet is present by analyzing the corresponding rider region after 
detecting a motorcycle. Rattapoom et  al. suggested a four-step 
procedure (Rattapoom Waranusast et al., 2013) that recognizes the 
presence of a motorcycle and ultimately categorizes every individual 
on it to automatically identify motorcycle riders and ascertain if they 
are wearing head protection. Three features are extracted by the 
system after separating moving and stationary objects: the area of the 
bounding rectangle containing the image, the aspect ratio of the 
rectangle’s width to height, and the standard deviation of the hue 
surrounding a rectangle at the object’s center. To determine whether 
the object is a motorcycle or another moving object, the K-Nearest 
Neighbor (KNN) classifier is applied to the three features that have 
been extracted from the moving object. To identify bikers without 
helmets, Silva et al. developed a hybrid descriptor model based on 
texture and geometry data (Silva et al., 2013). To identify the biker’s 
head, SVM and the Hough transform (HT) are employed. The 
algorithm has been trained using a self-generated dataset. To 
distinguish between various items, they expanded their research and 
employed a multilayer perception model, achieving an accuracy of 
94.23%. To assist in extracting the properties of the image, they also 
suggested a technique based on HT and histogram-oriented gradient 
(HOG) (Silva et al., 2014). The roadside cameras provide the input 
image database of 255 samples, and the system produced helmet 
detection accuracy of 91.37%. A technique based on the K-nearest 
neighbor (KNN) classifier was proposed by Waranusast et  al. to 
identify and detect motorcycle riders wearing and not wearing 
helmets (Waranusast et al., 2013). The self-generated dataset has been 
used to test the system, and the images were captured using a webcam. 
According to the trial results, 68, 84, and 74% of the far lane, the close 
lane, and both lanes, respectively, were successfully detected by the 
system. A technique that uses a Histogram Oriented Gradient (HOG) 
to extract characteristics is used to identify motorcycles and monitor 
their movements over time. To ascertain whether a helmet is present, 
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the system examines the matching rider region after detecting a 
motorcycle. This is accomplished by employing a support vector 
machine (SVM) classifier that was trained using histograms from the 
motorcyclists’ head region image data, which were calculated using 
the HOG descriptor (Aboah et al., 2023; Armstrong Aboah et al., 
2023). On the other hand, these methods do not identify or count the 
number of motorbike riders.

2.2 Deep learning-based approaches

More recently, effective Deep Learning methods have been 
developed to precisely identify the presence of a motorcycle and the 
rider. To find objects in motion, Vishnu et al. employed an adaptive 
search technique (Vishnu et  al., 2017). Following that, bikes were 
distinguished from objects in motion using a CNN on a self-generated 
dataset. Lastly, CNN is used to distinguish between bikers who are not 
wearing helmets. Mistry et al. detected helmetless bikers using CNN 
(Mistry et  al., 2017). YOLOv2 was utilized at two levels. First, the 
system detected various objects and helmetless motorcycle riders using 
YOLOv2. For training, the COCO dataset has been utilized, and 
experimental results reveal an accuracy of 92.87%. Raj et al. used a deep 
learning technique (Raj et al., 2018) to help identify bikers who had 
flouted rider helmet regulations. HOG is used for motorbike detection, 
and the region of interest is chosen after that. To recognize number 
plates and identify bikers without helmets, they used CNN technology. 
Self-generated data from various sources has been utilized, and 94.70% 
accuracy has been reported. A deep learning method called 
RatinaNet50 was used by Siebert and Lin (2020) to identify bikers who 
were not wearing helmets. Self-generated data was utilized to train the 
suggested system. There are now two classes: With-Helmet and 
Without-Helmet. The experimental result shows an accuracy of 72.8%. 
Faster R-CNN (Afzal et al., 2021) was used by Afzal et al. to identify 
motorcycle riders who had not worn helmets. Custom-generated data 
was used to train the system. According to the experimental data, the 
accuracy reported was 97.26%. Using deep learning techniques based 
on the YOLOv4 model (Kharade et al., 2021), Kharade et al. presented 
a system for identifying motorcycle riders who are not wearing helmets. 
When compared to existing CNN-based algorithms, the suggested 
approach shows true performance in traffic motion images.

The YOLOv3 algorithm (Kathane et al., 2022) was implemented by 
Kathane et al. Advanced deep learning models are trained to recognize 
objects. Three distinct deep learning models are used by the developed 
system to identify these things. The established technique provides 91.8% 
precision for number plate detection and 88.5% precision for motorcycle 
detection. Using a convolutional neural network (CNN), Rajalakshmi 
and Saravanan (Rajalakshmi and Saravanan, 2022) created a system for 
tracking and dealing with those who violate the rules. Using a suitable 
CNN-based model, the system carries out vehicle classification, helmet 
detection, and mask detection. Although the methods can identify 
motorcyclists who are not wearing helmets, they have certain drawbacks. 
The accuracy of most current systems is low. Furthermore, there is a 
restricted dataset that was utilized to construct the system. Furthermore, 
a few of the systems mentioned above are unable to distinguish between 
a scarf and a helmet. YOLOv5 is a deep learning-based object 
identification system with real-time object detection capabilities. The 
design is based on the same methodology as YOLOv3 and YOLOv4, but 
it incorporates a few enhancements to increase its accuracy and 

efficiency. YOLOv5 is based on a modified version of the EfficientNet 
architecture, which is renowned for its accuracy and efficiency. CSPNet, 
the YOLOv5 backbone, is made up of a bottleneck block that lowers the 
number of channels and several convolutional layers. To improve road 
safety and lower accident rates, YOLOv5 is being used for the real-time 
detection of two-wheeler traffic offenses in Indian road settings. Tasbeeha 
et al. built a real-time system that uses Faster R-CNN (Waris et al., 2022) 
to recognize motorcycle riders without helmets in roadside camera 
surveillance footage. For effective helmet violation detection, the 
algorithm makes use of a Fast R-CNN and a region proposal network 
(RPN). To provide a variety of settings, the dataset was created by 
combining pre-existing datasets with self-captured pictures from Lahore, 
Pakistan. In experimental analysis, the system outperforms competitors 
in helmet violation detection with a high accuracy of 97.69%. Although 
the system performs better thanks to its sophisticated algorithm and large 
dataset, it is unable to recognize violators’ license plates.

Agorku et al., utilized YOLOv5 and ensemble learning (Agorku 
et al., 2023) to develop a real-time helmet violation detection system 
to improve the identification of motorbike riders and passengers and 
determine if they are wearing helmets. Five models with various 
hyperparameters are used in an ensemble learning strategy to improve 
YOLOv5’s object identification capabilities. The suggested model 
achieved a mAP score of 0.5267, and the precision/recall values of the 
model can be increased by training on a wider variety of datasets. The 
ResNet18-based DetectNet_v2 model (Deshpande et al., 2025) was 
deployed to reliably predict triple riding on a two-wheeler and 
produced triple-rider detection accuracy of 91.42% under challenging 
environments. The combination of dense layers of ResNet-50 to 
perform image classification tasks and YOLOv8 for real-time object 
detection (Deshpande et al., 2025) to accurately detect small objects 
like cell phone usage produced a Mean Average Precision (mAP50) of 
49.5% at 0.5 IoU for detection tasks and an accuracy of 96.03% for 
prediction tasks. As mentioned above, most of these literatures lack 
systems with real-time rider identifying capabilities, separating 
passengers from the motorists, and determining if a helmet is worn. 
Furthermore, these models do not extract vehicle number plates, 
making it difficult to identify violators. Our proposed research 
introduces a cutting-edge real-time model that can identify motorbike 
helmets and their number plates in smart city scenarios.

