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Introduction: Radiomics-based glioblastoma classification demands feature 
extraction techniques that can effectively capture tumor heterogeneity while 
maintaining computational efficiency. Conventional tools such as PyRadiomics 
and CaPTk rely on extensive handcrafted feature sets, which often result in 
redundancy and necessitate further optimization steps.

Methods: This study proposes a novel framework, Spectral Entropic Radiomics 
Feature Extraction (SERFE), which integrates spectral frequency decomposition, 
entropy-driven feature selection, and graph-based spatial encoding. SERFE 
decomposes voxel intensity fluctuations into spectral signatures, employs 
entropy-based weighting to prioritize informative features, and preserves spatial 
topology through graph-based modeling. The method was evaluated using the 
public TCIA glioblastoma dataset.

Results: SERFE generated a refined feature set of 350 radiomic features from 
an initial pool of 2,260, achieving a 92% stability score and 91.7% classification 
accuracy. This performance surpasses traditional radiomics methods in both 
predictive accuracy and feature compactness.

Discussion: The results demonstrate SERFE’s capacity to enhance tumor 
characterization and streamline radiomics pipelines without requiring post-
extraction feature reduction. Its compatibility with existing clinical workflows 
makes it a promising tool for future neuro-oncology applications.
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1 Introduction

Glioblastoma Multiforme (GBM) is considered to be one of the lethal brain cancers, as it 
is highly proliferative, its recurrence rate is high, and it typically does not adequately respond 
to standard treatments. Patient survival rates are still extremely low, reaching post-diagnosis 
only a few months, and have not greatly improved, even as surgical techniques, radiation 
regimens, and chemotherapy regimens have all improved. These ongoing challenges in the 
clinical context have inspired efforts to pursue diagnostic and prognostic approaches that can 
accommodate the complex biology of GBM. In recent years, there has been a growing focus 
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on non-invasive imaging biomarkers as potential tools to enhance 
tumor evaluation. Isolated efforts with conventional radiologic 
approaches, however, have not necessarily captured the broader 
dynamic range of intratumoral heterogeneity, particularly when used 
in isolation as a modality for treatment planning or prognostic 
estimate (Zhang et al., 2023). To address this need, radiomics has 
evolved as a computational approach to the extraction of quantifiable 
patterns from medical images to characterize tumor-specific 
features (such as intensity, spatial heterogeneity, texture, and shape).

In neurooncological applications, radiomics have been used to 
enhance tumor grading, outcome prediction, and individualized 
therapy stratification. The workflows are usually built upon multistep 
flows that perform image preprocessing, systematic feature extraction, 
dimensionality treatment, and classification. In this study, we introduce 
a new feature extraction method that is tailored to handle the imaging 
challenges commonly observed in glioblastoma (Zhou M. et al., 2021).

1.1 The radiomics pipeline for glioblastoma 
analysis

Radiomics analysis is usually done using a structured pipeline that 
turns medical images into useful, measurable data that can be used in 
machine learning models. Figure 1 shows the steps in this pipeline, 
starting with getting the raw images and going through preprocessing, 
segmentation, and feature extraction, and finally ending with predictive 
modelling. To reduce variability between scanners, initial imaging 
usually includes T1-weighted, T2-weighted, FLAIR, or contrast-
enhanced MRI scans. To make features more reliable, preprocessing 
steps like bias correction, normalization, and artifact removal are used. 
Then, either by hand or with automated algorithms, the tumor regions 

are divided into smaller parts called regions of interest (ROIs) from 
which features are taken (Napolitano and Gevaert, 2021).

Radiomics features can range from basic measures such as mean 
intensity to more complex descriptors that capture texture patterns and 
geometric shape information. These features are sensitive to tumor 
heterogeneity and are commonly used in classification or regression 
models to support clinical tasks such as identifying tumor grade, 
estimating patient prognosis, or anticipating treatment outcomes. More 
recently, radiomics has also contributed to studies on radiogenomic 
associations, offering insights that support personalized treatment 
planning tailored to individual patient profiles (Napolitano and 
Gevaert, 2021).

1.1.1 Image acquisition and pre-processing
Radiomics analysis begins with the acquisition of medical 

images, most commonly through magnetic resonance imaging or 
computed tomography, which provide high-resolution anatomical 
data. In glioblastoma research, multi-parametric MRI sequences 
including T1-weighted, T2-weighted, contrast-enhanced T1 
(T1-CE), and fluid-attenuated inversion recovery (FLAIR) are 
typically employed, as they capture complementary information on 
tumor morphology and internal heterogeneity. Large, annotated 
datasets are often accessed from public repositories such as The 
Cancer Imaging Archive (TCIA), supporting reproducibility and 
enabling multi-centre validation (Zhang et al., 2023).

Before features can be extracted, the images are preprocessed to 
address variability introduced by different scanners and imaging 
protocols. This ensures that extracted features reflect actual 
biological differences rather than technical artifacts. Standard 
preprocessing procedures involve bias field correction for intensity 
uniformity, normalization to standardize pixel value ranges, and 

FIGURE 1

Radiomics pipeline.
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artifact removal to suppress irrelevant signals (Zhou M. et  al., 
2021). Omitting these steps may lead to inconsistent feature sets 
and reduce the reliability of downstream predictive models.