3 Proposed methodology

The major challenges faced in carrying out research in rider 
helmet detection are the lack of a publicly available dataset. While 
we explored popular platforms like Kaggle and COCO, we encountered 
limitations in finding images that met our specific requirements, 
including complex backgrounds and diverse lighting conditions. Our 
first challenge revolved around collecting a suitable dataset for training 
our helmet detection model, and we successfully overcame this by 
generating a custom dataset. This section outlines the development of 
a custom dataset from surveillance cameras positioned along the 
roads, intersections, traffic junctions, and captured in sunny, cloudy, 
rainy weather at daytime, dusk, and nighttime lighting conditions.

We proposed a two-step system to identify riders on a two-wheeler 
and detect persons not wearing helmets, including their license plates. 
In the first stage, we utilize DetectNet_v2 as Model 1 to accurately 
identify individuals riding bikes/scooters on streets and junctions. This 
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model is trained on the generated ground truth images to distinguish 
riders from others like four-wheelers, bicycles, and pedestrians, 
ensuring precise detection even in complex traffic environments with 
varying lighting conditions and vehicle densities. After the rider has 
been identified, the second stage entails applying the YOLOv8 as our 
Model 2, especially for helmet and number plate detection. When there 
is more than one rider on a two-wheeler, the model also displays the 
number of riders with their helmet wear status. Lastly, the system 
records the offending bike’s license plate, allowing law enforcement to 
carry out the necessary legal actions. Figure 2 illustrates the proposed 
two-step helmet violation detection system flow diagram. The various 
aspects of the proposed technique are explained in the following sections.

3.1 Data set collection, pre-processing, and 
annotation

The key to success in deep learning research, especially for object 
identification models like DetectNet and YOLOv8, is the availability of 

high-quality data. The more varied and extensive the data, the models 
can generalize their understanding and function well in unknown 
settings. The data collection process began by physically gathering 
images from video footage obtained from a variety of traffic intersections 
from a range of perspectives and in varying lighting conditions.

The following crucial phases are involved in image extraction 
from a live video feed:

 1. Processing Video: The cameras’ live video feed is recorded in 
this step.

 2. Identification of the Frame: The frames from the earlier step are 
extracted, pre-processed, and then fed into deep learning 
models. The frames are extracted at 10 Frames Per Second (FPS).

 3. Different Heights and Angles: Cameras were placed at various 
heights (10 to 15 feet) and angles to accurately represent the actual 
traffic scenes. This was done to ensure that the dataset could 
contain a variety of real-world camera locations and viewpoints.

 4. Diverse light conditions: By collecting data in a range of lighting 
situations, we ensured that the dataset could faithfully represent 

Images from video Frame
(Traffic Scene)

Pre-processing
1.Date Redundancy
2.Data Cleaning
3.Filtering

Image Annotation
1.Define bounding box 
2.Label using LabelImg (DetectNet_v2) 
3.Assign H (Helmet), W Without Helmet, 
    NP (Number Plate) Labels (YOLOv8)
4.Save XML file

Training DetectNet_v2 and YOLOv8 Models

Images from Traffic scene Load the DetectNet_v2 Model

Yes

Rider on 2-wheeler 
detected?

Ignore 
Image 

No

Save the Image and Load the 
YOLOv8 Model

Rider is without 
helmet? 

NoIgnore 
Image 

Yes
Extract Number 
Plate Data and 

Save Image 

FIGURE 2

Block diagram of the proposed two-step helmet violation detection system.

https://doi.org/10.3389/frai.2025.1582257
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Deshpande et al. 10.3389/frai.2025.1582257

Frontiers in Artificial Intelligence 06 frontiersin.org

the differences in visibility and appearance of traffic scenarios 
during the day, night, cloudy, and rainy lighting scenarios.

To create an extensive data set for our study, images were created 
by employing effective synthesis techniques to create separate images 
from video frames. We gathered 1,585 images from these video frames 
and added another 130 images from the online COCO dataset, 
making them total of 1,715 images containing two-wheeler rider 
images with and without helmets, as summarized in Table 1. After a 
rigorous cleaning process to ensure data quality and relevance, 1,200 
high-quality images of single, double riders with and without helmets 
were added to the final dataset.

As seen in Figure  3, the captured images represent various 
urban scenarios depicting real-world helmet use cases. These 
environments included streets, intersections, and traffic lights. The 
aim was to capture data under a wide range of conditions, fostering 
a model that can adapt to real-world complexities. To make the 
dataset diverse, the images are captured in sunny, cloudy, rainy 
weather at daytime, dusk, and night-time lighting conditions. This 
ensures the model can handle variations in lighting and visibility 
that may affect helmet detection, as shown in Figures 3a,b. We also 
synthetically generated images with the help of various team 
members riding different two-wheelers under different road and 
lighting conditions as indicated in Figure 3c. Further, we captured 
images in  locations with multiple objects at different complex 
backgrounds and vehicles moving in opposite directions, as seen in 
Figure 3d This helps the model to learn the helmet object from the 
surrounding environment, improving detection accuracy across 
various settings.

3.1.1 Data set pre-processing and annotation
It is necessary to preprocess the dataset to obtain the relevant data 

to perform further tasks. To eliminate missing objects, frames with 
irrelevant pictures, redundant data, etc., the dataset is manually 
pre-processed to choose relevant frames. These 1,200 images 
underwent data cleansing and filtering to eliminate any low-quality or 
irrelevant samples that included objects with unclear information due 
to poor lighting. After preprocessing, 1,107 images with riders are 
selected to train the DetectNet_v2 model. Similarly, a total of 1,071 
images of riders wearing helmets, not wearing helmets, and mixed 
instances in different lighting conditions are identified to train the 
YOLOv8 model. An annotation task for image labeling has been 
carried out using the LabelImg tool (Labelimg, 2025). A bounding box 
is drawn around the image to assign four different labels. A label called 
“rider” is assigned to an image containing persons on a two-wheeler, 
as indicated by the red bounding box in Figure 4a. Images of bikers 

with helmets represent the “H” label and are marked with a red 
bounding box. Meanwhile, the “W” label indicates bikers without 
helmets and is marked with a blue bounding box, as shown in 
Figures 4b,d. The two-wheeler number plates in images are labeled as 
“NP” and are marked with a green bounding box as seen in 
Figures 4b,c.

To deal with overlapping motorcycle rider incidents found in a 
single image are properly delineated to provide comprehensive 
annotation results. The annotated metadata of images is first saved as 
.xml files (PASCAL or VOC) before being moved to the KITTI file 
format. This usually provides the location and attributes of the 
motorbike objects in the pictures, including their labels and bounding 
boxes (xmin, ymin, xmax, ymax). The regions of the recognized rider 
two-wheeler are output as bounding box coordinates by DetectNet 
after training is successful. This data is used as the input for the 
next phase.

3.2 Model selection

The DetectNet_v2 is trained after the dataset is prepared so that 
real-time and accurate two-wheeler riders can be localized from a 
complex traffic scene. This rider information is then sent to the 
subsequent YOLOv8 model to predict the rider helmet violations and 
penalize motorcyclists based on the information from the processed 
license plate.

3.2.1 Rider localization using DetectNet_v2 
(model 1)

In automated surveillance and traffic monitoring systems, 
identifying and distinguishing two-wheeler riders from other vehicles 
in traffic scenes is an essential challenge. For fast, real-time item 
localization and detection of objects in pictures or video streams, 
NVIDIA developed DetectNet, a sophisticated object recognition 
framework. As seen in Figure 5, it is an essential component of the 
TAO Toolkit, a set of tools created to make deep neural network 
design and optimization easier. Convolutional neural networks 
(CNNs) here are used to detect objects with a high degree of efficiency 
and accuracy, and it is built on the concepts of deep learning. The 
process of transferring the learnt features from one application to 
another is known as “transfer learning.”

We use DetectNet with pre-trained models that are tuned for object 
detection and use transfer learning techniques to refine them using task-
specific data. Using a model that has been trained on one task and 
retraining it to utilize it on another is a popular training method. 
DetectNet can simultaneously predict class probabilities and object 
bounding boxes in a single network run due to its single-stage 
architecture, as indicated in Figure 6. To leverage the transfer learning 
to effectively recognize two-wheeler riders, we  configure NVIDIA’s 
pretrained model that is part of TAO Toolkit (NVIDIA Documentation 
Hub, 2025), called “TrafficCamNet.” This model is built using 
DetectNet_v2 with ResNet18 as the backbone and trained on a subset 
of the Google Open Images Dataset (11,000 Two-Wheelers images). It 
is designed specifically for traffic scene understanding, and it refines its 
pre-trained convolutional layers to identify motorcycles and riders in 
urban traffic scenes using inputs from the KITTI dataset, such as labels 
and bounding boxes in the format (xmin, ymin, xmax, ymax). The 
detecting head adjusts to the unique geometry and look of two-wheeler 

TABLE 1 Custom dataset classification.

Dataset 
source

Riders with 
helmets

Riders 
without 
helmets

Total 
images

Acquired images 1,040 545 1,585

Online dataset 

(COCO)

85 45 130

Class-wise total 

images

1,125 590 1,715
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riders, while the pre-trained backbone records general traffic object 
information. This method increases accuracy and speeds up training, 
especially when using a small custom dataset like our custom-
developed dataset.

Figure  6 illustrates how DetectNet_v2 uses a GridBox 
architecture to divide the input into a uniform grid and a regression 
technique to forecast a confidence value (cov) and bounding box 
(bbox) for every category. This GridBox approach guarantees that 
every grid cell can identify an object and forecast its spatial bounds 
and class likelihood. Each predicted bounding box is given a 
confidence score by the model, which considers both the likelihood 
that an object would be present and its classification. The Gridbox 
system divides an input image into a grid to forecast four 

normalized bounding-box parameters, namely “xc,” “yc,” “w,” and 
“h,” together with the confidence value for each output class. Post-
processing methods like Non-Maximum Suppression (NMS) are 
used to produce final bounding boxes and class labels using post-
processing techniques like Non-Maximum Suppression (NMS) 
clustering after the model’s output has been scaled and the offset has 
been established. By keeping only the boxes with the highest 
confidence scores for each object observed, NMS assists in 
removing overlapping boxes. As a result, class labels and bounding 
boxes are accurate and unique.

The degree to which the predicted bounding box closely matches 
an actual object in the image is indicated by the confidence score in 
Equation 1.

FIGURE 3

Images captured at different light conditions (a) day images, (b) night images, (c) synthetically generated images, and (d) complex scenario with 
multiple vehicles in opposite directions.

FIGURE 4

Sample annotated images. (a) Rider marked with Red is used for training DirectNet_v2, and (b–d) riders marked in red (with helmet), blue (without 
helmet), and green (number plate) for training YOLOv8.
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 ( )= ∗Confidence Pr Object IoU (1)

Two bounding boxes intersecting their union is represented by the 
Intersection of Union (IoU). It is obtained using Equation 2,

 
=

   IoU
   

Area of Intersection ofboxes
Area of Union of two boxes  

(2)

The bounding box with the highest confidence level is 
retained, while the others are disregarded. To provide thorough 
traffic rule enforcement, the refined output—detected bounding 
boxes with corresponding confidence values—is used as input for 

further modules like helmet detection and number 
plate localization.

The model is tested with the following pre-trained parameters:
Input image (W × H × C) = Typically resized to 960 × 544 × 3 

(Width × Height × Channels).
Input Channel Ordering (N × C × H × W) = Set N as 8 (Batch 

Size) and Number of epochs = 25.
Output: Confidence Scores (Floating point values), Bounding Box 

Coordinates (X, Y), Width (W), Height (H), and Labels (Text).
Figure  7 demonstrates the performance of the proposed 

DetectNet_v2 (Model 1) two-wheeler rider detection system. The 
rider detection is indicated by the label ‘0’ above red bounding 
boxes (see Figure 7a), and the two-wheeler rider with its confidence 
score is indicated by a red bounding box as shown in Figure 7b). 

FIGURE 5

Rider detection and localization pipeline using TAO DetectNet_v2 (NVIDIA Documentation Hub, 2025).

FIGURE 6

High-level architecture details of the DetectNet_v2 model.
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Our proposed DetectNet_v2 model detects the actual two-wheeler 
riders with a high confidence score by ignoring other non-riders 
like vans and auto rickshaws correctly, as indicated in Figure 7b. 
This model uses deep learning techniques and can detect multiple 
riders simultaneously with high precision. This was the motivation 
for us to choose DetectNet as Model 1 in the detection pipeline for 
accurate rider detection compared to YOLOv8. The details are 
provided in the ablation study carried out in section 4.3. For rider 
helmet and number plate detection, we preferred the YOLOv8 as 
our Model 2 due to its low processing power and real-time 
performance. Our method is known as a two-step detection system 
for this reason.

3.2.2 Helmet and number plate localization and 
detection using YOLOv8 (model 2)

You Only Look Once (YOLO) or Single Shot Detector (SSD) is a 
state-of-the-art, real-time object detection algorithm. It was 
introduced in 2015 by Joseph Redmon, Santosh Divvala, Ross 
Girshick, and Ali Farhadi (Redmon et al., 2016). What sets YOLO 
apart is that it tackles the object recognition problem as a regression 
issue rather than a classification task. For tasks involving accurate 
object identification, segmentation, and classification, this model is 
the most comprehensive architectural design that is currently in use. 
We  use the YOLOv8n nano form of the YOLOv8 family that is 
pre-trained on the COCO dataset, which contains 80 object classes 
from diverse scenarios. This framework receives the two-wheeler rider 
image with bounding box values and labels produced by DetectNet_v2 
as input, to accurately detect the riders and helmet wear status. Finally, 
the owner information is extracted through the OCR number plate 
extraction method that is inbuilt into the YOLOv8 architecture. 
Figure 8 provides an illustration of the YOLOv8 architecture for rider 
identification and triple-riding detection. The accuracy of single-pass 

YOLO architecture is often moderate when compared to two-stage 
detectors, but they are computationally less demanding and produce 
higher frame speed and detection speed.

In addition, all YOLO models share the same structures in their 
architecture, and are described below:

Input: The mosaic data augmentation plays a vital role in 
enhancing the functionality of computer vision models. First, input 
images are enhanced through the use of mosaic augmentation, which 
changes training by merging many images and improves the 
generalization and robustness of the model.

Backbone: The backbone is the workhorse of feature extraction. 
The backbone is a pre-trained Convolutional Neural Network (CNN) 
that extracts low, medium, and high-level feature maps from an input 
image. It is a convolutional neural network that generates and stores 
variously shaped and sized visual features. In contrast to conventional 
methods, this uses spatially distinct bounding boxes and assigns a 
probability to each detected object within a single convolutional 
neural network (CNN). In the context of CNNs, convolution is the 
process of slicing a filter, also called a kernel, over an input picture to 
create a feature map. As it passes over the input image, this filter 
records the spatial relationships between pixels by adding up the 
outcomes of element-wise multiplication. Typically, the convolution 
of two functions, such as (𝑡) and 𝑔(𝑡), is expressed as (𝑓∗𝑔) (t). The 
CNN convolution process is explained below with the help of 
Equation 3:

 ( )( ) ( )τ τ
∞

−∞
∗ = −∫f g t f t d

 
(3)

Here, (𝑡) stands for the input image, and 𝑔(𝑡) the kernel or 
filter. The variable 𝑡 denotes a location in the output feature map 
where the output is evaluated. The CNN design, which consists of 

FIGURE 7

Proposed DetectNet_v2 (Model 1) two-wheeler rider detection system. (a) Rider localization. (b) Rider with confidence scores.
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many convolutional layers and max-pooling layers, deepens 
feature maps while progressively reducing the input’s spatial 
dimensions. To process the collected information and generate 
predictions, YOLO incorporates fully linked layers, also known as 
thick layers, after the network. ResNet, VGG, and EfficientNet are 
examples of classification models that are employed as 
feature extractors.