1.1.2 Tumor segmentation
Tumor segmentation is a foundational step in radiomics, as it defines 

the Region of Interest (ROI) from which features are derived. The 
accuracy of this step directly impacts the quality and relevance of the 
extracted features. Traditionally, manual segmentation performed by 
radiologists has been the gold standard; however, it is time-consuming 
and prone to inter-observer variability (Zwanenburg et al., 2020).

To overcome these limitations, many studies now employ automated 
or semi-automated segmentation techniques. In particular, deep 
learning-based architectures such as U-Net and its variants have gained 
traction due to their ability to learn complex spatial patterns and adapt 
across imaging datasets. These models have shown superior performance 
in segmenting tumor boundaries with high accuracy. Ensuring precise 
segmentation helps isolate tumor tissue from surrounding structures, 
minimizing feature contamination and enhancing the overall 
performance of classification models (Napolitano and Gevaert, 2021).

1.1.3 Feature extraction
Once the tumor is delineated, radiomics attributes are gathered to 

represent its various characteristics. These attributes are classified into 
multiple categories:

 • First-order statistical features describe intensity-based attributes, 
such as mean, variance, skewness, and kurtosis.

 • Texture-based features, derived from Gray-Level Co-occurrence 
and Run Length Matrices capture spatial intensity relationships 
and heterogeneity patterns.

 • Shape-based features define morphological properties such as 
sphericity, elongation, and compactness, providing insights into 
tumor geometry.

 • Higher-order features, extracted using wavelet transformations 
and frequency-based decomposition, enhance discriminative 
power by revealing hidden tumor patterns.

The extracted features serve as the foundation for radiomics-
based machine learning models. However, the high dimensionality of 
these feature sets often results in redundant and irrelevant data, 
necessitating further refinement (Napolitano and Gevaert, 2021).

1.1.4 Feature selection and optimization
Not all extracted features contribute meaningfully to classification. 

Redundant and non-informative features introduce noise and increase 
computational complexity. To optimize feature selection, various 
statistical and machine learning-based techniques are employed:

 • Entropy-based selection prioritizes features that maximize 
information gain.

 • Recursive Feature Elimination (RFE) iteratively removes less 
significant features to retain the most relevant subset.

 • Principal Component Analysis (PCA) reduces dimensions while 
maintaining variance.

Efficient feature selection ensures that only the most discriminative 
radiomics features are used, improving classification accuracy and 
computational efficiency.

1.1.5 Classification and model training
The optimized feature set is used for glioblastoma classification, 

distinguishing tumor subtypes or non-tumor regions. Support 
Vector Machines and Random Forests are preferred due to their 
robustness in handling high-dimensional data with limited 
samples, making them ideal for biomedical applications (Zinn 
et al., 2021).

Machine learning models analyse radiomics and genomics 
data to improve diagnostic accuracy. Validation techniques like 
cross-validation ensure model reliability and prevent 
overfitting. A systematic evaluation of classifiers helps refine 
computational approaches for GBM diagnosis and 
subtype characterization.

1.2 Background work

1.2.1 Importance of radiomics feature extraction 
in glioblastoma analysis

Feature extraction is an important step in radiomics that connects 
raw imaging data to computer analysis. This process allows for 
extracting tumor-specific features that might not be obvious from 
simply looking at the images in a form of structured numerical 
representations. These characteristics, such as shape, intensity 
distribution, texture deviations, and spatial configuration, form a 
high-dimensional data set that can be processed with algorithms to 
classify glioblastoma and related diseases.

The accuracy of radiomics-based diagnostic and prognostic tools 
largely depends on the quality of the features extracted. Selecting 
redundant or irrelevant features can introduce noise into models and 
compromise their generalization accuracy, particularly in high-
dimensional datasets. For this reason, one of the priority aims is 
neuro-oncological image processing to develop feature extraction 
methods that are accurate and informative. Various methods for 
radiomics extraction have been developed in the past decade, each 
designed to obtain different tumor-related information. Three types 
of such strategies are:

 • Hand-engineered Feature Extraction: PyRadiomics and CaPTk 
are representatives of traditional approaches to extract features 
based on predetermined algorithms for pixel intensity, shape 
features, and texture features (e.g., GLCM, GLRLM). Although 
such methods are understandable, they fail to account for 
complex spatial interactions.

 • Wavelet-Based and Higher-Order Techniques: Methods that 
decompose images into multiple frequency bands have an option 
to analyse images at different resolutions. Features derived from 
such decompositions allow us to comprehend how texture varies 
across scales. This makes them particularly adept at sniffing out 
the differences in tumors.

 • Deep Learning for Feature Extraction: Convolutional Neural 
Networks (CNNs) automatically learn a hierarchy of features 
from imaging data. Models of this kind have been effective at 
learning high-level representations and identities without the 
need for manual-engineering of features, but are typically 
dependent on large labelled data sets (Parekh and Jacobs, 2021). 
Each method has its own advantages and limitations depending 
on the dataset, additional preprocessing steps applied, and 
desired approach for clinical application. The comparison of such 
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strategies is crucial in the selection of the best pipeline to classify 
GBM and predict its outcome.