Neck: The neck takes the feature maps extracted by the backbone 
at different scales. It comprises a group of layers that combine and 
integrate characteristics before sending them to the prediction layer. 
Path Aggregation Network (PAN) processes the feature maps 
extracted by the backbone at different scales (spatial resolutions). 
PANet cleverly merges these feature maps, creating a “feature 
pyramid” with rich spatial (capturing local details) and semantic 
(understanding object classes) information.

Prediction head: This final stage takes the processed feature 
pyramid from the neck and generates the final predictions. The head 
uses the bounding box predictions in addition to the neck’s features. 
It has three branches, and each branch has its feature scale. Three 
grid cells—13×13 (big object), 26×26 (medium object), and 52×52 
(small object)—are used to generate a bounding box, class 
probabilities, and confidence ratings. Each grid cell predicts three 
bounding boxes. Finally, the network uses NMS to filter out 
overlapping bounding boxes. Anchor boxes are fixed-sized bounding 
boxes used to forecast the size and position of objects in a 
photograph. Instead of forecasting arbitrary bounding boxes for 
each instance of an object, the model uses established aspect ratios 
and scales to predict the anchor box locations. After that, these 
coordinates are modified to match the object instance. To provide 
efficient multi-scale object detection, the YOLOv8 neural network 
architecture combines the Path Aggregation Network (PAN) with 
the Feature Pyramid Network (FPN). To create feature maps that are 
sensitive to objects of different sizes, the FPN gradually decreases the 
input image’s spatial resolution while deepening the feature channels. 
The model can extract low-level data from shallower layers and 

high-level semantic features from higher ones because of its 
hierarchical structure. In addition, the PAN module improves the 
flow of localization signals from shallow layers to deeper layers by 
introducing bottom-up path augmentation via skip connections. By 
combining features from several network hierarchy levels, this 
combination gives YOLOv8 can detect objects of various sizes and 
shapes with greater accuracy.

The YOLOv8 model uses target regression on spatially separated 
bounding boxes to achieve excellent detection accuracy. The input 
image is first divided into a grid of N × N cells (for example, 13 × 13, 
26 × 26, and 52 × 52), with the size of each cell varying according to 
the input resolution. Predicting several bounding boxes and the 
associated confidence scores is the responsibility of each cell. The 
class probability distribution for each detected object and the 
confidence score of each box—the likelihood that it contains an 
object—are predicted by the model using a deconvolutional head. 
Non-Maximum Suppression (NMS) is used to remove redundant 
boxes with lower confidence ratings after prediction. Lastly, the 
Intersection over Union (IoU) metric (Equation 2) is used to assess 
the processed predictions (not wearing a helmet). It helps determine 
spatial links between observed items by measuring how closely a 
predicted rider’s bounding box overlaps with the associated 
two-wheeler. As illustrated in Figure 9a, the YOLOv8 model denotes 
“label 0” over a red bounding box when a motorcycle rider wearing 
a helmet is correctly predicted. Similarly, a rider without a helmet is 
indicated by “label 1” over a pink bounding box, and its 
corresponding number plate information is assigned “label 2” over 
an orange bounding box. The cases of accurate helmet violation 
predictions, number plate detection, and confidence scores are 
shown in Figure 9b. These results reveal that the suggested approach 
was able to distinguish between a cap, a scarf, and a helmet. 
Common failure cases observed during testing include missed 
detections in low-light or occluded conditions, as indicated in 
Figure  9c. When several riders are near one another, rider 
localization fails, resulting in overlaps of the bounding box. A more 

FIGURE 8

One-stage and two-stage object detector pipeline (YOLOv8: A Complete Guide, 2025).
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varied and enhanced dataset, particularly one that covers edge 
circumstances like night scenes or congested traffic, can help to 
reduce these problems.

3.2.3 Recognition of license plates
Our ultimate goal is to deploy the trained Automatic Number 

Plate Recognition (ANPR) model for real-time violation detection 
by integrating it into our Automatic Rider Helmet Violation 
Detection system to identify and translate each number on the 
recovered license plate and display it on the interface. As highlighted 
in Figure 10a, our system extracts number plate information upon 
detecting a helmet violation, otherwise, it bypasses the number 
plate extraction process on no violation, as indicated in Figure 10b. 
This integrated approach streamlines result verification and 
empowers users to promptly address traffic violations. For small 
object detection (such as number plates), multi-scale training, 
incorporating temporal information from video frames, and using 
higher-resolution inputs can all improve the accuracy and 
robustness of the model.

3.3 Performance evaluation metrics

As discussed in section 3.1, we created our custom dataset of 1,715 
images containing 1,125 riders with helmets, 590 riders without 
helmets image instances. We use the 80:20 split on cleaned data (1,200 
images) for training and validating our data. The object detection 
model’s effectiveness is determined by the following parameters:

 • box loss, train/box_loss, val/box_loss: The degree to which the 
ground truth boxes and the anticipated bounding boxes 
surrounding the riders match is measured. Better performance is 
indicated by a lower value.

 • train/cls_loss and val/cls_loss: It assesses how well the model can 
determine whether a particular area of an image has a rider. 
Better performance is indicated by a lower value.

 • train/dfl_loss, val/dfl_loss: This represents the loss due to 
distortion. It gauges how accurately the model forecasts the 
rider’s stance. Better performance is indicated by a lower value.

 • metrics/precision(B): This represents the rider class’s precision. 
The number of real riders among the detections the model made 
is measured using a metric called precision. Better performance 
is indicated by a higher value.

 • metrics/recall(B): This represents the rider class’s recall. The 
number of real motorcyclists in the footage that the model was 
able to identify is known as recall. Better performance is indicated 
by a higher value.

 • metrics/mAP50(B): This measure represents the Mean Average 
Precision (mAP) at a 50% Intersection over Union (IoU) 
condition. The mean area of prediction (mAP) is a widely used 
metric for evaluating object detection systems. It considers both 
precision and recall, providing a single score that reflects the 
overall detection ability. A greater value indicates 
better performance.

 • metrics/mAP50-95(B): At the 95 and 50% IoU levels, the Mean 
Average Precision (mAP) is represented. It is like the mAP50(B) 
but evaluates the model’s performance across a wider range of 
IoU thresholds. A greater value indicates better performance.

4 Experimental findings and 
observations

We utilize a free, cloud-based Jupyter Notebook environment 
provided by Google Colab to train and test the DetectNet_v2 and 
YOLOv8 models. Google Colab provides powerful computational 
resources, including GPUS and TPUS. We introduce a two-step deep 
learning architecture for helmet detection in real-world traffic 
environments. This approach deviates from a single, monolithic model 
by employing separate modules for distinct detection tasks. This 
section delves into the rationale behind this design choice and its 

FIGURE 9

YOLOv8 helmet and number plate detection system performance. (a) Localization. (b) Detection with confidence score. (c) Few failure cases observed 
in low-light conditions.
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benefits. We trained and validated our models using Google Colab, a 
cloud-based platform that provides GPU resources for deep learning 
applications. With this method, the model was trained effectively and 
remotely by utilizing Google Colab’s processing power. At the first 
stage, the proposed DetectNet_v2 model is trained to locate riders 
from a traffic scene using the dataset containing 1,107 images (886 
training and 221 validation). In the second stage, the proposed 
YOLOv8 is trained to identify riders with/without helmets and extract 
their number plate information using the dataset that contains 1,071 
images (792 training and 279 validation).

4.1 Training and validation of DetectNet_v2 
(model 1) for rider localization

We used Pre-trained TrafficCamNet, a model developed on the 
DetectNet framework, to fine-tune and train on our custom dataset. 
In TrafficCamNet, a two-wheeler object is annotated when it has a 
bounding box size of at least 10 pixels in height or width at 
1920 × 1,080 resolution. Partially visible objects are labeled as 
occluded, whereas those with less than 60% visibility are not. Hence, 
labeled objects are those that are at least 60% visible, and items at the 
frame’s edge that can be seen are marked as truncated. Fine-tuning is 
carried out by updating the model parameters using our custom 
dataset while retaining the foundational feature representations. 
We set a lower learning rate to prevent overfitting and preserve useful 
base features. Hence, to train and test the fine-tuned DetectNet model, 
we pre-processed images and carried out each experiment using the 
NVIDIA TAO (Train, Adapt, Optimize) transfer learning toolkit. 
We used TensorFlow as the backend framework and TensorRT as the 
inference engine. We used SGD with momentum as the optimiser 
with a weight decay set to 5e−4. We train the DetectNet model for 25 
epochs with a batch size of 8 per GPU, using a learning rate of 0.01 
and a decay rate of 0.1 every 10 epochs during the training. After 
applying TAO optimizations (like pruning, quantization, and 
conversion to TensorRT), we observed 70% latency reduction and 
around 150% increase in Frames Per Second (FPS) throughput. The 
crucial task of identifying and separating two-wheeler riders from 
other vehicles in the traffic scene is carried out by DetectNet_v2. This 
stage makes use of a dataset that has been carefully selected to include 
a range of two-wheeler riders in a variety of traffic situations. Here, the 
model is being trained to identify riders and generate bounding boxes 
around them. The model outputs the identified rider zones as 

bounding box coordinates or cropped images after training 
successfully. The number plate localization and rider helmet detection 
systems use this data as input to identify traffic infractions. Figure 11 
displays the model’s training and validation performances. The loss 
curves typically decrease when the model is trained. This suggests that 
the model is gaining knowledge. The validation loss curves are usually 
higher than the training loss curves. This is a common phenomenon 
in machine learning that suggests the model may be overfitting the 
training data. The precision and recall scores appear to be over 0.5 for 
both the training and validation sets. This suggests that the model has 
a high degree of accuracy in identifying cyclists in the videos. 
Furthermore, the map metrics are higher than 0.5 for both the training 
and validation sets. This offers additional evidence of the model’s 
excellent performance. The curve shows how well our DetectNet_v2 
network is learning to recognize riders in videos.

Overall, the DetectNet_v2 (Model 1) produced 98.6% accurate 
rider prediction on the validation set, and this helps implement stage 
2 (Model 2) of our work, i.e., accurate helmet localization and detection 
process, which will be  explained in the next subsection. Table  2 
summarizes the pre-trained TrafficCamNet (DetectNet) performance 
comparison with our fine-tuned DetectNet_v2 (Model 1).

4.2 Training and validation of YOLOv8 
(model 2) for rider helmet detection and 
number plate information extraction

The process of helmet detection and number plate identification 
using the YOLOv8 model is explained in this section. DetectNet_v2 
carries out rider localization by processing the full image to identify 
and generate bounding boxes around potential motorbike riders. 
These localized rider regions are then cropped from the original image 
and passed individually to YOLOv8n for further analysis. We used a 
pre-trained YOLOv8 model to fine-tune and train on our custom 
dataset. This pre-trained model is designed for speed and efficiency, 
and it uses an anchor-free, fully convolutional architecture optimized 
for edge deployment. Its fully convolutional, anchor-free architecture 
is geared for edge deployment and is designed for speed and efficiency. 
The fine-tuning process involves applying sophisticated augmentations 
such as Mix-up and Mosaic, and training the model with bounding 
box regression, object-ness, and classification losses. By systematically 
changing the number of trainable layers in the YOLOv8n backbone, 
we examine the effect of fine-tuning depth. Only the last detecting 

FIGURE 10

ANPR Number plate extraction results. (a) No violation. (b) Violation detected, and vehicle number displayed.
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head layers, which correspond to layer 22 in the standard design, were 
trained using the Ultralytics framework’s freeze parameter (YOLOV8 
Ultralytics, 2025), which we set to 22. The original COCO pre-trained 
weights for the entire neck and backbone (layers 0–21) stayed frozen. 
On the COCO validation set, a pre-trained YOLOv8n (Ultralytics, 
2025) achieves a precision of 0.872, a recall of 0.697, mAP@0.5 of 
0.746, and mAP@0.5:0.95 of 0.504, making it a strong baseline for 
fine-tuning on custom tasks like helmet detection.

To train and test the YOLOv8n model, the pre-processed, 
re-scaled 640 × 640 pixel images are used. For rider/helmet 
detection and number plate extraction, we use PyTorch, which 
enables efficient training, transfer learning, and deployment. 
We selected AdamW as the optimizer with a learning rate set at 
0.002 and weight decay set to 5e−4. We  train this model for 25 
epochs with a batch size of 8 per GPU, and a decay rate of 0.0005 
every epoch. Once detectnet_v2 detects the bounding boxes for 
riders, these regions of interest (ROIs) are cropped or passed as 
input to a secondary detection stage using YOLOv8, a lightweight 
but accurate object detection model. During training, the YOLOv8 
model learns to identify and localize these objects within images 
through bounding boxes and classification labels. The YOLOv8 
model is pre-trained and fine-tuned on helmet and number plate 
classes to predict the objects with high speed and precision, 

leveraging transfer learning and optimized training settings. Once 
trained, the model can process new images or video frames and 
reduce false positives by performing helmet identification and 
number plate extraction exclusively within these ROIs. Intelligent 
traffic monitoring systems can use this two-stage pipeline in real-
time since it increases overall detection accuracy and processing 
efficiency. Like the DetectNet_v2, the visualization of GPU 
memory consumption alongside box-loss, class-loss, and dfl-loss, 
observing their sizes and fluctuations throughout the training 
process, is depicted in Figure 12. The graphs display a variety of 
parameters and loss curves that were calculated during the training 
phase of YOLOv8. Table 3 summarizes the pre-trained YOLOv8n 
performance comparison with our fine-tuned YOLOv8 (Model 2).

4.2.1 Recall-confidence curve
The model’s accuracy in recognizing objects like helmets and 

license plates is depicted in Figure 13, where the y-axis shows 
recall and the x-axis shows confidence score, revealing that the “H 
(Helmet)” and “NP (Number Plate)” curves demonstrate high 
recall even at low confidence—indicating the model effectively 
identifies helmets and license plates regardless of certainty, with 
recall increasing, plateauing, and then slightly declining as 
confidence grows. Whereas the “W (Without Helmet)” curve 

FIGURE 11

Training/validation loss curves and different evaluation metrics of the DetectNet_v2 (Model 1) rider detection model.

TABLE 2 Pre-trained TrafficCamNet (DetectNet) vs. fine-tuned DetectNet_v2 (Model 1) comparisons.

Dataset/model Precision Recall Accuracy mAP@0.5 mAP@0.5:0.95

Pre-trained TrafficCamNet (DetectNet) [30] 91.65 89.95 83.9 Not Reported

Proposed fine-tuned DetectNet_v2 (Model 1) 92 96 98.6 0.99 0.90
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starts with low recall at low confidence and gradually improves, 
suggesting the model is uncertain of its prediction while 
recognizing individuals without helmets. However, the model 
becomes more adept at identifying individuals without helmets as 
its confidence level rises.