1.2.2 Existing radiomics feature extraction 
methods

This section provides a critical analysis of widely adopted 
radiomics feature extraction techniques used in glioblastoma 
classification. The comparison is based on fundamental aspects of 
feature extraction approach, computational efficiency, redundancy 
handling, and practicality in a clinical setting. The chosen methods 
include handcrafted and wavelet based as well as those stemming 
from deep learning to capture a range of complexity and performance 
(Zhang et al., 2023).

As outlined in Table  1, PyRadiomics and CaPTk extract 
pre-engineered features including shape, intensity, and texture 
descriptors. These methods, although well-established and 
interpretable, often produce large, high-dimensional feature sets. 
This increases the risk of redundancy and model overfitting, 
especially when applied to limited datasets. Post-processing 
techniques such as LASSO and mRMR are commonly employed 
to reduce feature overlap; however, these operate after extraction 
and may discard important features, limiting 
biological interpretability.

Wavelet-based frameworks extend the traditional feature sets by 
capturing multi-resolution patterns in tumor texture and intensity 
variation. While this improves discriminative capacity, it also increases 
computational complexity and exacerbates the dimensionality 
problem (Park et al., 2021).

In contrast, deep learning-based extractors particularly 
Convolutional Neural Networks (CNNs) learn abstract feature 
representations directly from imaging data without explicit manual 
design (Zhou et al., 2021). These models are capable of reducing 
redundancy through hierarchical learning but often require large 
volumes of annotated data and significant computational resources. 
Additionally, their lack of transparency makes clinical interpretation 
challenging, which can be  a barrier to adoption in 
regulated environments.

Together, these insights underline the demand for a radiomics 
pipeline that combines the discriminative power of high-order 
features with reduced computational burden and enhanced clinical 
interpretability. This study aims to address that gap by benchmarking 
SERFE a spectral entropy-based extraction framework against 
conventional methods, under standardized experimental conditions 
(Shao et al., 2021).

1.2.3 Limitations of existing radiomics feature 
extraction methods

Radiomics has emerged as a transformative approach in medical 
imaging by enabling the extraction of quantitative descriptors from 
routine scans. However, the clinical translation of radiomics has been 
impeded by several inherent limitations in current feature extraction 
frameworks, including redundancy, poor reproducibility, limited 
spatial awareness, and high computational complexity.

The first and most prominent limitation is feature redundancy. 
Widely used radiomics platforms such as PyRadiomics (Zwanenburg 
et  al., 2020) and CaPTk (Zinn et  al., 2021) extract thousands of 

TABLE 1 Comparative analysis of radiomics feature extraction methods.

Feature 
extraction 
method

Feature 
extraction 
approach

Feature 
types 
extracted

Number of 
features 
extracted 
per patient

Computational 
complexity 
(Big-O notation)

Time per 
image 
(approx.)

Redundancy 
reduction

Clinical 
applicability

PyRadiomics Statistical & 

texture-based 

analysis (GLCM, 

GLSZM, NGTDM)

First-order, 

texture, shape, 

wavelet-based

1,500 – 2,500 O (n × m) (n = features, 

m = tumor region)

~1.5 min per 

slice

Low (high 

correlation among 

extracted features)

Standardized but 

lacks adaptability

CaPTk Predefined Feature 

Set

First-order, 

shape-based

500–1,000 O(n) (fixed feature set) ~2 min per 

image

Low (fixed feature 

set limits 

adaptability)

Reproducible, 

clinically validated 

but non-adaptive

Wavelet-Based 

Radiomics

Multi-Scale 

Frequency 

Decomposition

Wavelet-

enhanced 

texture features

2,000+ O (n log n) (multi-

resolution filtering)

~2.5 min per 

slice

Very Low (excessive 

dimensionality, 

overfitting risk)

High 

dimensionality 

restricts clinical use

LASSO + 

PyRadiomics

L1-Regularization-

Based Feature 

Selection

Selected first-

order & texture 

features

~500 (after 

selection)

O (n log n) (feature 

elimination)

~1.2 min per 

slice

Moderate (but 

assumes linear 

dependencies)

Computationally 

efficient but 

dataset-sensitive

mRMR + 

PyRadiomics

Mutual 

Information 

Maximization

Features 

maximizing 

class relevance

~600–800 (after 

selection)

O (n2 log n) (pairwise 

feature dependency)

~1.3 min per 

slice

Moderate 

(redundancy 

minimized by 

feature ranking)

Better selection, but 

dependent on 

dataset structure

Deep learning-

based feature 

extraction 

(CNNs)

Hierarchical 

feature 

representation 

(feature maps via 

convolution)

High-

dimensional 

abstracted 

features

Dynamic 

(depends on 

CNN depth)

O(n3) (multi-layered 

learning)

~5 min per 

slice (GPU-

accelerated)

High (learns feature 

relationships 

automatically)

Non-explainable, 

high computation 

cost
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handcrafted features encompassing intensity, texture, and shape-based 
descriptors. While these features aim to capture tumor heterogeneity, 
many exhibit strong collinearity or encode overlapping information. 
This redundancy not only inflates computational cost but also dilutes 
the discriminative power of models. Post-processing techniques such 
as LASSO (Parekh and Jacobs, 2021) and mRMR (Palsson et al., 2021) 
are commonly employed to filter out non-informative features. 
However, these methods function after the extraction phase and may 
inadvertently eliminate features that are statistically weak but 
biologically significant. Moreover, the need for additional selection 
layers increases the overall complexity of the pipeline.