4.2.2 Precision-recall curve
As shown in Figure 14, the detection accuracy for Helmet (H), 

Number Plate (NP), and persons without helmets (W) is measured 
using a precision-recall curve, where precision (y-axis) represents 
the percentage of correct positive detections and recall (x-axis) 
represents the proportion of actual positives identified, revealing 
that the Helmet and License Plate curves start with high precision 
and recall at lower thresholds and then trade recall for higher 
precision as thresholds increase—indicating strong initial 
detection capability that becomes more conservative—while the 
Without Helmet curve starts with low precision that gradually 
improves with increasing recall, suggesting the model struggles 
with false positives at lower thresholds but becomes more accurate 
in identifying helmetless individuals as its confidence criteria 
become stricter.

4.2.3 Precision-confidence curve
Figure  15 Presents the precision-confidence curve, where the 

x-axis shows the model’s confidence level and the y-axis represents 
precision (the ratio of True Positives to all predicted positives), 

illustrating that for all three object classes—Number Plate (NP), 
Helmet (H), and Without Helmet (W)—the model achieves perfect 
precision (1.0) at a confidence threshold of 0.907, indicating that when 
the model’s confidence is 0.907 or higher, its predictions for all object 
types are highly accurate.

After training the model and determining the best weights, the 
model is validated for the 279 validation test images. The model 
summary is provided in Table 4.

The time taken for the model in the prediction and validation 
phases is summarized in Table 5. The results show that the model 
takes a longer simulation time during the training and validation 
phases, but the predictions are made in less time.

4.3 YOLOv8 (model 3) as the rider localizer 
in the end-to-end implementation

Accurate rider localization is crucial in deciding the 
performance of the end-to-end automatic rider helmet violation 
detection and vehicle identification systems. Initially, we evaluated 
the rider localization performance on YOLOv8 (Model 3) with a 
model configuration the same as that of Model 2. The training and 
validation performance and observations are summarized in 
Table  6. Our proposed DetectNet_v2 (Model 1) under test 
outperforms the YOLOv8 (Model 3) on all significant two-wheeler 
rider localization evaluation metrics. By achieving significantly 

FIGURE 12

Training and validation loss curves and evaluation metrics for the YOLOv8 (Model 2) helmet detection model.
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lower training and validation losses, DetectNet_v2 emerges as a 
reliably converging and dependable model. Its superior localization 
and generalization accuracy are noteworthy and led us to select it as 
the 1st Model in the end-to-end pipeline. While YOLOv8’s current 

architecture and extended training duration result in smoother loss 
curves, its low mAP and recall indicate a higher incidence of missed 
detections, reflecting limitations in detection performance despite 
stable training behavior.

TABLE 3 TrafficCamNet (DetectNet) vs. fine-tuned DetectNet_v2 (Model 1) comparisons.

Dataset/model Precision Recall Accuracy mAP@0.5 mAP@0.5:0.95

Pre-trained YOLOv8n (Redmon et al., 2016) 0.872 0.697 83.9 of 0.746 0.504

Proposed fine-tuned YOLOv8 (Model 2). 92 96 98.6 0.99 0.90

FIGURE 13

YOLOv8 helmet and number plate detection recall-confidence curve.

FIGURE 14

YOLOv8 helmet and number plate detection Precision-Recall curve.
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4.4 Confusion matrix

The confusion matrix showing the performance of our proposed 
model on a helmet and number plate detection task is described in 
Table 7. The confusion matrix compares the actual labels of the data 
(ground truth) to the predictions made by the model. Each row 
represents the class (H, W, N), while columns represent the model’s 
prediction values.

These values from Table  7 are represented in the form of a 
confusion matrix and are indicated in Supplementary Figure 1.

The description of this confusion matrix is provided next.
Helmet (H): 178 images of riders wearing helmets were 

accurately predicted by the model (True Positive). In two cases, 
riders were wearing helmets when the model predicted they were 
not (True Negative). The model predicted a helmet six times when 
none existed (False Positive). 22 images without a helmet were 
missed by the model (False Negative).

Without Helmet (W): 97 images of riders without helmets were 
accurately predicted by the model (TP). In two cases, the model 
predicted a helmet when none was present (TN). In 10 cases, the 
model correctly identified riders without helmets when none were 
present (FP). Eight images in which no one was wearing the 
helmet were missed by the model (FN).

Number Plate (NP): The model detected 210 images containing a 
number plate correctly (TP). There were 8 instances where the model 
predicted the number plates when there were none (FN). The model 
missed 2 images where a number plate was present (TN).

The class-wise detection performances are highlighted in the 
graphs shown in Supplementary Figure 2.

Rider helmet detection accuracy comparison between our 
proposed (DetectNet+YOLOv8) model and several state-of-the-art 
models, such as CNN-based and Faster R-CNN techniques, is shown 
in Supplementary Figure  3. With a helmet detection accuracy of 
0.9856, our proposed model performs well over the other state-of-
the-art models. Compared to CNN-based models and Faster R-CNN 
variations, our model exhibits a clear improvement, with Faster 
R-CNN (Waris et al., 2022) producing the closest accuracy of 0.9769. 
Whereas, the conventional CNN (Vishnu et al., 2017; Dasgupta et al., 
2019) models lag substantially. This highlights the superior detection 
and classification capability of our proposed approach.

The additional performance measure of our proposed model 
and Faster R-CNN (Waris et  al., 2022), which has produced 
comparable results, is summarized in Table 8. Our model has the 
highest scores for all reported parameters, including accuracy 
(98.56%), sensitivity (98.9%), precision (98.89%), and F1 score 
(98.9%). It also indicates a significantly lower false positive rate 
(2.02%), indicating fewer false positives. Overall, the results show 
how much more effective and reliable the proposed approach is 
for helmet and rider detection tasks.

5 Conclusion and future scope

One of the most difficult problems in a real-time traffic violation 
detection system is accurately identifying two-wheeler riders in 
complex traffic scenarios. Deep learning-based object detection 
techniques make it possible to identify and punish helmetless bikers. 
The proposed deep learning-based DetectNet_v2 and YOLOv8 
two-stage models accomplish the task of automatic real-time rider 
localization, rider helmet violation detection, and number plate 
extraction. This real-time rider helmet violation detection system 
presents a promising foundation for enhancing road safety and 
enabling effective enforcement of traffic regulations. According to the 
experimental investigation, the proposed system produced helmet 

TABLE 4 Summary of the proposed YOLOv8 (Model 2).

Parameter Value

No. of layers 168

Parameters 11,126,745

Gradients 0

GFLOPs 28.4

TABLE 5 Simulation time in different phases.

Task Pre-
process 

(ms)

Inference 
(ms)

Post-
process 

(ms)

Training 2.1 16.2 12.9

Prediction 0.8 29.41 10.4

Validation 2.4 16.7 13.2

TABLE 6 DetectNet_v2 (Model 1) vs. YOLOv8 (Model 3) rider localization 
performance ablation study.

Metric DetectNet_v2 
(Model 1)

YOLOv8 
(Model 3)

Comments

Train loss
Sudden early drop, 

but stable
Steady decline

DetectNet_v2 

moderate 

performance

Validation 

loss

Fluctuates early, later 

smooths

Consistent 

decline

DetectNet_v2 

moderate 

performance

Precision 0.92 0.94
YOLOv8 performed 

slightly better.

Recall 0.96 0.87
DetectNet_v2 

performed well

mAP50 0.99 0.91
DetectNet_v2 

performed well

mAP50-95 0.90 0.67

DetectNet_v2 

performed 

significantly well.

TABLE 7 Class-wise confusion matrix of the proposed YOLOv8 (Model 2) 
helmet and number plate detection model.