A second limitation lies in the generalizability of radiomic features 
across multi-institutional imaging datasets. Variations in MRI scanners, 
acquisition protocols, reconstruction algorithms, and preprocessing 
steps significantly affect the numerical values of extracted features. 
Numerous studies have confirmed that even subtle changes in 
acquisition parameters can lead to substantial discrepancies in feature 
distributions, compromising the reproducibility and external validity of 
trained models (Hu et al., 2022; Pasquini et al., 2021). This inconsistency 
is particularly critical in clinical environments where models are 
expected to generalize across different institutions and imaging platforms.

Third, conventional radiomics approaches generally overlook 
spatial topology. Features derived from histogram statistics, Gray-
Level Co-occurrence matrices, and shape indices are often computed 
independently, without modelling spatial interactions between voxels. 
However, glioblastoma is a spatially heterogeneous malignancy 
characterized by irregular boundaries, locally varying textures, and 
nonuniform growth patterns. Without capturing these spatial 
dependencies, traditional feature sets fail to represent the true 
structural complexity of the tumor (Choi et al., 2021).

Deep learning-based radiomics has been proposed as an 
alternative to handcrafted methods. These models can detect 
non-trivial representations in an unsupervised way and store 
information about space and context. However, several factors 
contribute to their impracticality in real-world applications. They 
depend heavily on large, annotated datasets, are costly to maintain, 
and often function as opaque systems that offer little to no 
interpretability or transparency (Li et al., 2021). In addition, these 
treatments have made them less relevant in clinical routines where 
transparency, validation, and efficiency are critical. All these 
restrictions justify the demand for a more flexible feature extraction 
framework that can be used with different systems. The ideal way to 
do this would be to reduce redundancy at the source, utilize spatial 
modelling to showcase the differences between various tumors, 
remain computationally efficient, and achieve cross-modality images. 
The Spectral Entropic Radiomics Feature Extraction (SERFE) 
technique resolves these issues by incorporating entropy-based 
weighting, spectral decomposition, and graph-based spatial encoding 
directly within the feature extraction process. This design makes sure 
that the representation of radiomic data is lesser, more informative, 
and more clinically sound (Feng et al., 2021).

1.3 Advancing radiomics feature extraction 
for improved glioblastoma classification

The shortcomings of current radiomics feature extraction 
methods must be addressed by a modified framework that maximizes 

computing efficiency, improves generalizability, and increases feature 
dependability. For an enhanced approach, the following crucial 
elements are necessary:

 • Feature Information and Minimal Redundancy: Feature 
extraction should focus on maximizing discriminative power 
while reducing redundant and correlated features, making sure 
that only the most pertinent features are kept.

 • Robustness Across Diverse Datasets: Integrating feature 
harmonization and entropy-based optimization can improve 
adaptability across datasets with varying imaging protocols and 
acquisition settings.

 • Spatial Encoding for Tumor Morphology: Advanced radiomics 
should incorporate graph-based representations to capture 
spatial dependencies within tumors, enhancing morphological 
feature extraction.

 • Computational Efficiency: Optimizing feature representation 
through frequency-based transformations can reduce processing 
time and facilitate real-time clinical applications.

 • Clinical Integration Readiness: The framework should prioritize 
scalability and automation, making it feasible for implementation 
in clinical workflows without excessive computational overhead.

2 Spectral Entropic Radiomics Feature 
Extraction (SERFE): methodology and 
computational framework

Extracting features is a vital process in the classification of 
glioblastoma using radiomics, as it has a direct impact on the 
effectiveness of the model and its relevance in clinical settings. 
However, conventional approaches such as PyRadiomics and CaPTk 
rely on predefined statistical, texture-based, and morphological 
features, which often lead to feature redundancy and suboptimal 
classification results. To tackle these issues, this research presents the 
Spectral Entropic Radiomics Feature Extraction (SERFE) Framework, 
an advanced method designed to enhance feature selection and 
refinement through entropy-driven optimization.

Unlike traditional feature extraction methods that generate fixed 
feature sets, SERFE dynamically refines radiomics features by 
incorporating a multi-scale entropy weighting mechanism and fractal-
based augmentation. This approach ensures that only the most 
informative features are selected, reducing computational redundancy 
while preserving tumor-specific spectral characteristics. By leveraging 
adaptive spectral entropy analysis, SERFE integrates high-order statistics, 
fractal geometry, and local entropy-weighted refinement, significantly 
enhancing feature discriminability for glioblastoma classification.

The SERFE framework is structured into three key stages:

 • Entropy-Driven Feature Refinement (EFR)  – Adjusts feature 
importance dynamically using Shannon entropy-based 
weighting, ensuring that informative features contribute more 
to classification.

 • Fractal-Based Feature Augmentation (FFA) – Extracts additional 
spectral information by computing the fractal dimension, which 
captures complex tumor heterogeneity.