N = 279 True 
positive 

(TP)

True 
negative 

(TN)

False 
positive 

(FP)

False 
negative 

(FN)

Helmet (H) 178 02 06 22

Without a 

helmet (W)
97 02 10 00

Number 

plate (N)
210 02 08 00
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and number plate detection accuracy of 98.56 and 97.6%, respectively, 
under varying lighting conditions, weather scenarios, and night 
conditions. Missed or incorrect detections in these challenging 
scenarios, including occlusions and crowded situations, are frequent 
testing failures that can be avoided by using temporal video data, 
dataset augmentation, higher-resolution camera inputs, and multi-
scale training. Even though the chosen 1,200 images from our custom 
dataset are diverse, properly labeled, and sufficient for fine-tuning in 
helmet detection binary classification tasks, the robustness can 
be  further improved for real-world deployments with a greater 
number of images (2 k to 5 k). Additionally, estimating the 

motorcyclists’ speeds could enhance the proposed system’s features. 
This can be achieved through frame-by-frame object tracking with 
camera calibration, enhanced by algorithms like Kalman filters or 
optical flow, or, for greater accuracy, through external sensors like 
radar or LIDAR. However, combining this system with state-of-
the-art edge computing technologies, like NVIDIA edge AI solutions, 
can further enhance the real-time detection capabilities. The system 
can function in a decentralized fashion by distributing the models on 
edge devices, which lowers latency and eliminates the requirement 
for constant communication with a central server.
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FIGURE 15

YOLOv8 helmet and number plate detection precision - confidence curve.

TABLE 8 Experimental results and other performance comparisons with 
the state-of-the-art Faster R-CNN (Waris et al., 2022) method.

Performance 
metrics

Derivations Scores

Proposed 
(DetectNet_

v2
+ YOLOv8)

Faster 
R-CNN 

[26]

Accuracy ACC = (TP + TN)/

(P + N)

0.9856 0.9769

Sensitivity TPR = TP/

(TP + FN)

0.989 0.9825

Specificity SPC = TN/

(FP + TN)

0.9798 0.9694

Precision PREC = TP/

(TP + FP)

0.9889 0.9770

False positive rate FPR = FP/

(FP + TN)

0.0202 0.0306

F1 score F1 = 2TP/

(2TP + FP + FN)

0.989 0.9798

https://doi.org/10.3389/frai.2025.1582257
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Deshpande et al. 10.3389/frai.2025.1582257

Frontiers in Artificial Intelligence 18 frontiersin.org

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

We sincerely thank Mr. Ajay Kabadi of DocketRun Tech. Pvt. Ltd. 
Hubballi, Karnataka, India for providing valuable guidance in carrying 
out this research work.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the reviewers. 
Any product that may be evaluated in this article, or claim that may 
be  made by its manufacturer, is not guaranteed or endorsed by 
the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frai.2025.1582257/
full#supplementary-material

SUPPLEMENATRY FIGURE 1

Confusion Matrix of YOLOv8 helmet and number plate detection system.

SUPPLEMENATRY FIGURE 2

Class-wise performances of rider helmet and number plate detection.

SUPPLEMENATRY FIGURE 3

Proposed (DetectNet+YOLOv8) models for helmet detection accuracy 
comparison with the state-of-the-art methods.

References
Aboah, A., Adu-Gyamfi, Y., Gursoy, S. V., Merickel, J., Rizzo, M., and Sharma, A. 

(2023). Driver maneuver detection and analysis using time series segmentation and 
classification. J. Transport. Eng. A Syst. 149. doi: 10.1061/JTEPBS.TEENG-7312

Afzal, H. U., Draz, M. Z., Khan, M., and Khan, M. U. G. (2021). “Automatic helmet 
violation detection of motorcyclists from surveillance videos using deep learning 
approaches of computer vision” in Proceedings of the 2021 international conference on 
artificial intelligence (ICAI) (Islamabad, Pakistan: IEEE Xplore digital library), 252–257.

Agorku, G., Agbobli, D. Y., Chowdhury, V., Amankwah-Nkyi, K., Ogungbire, A., 
Lartey, P. A., et al. (2023). Real-time helmet violation detection using YOLOv5 and 
ensemble learning. ArXiv, abs/2304.09246.

Armstrong Aboah, Mussah, A. R., and AduGyamfi, Y. Ai-based framework for 
understanding car following behaviors of drivers in a naturalistic driving environment. 
arXiv preprint arXiv:2301.09315, (2023).

Ashiq, F., Asif, M., Ahmad, M. B., Zafar, S., Masood, K., Mahmood, T., et al. (2022). 
CNN-based object recognition and tracking system to assist visually impaired people. 
IEEE Access 10, 14819–14834. doi: 10.1109/ACCESS.2022.3148036

Buch, N., Orwell, J., and Velastin, S. A. (2010). Urban road user detection and classification 
using 3D wire frame models. IET Comput. Vis. 4, 105–116. doi: 10.1049/iet-cvi.2008.0089

Buch, N., Velastin, S., and Orwell, J. (2011). A review of computer vision techniques 
for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 12, 920–939. doi: 
10.1109/TITS.2011.2119372

Chiverton, J. (2012). Helmet presence classification with motorcycle detection and 
tracking. IET Intell. Transp. Syst. 6, 259–269. doi: 10.1049/iet-its.2011.0138

Dasgupta, M., Bandyopadhyay, O., and Chatterji, S. (2019). “Automated helmet 
detection for multiple motorcycle riders using CNN” in Proceedings of the 2019 IEEE 
conference on information and communication technology (Allahabad, India: IEEE 
Xplore digital library), 1–4.

Deshpande, U. U., Shanbhag, S., Koti, R., Chate, A., Deshpande, S., Patil, R., et al. (2025). 
Computer vision and AI-based cell phone usage detection in restricted zones of 
manufacturing industries. Front. Comput. Sci. 7:1535775. doi: 10.3389/fcomp.2025.1535775

Deshpande, U. U., Shanbhag, S., Patil, R., Chate, R. A. A., Araujo, S. D. C. S., Pinto, K., 
et al. (2025). Automatic two-wheeler rider identification and triple-riding detection 
in surveillance systems using deep-learning models. Discov Artif Intell 5:104. doi: 
10.1007/s44163-025-00263-3

Gopalakrishnan, S. (2012). A public health perspective of road traffic accidents. J. 
Family Med. Prim. Care 1, 144–150. doi: 10.4103/2249-4863.104987

Hagel, B. E., Rizkallah, J. W., Lamy, A., et al. (2011). Bicycle helmet prevalence two 
years after the introduction of mandatory use legislation for under 18-year-olds in 
Alberta, Canada. Inj. Prev. 12, 262–265. doi: 10.1136/ip.2006.012112

Kathane, M., Abhang, S., Jadhavar, A., Joshi, A. D., and Sawant, S. T. (2022). “Traffic 
rule violation detection system: deep learning approach” in Advanced machine 
intelligence and signal processing (Singapore, Asia: Springer), 191–201.

Kharade, N., Mane, S., Raghav, J., Alle, N., Khatavkar, A., and Navale, G. (2021). “Deep-
learning based helmet violation detection system” in Proceedings of the 2021 international 
conference on artificial intelligence and machine vision (AIMV) (Gandhinagar, India: 
IEEE Xplore digital library), 1–4.

Labelimg (2025). Labelimg: the ultimate tool for efficient data annotation. Available 
online at: https://pypi.org/project/labelImg/1.4.0/.

Mistry, J., Misraa, A. K., Agarwal, M., Vyas, A., Chudasama, V. M., and Upla, K. P. 
(2017). “An automatic detection of helmeted and non-helmeted motorcyclist with 
license plate extraction using convolutional neural network” in Proceedings of the 2017 
seventh international conference on image processing: eory, tools and applications 
(IPTA) (Montreal, Canada: IEEE Xplore digital library), 1–6.