 • Local Adaptive Weighting (LAW) – Fine-tunes the contribution of 
each feature, improving classification stability and robustness.
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By integrating these components, SERFE effectively captures both 
global and localized tumor variations, optimizing feature extraction 
for improved accuracy and reduced computational complexity.

2.1 Computational framework and 
mathematical formulation

SERFE follows a structured four-stage transformation process 
designed to extract informative and non-redundant radiomics 
features. Each stage refines the extracted features to improve their 
relevance, robustness, and classification efficiency. The underlying 
mathematical formulation of SERFE is built on a foundation of 
adaptive entropy weighting, fractal-based enhancement, and local 
feature optimization, ensuring a feature space that is both 
discriminative and computationally efficient.

2.1.1 Entropy-driven feature refinement (EFR)
The initial feature set F = {f1, f2, …, fN}, is processed using entropy-

weighted transformations. The Shannon entropy of the feature set is 
calculated as specified in Equation 1:

 ( ) ( ) ( )=
= −∑ 1 logN

i iiH F P f P f  (1)

where P(fᵢ) is the probability density function of feature fᵢ. The 
entropy-weighted transformation follows Equation 2:

 

( )
max

SERFE
i i

H F
f f

H

α
 

= ×  
   

(2)

where Hmax is the maximum entropy value within the dataset, 
ensuring normalization. The parameter α adaptively tunes the 
contribution of high-entropy features, allowing features with higher 
informational content to retain greater significance while suppressing 
less discriminative ones. This step enhances the stability of selected 
features by removing redundant information.

2.1.2 Fractal-based feature augmentation (FFA)
To further enhance feature discriminability, SERFE integrates 

fractal-based augmentation, inspired by self-similarity properties in 
glioblastoma texture patterns. The fractal dimension Df of each feature 
map is computed using the box-counting method given in Equation 3:

 

( )
( )→

=
0

log
lim

log 1/f
N

D



  

(3)

where N(ε) is the number of feature points covered by a box of size 
ε. The fractal-enhanced feature set is updated using Equation 4:

 
SERFE SERFE

i i ff f D+ = +β
 (4)

where β is a normalization factor that ensures feature stability. By 
incorporating fractal-based augmentation, local variations in feature 
structures are captured, preserving fine-scale details that may be lost 
in standard radiomics feature extraction methods.

2.1.3 Local adaptive weighting (LAW)
Feature significance is dynamically adjusted using an adaptive 

weighting function defined in Equation 5:

 
( )( )

1

1 exp
SERFE

i SERFE
i

W
f +

=
+ −γ −µ

 

(5)

where:

 • γ is a control parameter determining sensitivity.
 • μ is the mean value of all features.

The sigmoid-based transformation assigns greater importance to 
highly discriminative features while filtering out noise, ensuring a 
more reliable and stable feature selection process.

2.1.4 Final SERFE feature vector computation
The final refined feature set FSERFE is obtained by computing the 

weighted sum of the transformed features, as represented in 
Equation 6:

 
+

=
=∑ 1

NSERFE SERFE SERFE
i iiF W f  (6)

where each feature is weighted adaptively based on its importance 
in classification. This final representation guarantees that solely the 
most pertinent and stable features play a role in the classification task 
for glioblastoma, minimizing computational demands while 
preserving strong discriminative capabilities.

The SERFE architecture (Figure 2) begins with a segmented tumor 
region and performs entropy filtering to discard low-information 
features. If a feature passes the entropy threshold, fractal-based 
augmentation evaluates whether its inclusion enhances classification 
accuracy. The features are then recalibrated using sigmoid-based 
adaptive weighting. This structured flow ensures that only the most 
stable, spatially relevant, and informative features are retained 
for classification.

The Spectral Entropic Radiomics Feature Extraction (SERFE) 
framework integrates entropy-guided filtering, fractal-based 
augmentation, and adaptive weighting into a unified pipeline that 
optimizes feature quality at the point of extraction. Each computational 
component is specifically designed to improve interpretability, 
minimize redundancy, and enhance classification readiness without 
requiring post hoc dimensionality reduction. Rather than repeating 
implementation details or classifier configurations in this section, the 
subsequent parts of the manuscript present the experimental design, 
validation metrics, and comparative performance analysis. In 
accordance with reviewer recommendations, extended discussion on 
SERFE’s practical impact has been consolidated within the Results and 
Discussion sections.
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3 Results and discussions

3.1 Experimental setup

The system configuration used in this study is documented to 
ensure computational reproducibility and consistency in executing the 
SERFE framework. Given that SERFE involves operations such as 
entropy computation, fractal dimension estimation, and adaptive 
weighting, the processing workload is both memory-intensive and 
computation-heavy. The specifications provided in Table 2, reflect the 
environment under which all experiments were performed, helping 
maintain uniformity in feature extraction, transformation, and 
classification across patients. Detailing these components also 
supports replicability for future studies aiming to validate or extend 
this pipeline under similar or scaled system environments.

3.2 Patients data

The Cancer Imaging Archive (TCIA) datasets are used in this study. 
The REMBRANDT_DATA and TCIA_GBM collections are used. These 
datasets have MRI scans from 100 people, 57 of whom have glioblastoma 
and 43 of whom have other brain cancers. T1- and T2-weighted MRI 
images are part of each patient’s data. These images give important 
information about the structure and growth of tumors. T1-weighted 
images have a high spatial resolution, which makes them good for 
showing the edges of tumors and other anatomical details. T2-weighted 
imaging, on the other hand, shows changes in the composition of 
tissues, such as edema and tumor infiltration. This information is very 

useful for determining how the disease is progressing. Radiomics-based 
analysis is done on the MRI scans, which allows for the extraction of 
quantitative imaging biomarkers that help with diagnosis, treatment 
planning, and a better understanding of glioblastoma. The goal of this 
study is to improve the creation of radiomics-driven neuro-oncological 
models for better tumor characterization by using this diverse and well-
annotated dataset.

3.3 Image segmentation

In this study, glioblastoma tumor segmentation was performed 
using the Surface Cut Segmentation method within the 3D Slicer 
platform. This method accurately defines the Region of Interest (ROI) 
by optimizing a boundary surface (S) around the tumor, ensuring a 
balanced representation of voxel intensity variations both inside and 
outside the segmented region (Choi et al., 2021).

3.4 Radiomics feature extraction: analysing 
computational efficiency and stability

This section evaluates radiomics feature extraction methods 
based on computational efficiency, redundancy, storage, and stability. 
Conventional methods like PyRadiomics, CaPTk, IBSI, and LIFEx 
are compared with SERFE, which optimizes features while 
ensuring robustness.

SERFE initiates with 2,260 IBSI-compliant features per patient 
extracted from segmented T1- and T2-weighted MRI scans. Unlike 

FIGURE 2

Methodology of the Spectral Entropic Radiomics Feature Extraction (SERFE) framework.
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conventional methods that perform post-extraction selection, SERFE 
integrates refinement directly within the extraction process. Through 
its Entropy-Driven Filtering (EFR), Fractal-Based Augmentation 
(FFA), and Local Adaptive Weighting (LAW) modules, features with 
low relevance, high redundancy (Pearson |r| > 0.85), or poor stability 
(Intraclass Correlation Coefficient < 0.75) are excluded during feature 
generation. This results in a compact, high-quality output comprising 
350 highly stable and non-redundant features per patient, specifically 
optimized for glioblastoma classification. This represents a 65.9% 
reduction in redundancy compared to PyRadiomics, which initially 
exhibited a 45.2% redundancy rate.

These descriptors capture spectral, structural, and intensity-level 
characteristics not directly available through traditional extraction 
libraries. A representative subset of the final refined features is 
presented in Table  3. These features are not raw outputs from 
standard libraries but are transformed descriptors generated through 
SERFE’s pipeline, capturing spectral, structural, and intensity-level 
tumor characteristics.

 • Initial Feature Set Description: All methods, including SERFE, 
were applied to the same baseline radiomics feature set extracted 
from segmented tumor regions of T1- and T2-weighted MRI 
scans. The initial feature set comprised 2,260 features per 
patient, covering first-order statistics, shape-based features, and 
texture descriptors such as Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level 
Size Zone Matrix (GLSZM), and Neighbourhood Gray Tone 
Difference Matrix (NGTDM). These features were extracted 
following IBSI guidelines to ensure consistency across 
comparative methods.

 • Redundancy Rate Calculation: Redundancy rate was computed 
by evaluating pairwise Pearson correlation coefficients among 
all extracted features. A feature was considered redundant if its 
absolute correlation with another feature exceeded 0.85. The 
redundancy rate was then expressed as the percentage of 
redundant features relative to the total feature count.

3.4.1 Feature stability score calculation
Feature stability was quantified using the Intraclass Correlation 

Coefficient (ICC). For each method, the same features were extracted 
across repeated or augmented scans. Features with ICC ≥ 0.75 were 
classified as stable. The Feature Stability Score was calculated as the 
percentage of stable features in the total feature set, reflecting 
consistency and reproducibility of the extraction method.

The Feature Stability Score was calculated as the percentage of 
features with ICC ≥ 0.75 relative to the total number of features, as 
defined in Equation 7:

 

( )Feature Stability Score %
No.of Features with ICC 0.75

100
Total No.of Features

=
 ≥

×  
   

(7)

The ICC for each feature was derived using the standard variance 
components model shown in Equation 8:

 

2

2 2
ICC b

b w

σ
=
σ +σ  

(8)

Where,
2
bσ : is between-subject variance.
2
wσ : is within-subject variance across repeated scans.

with 2
bσ  and σ 2

w  representing the between-subject and within-
subject variance, respectively. A threshold of ICC ≥ 0.75 was used to 

TABLE 3 Refined radiomic features extracted via SERFE.

Feature name Category Description

SpecEntropy_T1 Spectral Entropy Entropy of frequency components 

from the T1-weighted image.

SpecEntropy_T2 Spectral Entropy Same as above, derived from T2-

weighted scan.

FracDim_

SpatialTexture

Fractal Geometry Fractal dimension of tumor texture 

to capture heterogeneity.

GLCM_Energy_

LocallyWeighted

Entropy-

Weighted Texture

Local GLCM energy enhanced by 

adaptive weights (LAW module).