NVIDIA Documentation Hub. (2025) Object detection using TAO DetectNet_v2. 
https://docs.nvidia.com/tao/tao-toolkit/text/cv_finetuning/tensorflow_1/object_
detection/DetectNet_v2.html.

Raj, K. D., Chairat, A., Timtong, V., Dailey, M. N., and Ekpanyapong, M. (2018). 
“Helmet violation processing using deep learning” in Proceedings of the 2018 international 
workshop on advanced image technology (IWAIT) (Chiang Mai, Thailand: 
IEEE Xplore digital library), 1–4.

Rajalakshmi, N., and Saravanan, K. (2022). “Traffic violation invigilation using 
transfer learning” in Proceedings of the 2022 international conference on electronic 
systems and intelligent computing (ICESIC) (Chennai, India: IEEE Xplore digital 
library), 286–292.

Rattapoom Waranusast, R., Bundon, N., Timtong, V., Tangnoi, C., and 
Pattanathaburt, P. (2013). “Machine vision techniques for motorcycle safety helmet 
detection” in 2013 28th International Conference on Image and Vision Computing 
New Zealand (IVCNZ 2013) (IEEE), 35–40.

Ravikumar, R. (2013). Patterns of head injuries in road traffic accidents involving two 
wheelers: an autopsy study. J. Indian Acad. Forensic Med. 35, 349–352. doi: 
10.1177/0971097320130415

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once: 
unified, real-time object detection” in 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) (Las Vegas, NV, USA: IEEE Xplore digital library), 779–788.

Road Accidents in India (2022). https://morth.nic.in/sites/default/files/RA_2022_30_ 
Oct.pdf

Siebert, F. W., and Lin, H. (2020). Detecting motorcycle helmet use with deep learning. 
Accid. Anal. Prev. 134:105319. doi: 10.1016/j.aap.2019.105319

https://doi.org/10.3389/frai.2025.1582257
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/frai.2025.1582257/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2025.1582257/full#supplementary-material
https://doi.org/10.1061/JTEPBS.TEENG-7312
https://doi.org/10.1109/ACCESS.2022.3148036
https://doi.org/10.1049/iet-cvi.2008.0089
https://doi.org/10.1109/TITS.2011.2119372
https://doi.org/10.1049/iet-its.2011.0138
https://doi.org/10.3389/fcomp.2025.1535775
https://doi.org/10.1007/s44163-025-00263-3
https://doi.org/10.4103/2249-4863.104987
https://doi.org/10.1136/ip.2006.012112
https://pypi.org/project/labelImg/1.4.0/
https://docs.nvidia.com/tao/tao-toolkit/text/cv_finetuning/tensorflow_1/object_detection/DetectNet_v2.html
https://docs.nvidia.com/tao/tao-toolkit/text/cv_finetuning/tensorflow_1/object_detection/DetectNet_v2.html
https://doi.org/10.1177/0971097320130415
https://morth.nic.in/sites/default/files/RA_2022_30_Oct.pdf
https://morth.nic.in/sites/default/files/RA_2022_30_Oct.pdf
https://doi.org/10.1016/j.aap.2019.105319


Deshpande et al. 10.3389/frai.2025.1582257

Frontiers in Artificial Intelligence 19 frontiersin.org

Silva, R., Aires, K., Santos, T., Abdala, K., Veras, R., and Soares, A. (2013). “Automatic 
detection of motorcyclists without helmet” in Proceedings of the 2013 XXXIX Latin 
American computing conference (CLEI) (Caracas, Venezuela: IEEE Xplore digital 
library), 1–7.

Silva, R. R. V. E., Aires, K. R. T., and Veras, R. d. M. S. (2014). “Helmet detection on 
motorcyclists using image descriptors and classifiers” in Proceedings of the 2014 27th 
SIBGRAPI conference on graphics, patterns and images (Rio de Janeiro, Brazil: IEEE 
Xplore digital library), 141–148.

Ultralytics. (2025) Model benchmarking with Ultralytics YOLO. Available online at: 
https://docs.ultralytics.com/modes/benchmark/.

Vargas, M., Milla, J. M., Toral, S. L., and Barrero, F. (2010). An enhanced background 
estimation algorithm for vehicle detection in urban traffic scenes. IEEE Trans. Veh. 
Technol. 59, 3694–3709. doi: 10.1109/TVT.2010.2058134

Vishnu, C., Singh, D., Mohan, C. K., and Babu, S. (2017). “Detection of motorcyclists 
without helmet in videos using convolutional neural network” in Proceedings of the 
2017 international joint conference on neural networks (IJCNN) (Anchorage, AK: IEEE 
Xplore digital library), 3036–3041.

Waranusast, R., Bundon, N., Timtong, V., Tangnoi, C., and Pattanathaburt, P. (2013). 
“Machine vision techniques for motorcycle safety helmet detection” in Proceedings of 
the 2013 28th international conference on image and vision computing New Zealand 
(IVCNZ 2013) (Wellington, New Zealand: IEEE Xplore digital library), 35–40.

Waris, T., Asif, M., Ahmad, M. B., Mahmood, T., Zafar, S., Shah, M., et al. (2022). 
CNN-based automatic helmet violation detection of motorcyclists for an intelligent 
transportation system. Math. Probl. Eng., Hindawi 2022, 1–11. doi: 10.1155/2022/8246776

Wilson, C., Willis, C., Hendrikz, J. K., Le Brocque, R., and Bellamy, N. (2010). Speed 
cameras for the prevention of road traffic injuries and deaths. Cochrane Database Syst. 
Rev. 6. doi: 10.1002/14651858.cd004607.pub3

Yang, M. (2022). Research on vehicle automatic driving target perception technology 
based on improved MSRPN algorithm. J. Comput. Cogn. Eng. 1, 147–151. doi: 
10.47852/bonviewJCCE20514

YOLOV8 Ultralytics. (2025). Available online at: https://docs.ultralytics.com/models/
yolov8/.

YOLOv8: A Complete Guide. (2025). A brief history of YOLO object detection models 
from YOLOv1 to YOLOv5. Available online at: https://viso.ai/deep-learning/yolov8-guide/.

https://doi.org/10.3389/frai.2025.1582257
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://docs.ultralytics.com/modes/benchmark/
https://doi.org/10.1109/TVT.2010.2058134
https://doi.org/10.1155/2022/8246776
https://doi.org/10.1002/14651858.cd004607.pub3
https://doi.org/10.47852/bonviewJCCE20514
https://docs.ultralytics.com/models/yolov8/
https://docs.ultralytics.com/models/yolov8/
https://viso.ai/deep-learning/yolov8-guide/

	Computer-vision based automatic rider helmet violation detection and vehicle identification in Indian smart city scenarios using NVIDIA TAO toolkit and YOLOv8
	1 Introduction
	2 Literature survey
	2.1 Machine learning-based approaches
	2.2 Deep learning-based approaches

	3 Proposed methodology
	3.1 Data set collection, pre-processing, and annotation
	3.1.1 Data set pre-processing and annotation
	3.2 Model selection
	3.2.1 Rider localization using DetectNet_v2 (model 1)
	3.2.2 Helmet and number plate localization and detection using YOLOv8 (model 2)
	3.2.3 Recognition of license plates
	3.3 Performance evaluation metrics

	4 Experimental findings and observations
	4.1 Training and validation of DetectNet_v2 (model 1) for rider localization
	4.2 Training and validation of YOLOv8 (model 2) for rider helmet detection and number plate information extraction
	4.2.1 Recall-confidence curve
	4.2.2 Precision-recall curve
	4.2.3 Precision-confidence curve
	4.3 YOLOv8 (model 3) as the rider localizer in the end-to-end implementation
	4.4 Confusion matrix

	5 Conclusion and future scope

	References