SpatialVariance_

Edge

Edge Field 

Statistic

Measures variance in gradient 

intensity near tumor boundaries.

Histo_Kurtosis_

Adjusted

Intensity Statistic Adjusted kurtosis reflecting 

entropy-weighted histogram shape.

SpectralRoughness_

MultiResolution

Wavelet 

Composite 

Feature

Multiscale spectral roughness 

aggregated across frequency bands.

GaborEntropy_

Fused

Frequency–

Texture Fusion

Gabor filter entropy across 

orientations, fused for diagnostic 

impact.

TABLE 2 System configuration.

Specification Description

Software component

Operating System Windows 10 Version 10.0.22621.2506

System Directories C:\WINDOWS, C:\

WINDOWS\system32

Main Windows Directory 

and System Directory

Hardware component

Processor AMD Ryzen 55,600× 6-Core 

Processor

3.70 GHz, 12 Logical 

Processors

Memory 16.00 GB Installed Physical 

RAM

Total Physical Memory: 

15.9 GB; Total Virtual 

Memory: 18.6 GB

Storage Page File Space: 2.75 GB Located at C:\pagefile.sys

System attribute Setting Description

System type x64-based PC

BIOS version/date ASUS Tek 

COMPUTER INC. 309

Dated 08-11-2021, UEFI 

BIOS Mode

BaseBoard ASUSTeK COMPUTER 

INC. G10DK

Version 1.0

Locale User Locale: India Standard Time

Virtualization-based 

Security

Running Base Virtualization Support, 

Secure Boot enabled
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define stability. SERFE achieved a score of 92.0%, indicating its 
robustness and reliability across imaging conditions.

The quantitative definition of feature stability through ICC, along 
with the redundancy computation approach, provides a statistically 
grounded basis for evaluating the quality of radiomics feature 
extraction. These metrics, together with runtime and storage 
assessments, are critical for comparing the real-world efficiency and 
robustness of different frameworks. The following analysis presents 
the results of applying these measures across five radiomics pipelines. 
Table  3 and the corresponding figures illustrate how SERFE 
outperforms conventional methods across all major computational 
and statistical criteria.

Table 4, quantifies performance metrics, highlighting SERFE’s 
reduced redundancy, improved efficiency, and enhanced stability. 
Unlike traditional methods that extract excessive features, SERFE 
prioritizes the most informative ones, minimizing computational and 
storage overhead. Figures illustrate key metrics, reinforcing SERFE’s 
advantages and its effectiveness as an optimized radiomics feature 
extraction framework.

 • Figure 3 compares the feature count and computational time for 
different feature extraction methods. The results show that 
SERFE extracts significantly fewer features per patient (350) 
compared to traditional methods such as PyRadiomics (1800), 
CaPTk (1400), IBSI (1100), and LIFEx (1200). Additionally, 
SERFE achieves the shortest processing time (95 s per scan), 
whereas conventional methods require over 200 s per scan, 
highlighting SERFE’s computational efficiency.

 • Figure 4 presents the storage requirements per patient for the 
extracted features. SERFE consumes the least storage (2.8 GB), 
making it more scalable for large datasets, while CaPTk requires 
the highest storage (6.1 GB), followed by LIFEx (5.5 GB). The 
significant reduction in storage requirements with SERFE 
enhances its practicality for high-throughput radiomics analysis.

 • Figure  5 demonstrates the feature stability scores (%) across 
different methods. Higher stability scores indicate greater 
consistency in feature extraction across different scans. SERFE 
achieves the highest stability (92.0%), ensuring robustness and 
reproducibility, while PyRadiomics scores the lowest (75.0%), 
suggesting greater variability in extracted features.

 • Figure 6 illustrates the redundancy rate (%) among extracted 
features. SERFE has the lowest redundancy (15.4%), meaning 
that most of its extracted features contribute meaningfully to 
classification. In contrast, PyRadiomics exhibits the highest 
redundancy (45.2%), indicating that a significant portion of its 
features is repetitive or overlapping, reducing 
classification efficiency.

The evaluation highlights SERFE’s efficiency in reducing 
computational time, minimizing redundancy, and optimizing storage 
while ensuring high feature stability. Unlike traditional methods that 
extract excessive redundant features, SERFE selects only the most 
relevant ones, improving efficiency and robustness. The next section 
presents the classification performance of SERFE-extracted features 
using three classifiers for binary glioblastoma classification, evaluating 
metrics like accuracy, precision, recall, and F1-score.

3.5 Impact of SERFE on glioblastoma 
classification: a performance evaluation

To ensure generalizability and reduce sampling bias, 5-fold cross-
validation strategy with stratified folds, were employed where each 
model was trained and tested using a different subset of the data. To 
evaluate the classification efficacy of the SERFE-extracted radiomics 
features. To evaluate the discriminative strength of the features 
extracted through the SERFE framework, we employed three widely 
recognized classification algorithms Support Vector Machine (SVM), 
Random Forest (RF), and K-Nearest Neighbours (KNN). These 
models were chosen due to their demonstrated effectiveness in 
processing high-dimensional imaging data and their frequent 
application in radiomics-based diagnostic studies.

These experiments aimed to quantify SERFE’s impact in 
comparison to four state-of-the-art radiomics feature extraction 
frameworks: PyRadiomics, CaPTk, IBSI, and LIFEx. All models were 
evaluated on a fixed binary classification task: distinguishing 
glioblastoma vs. non-glioblastoma patients using the same radiomics 
dataset and preprocessing protocol.

Each classifier was assessed using four performance metrics: 
Balanced Accuracy, Precision, Recall, and F1-score, with ROC curves 
further used to compute the Area Under the Curve (AUC). These 
metrics collectively measure class separability, robustness to 
imbalance, and overall generalization.

Figure 7 presents the performance of the SVM classifier using 
features extracted from five radiomics frameworks. The proposed 
SERFE method achieved the highest Balanced Accuracy (91.7%) and 
F1-score (84.8%), indicating its strong capability to separate 
glioblastoma from non-glioblastoma cases. This performance is 
attributed to the entropy-weighted feature refinement and fractal-
based augmentation integrated within SERFE, which reduce noise and 
emphasize discriminative patterns. While PyRadiomics showed 
competitive performance (BA = 89.0%), it lacked consistency across 
metrics due to unfiltered redundancy. CaPTk, IBSI, and LIFEx 
underperformed, likely due to limited adaptability to the high-
dimensional structure required for SVM margin optimization.

TABLE 4 Performance evaluation of feature extraction methods.

Feature extraction 
method

Number of features 
selected (per patient)

Computational time 
(seconds per scan)

Redundancy 
rate (%)

Storage 
usage (GB)

Feature stability 
score (%)

PyRadiomics 1800 210 45.2 5.2 75.0

CaPTk 1,400 270 38.7 6.1 78.0

IBSI 1,100 190 41.5 4.8 80.0

LIFEx 1,200 220 39.2 5.5 79.0

SERFE (Proposed) 350 95 15.4 2.8 92.0
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In Figure  8, Random Forest classification results confirm 
SERFE’s robustness across ensemble-based models. SERFE attained 
a Balanced Accuracy of 90.2% and the highest F1-score (83.4%), 
demonstrating excellent class separation and generalizability. 
Notably, IBSI (83.2%) and LIFEx (84.0%) outperformed CaPTk 
(81.5%), suggesting they are better aligned with tree-based learners. 
However, only SERFE effectively balances feature compactness and 
discriminative power without the need for additional selection steps. 
PyRadiomics performed well in terms of recall but introduced 
redundancy, slightly affecting overall precision.

Figure  9 shows the performance of KNN, a non-parametric 
model sensitive to feature noise and dimensionality. Even under these 
conditions, SERFE retained superior classification accuracy 

(BA = 88.6%, F1 = 81.0%), proving that its compact and well-
calibrated feature set preserves neighbourhood integrity. 
PyRadiomics scored 85.4% BA but showed lower recall, while IBSI 
and LIFEx offered moderate improvements over CaPTk. These results 
emphasize that SERFE’s entropy-weighted representation not only 
benefits parametric models like SVM but also ensures resilience in 
distance-based learning scenarios.

Figure 10 depicts the Receiver Operating Characteristic curve, 
demonstrating the classifiers’ discriminative ability by graphing the 
true positive rate (sensitivity) versus the false positive rate at various 
classification thresholds. The Area Under the Curve (AUC) values 
offer a quantitative assessment of each model’s proficiency in 
differentiating glioblastoma from non-glioblastoma instances.

FIGURE 3

Comparison of feature count and computational time across methods.

FIGURE 4

Comparison of storage usage across methods.
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Among the classifiers, Random Forest attains an AUC of 0. 89, 
indicating better classification performance. SVM follows with an 
AUC of 0.81, reflecting a strong balance between sensitivity and 
specificity. KNN records an AUC of 0.74, which, while lower than the 
other two classifiers, still indicates its ability to capture glioblastoma-
specific imaging patterns. These results emphasize that SERFE-
extracted radiomics features significantly enhance classification 
accuracy, ensuring that the extracted features remain robust, 
informative, and clinically meaningful.

The results from all classifiers consistently validate the superiority 
of the proposed SERFE framework over existing radiomics feature 

extraction methods. SERFE exhibits robustness independent of 
classifiers and the capacity to extract compact, discriminative, and 
clinically relevant features by obtaining the highest scores in Balanced 
Accuracy, Precision, Recall, and F1-score among SVM, Random 
Forest, and KNN classifiers. Additionally, using SERFE features, the 
ROC analysis validates the high separability of glioblastoma and 
non-glioblastoma classes, with ensemble-based and margin-based 
models exhibiting especially good performance. These results validate 
the radiomics baseline for the subsequent study of radiogenomic 
associations, as described in the next section, and establish SERFE as 
a solid basis for clinical decision-making downstream.

FIGURE 5

Comparison of feature stability score.

FIGURE 6

Feature redundancy across methods.

https://doi.org/10.3389/frai.2025.1583079
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Sowmya et al. 10.3389/frai.2025.1583079

Frontiers in Artificial Intelligence 12 frontiersin.org

4 Discussion

This study proposed Spectral Entropic Radiomics Feature 
Extraction (SERFE) as a comprehensive and adaptive framework for 
glioblastoma classification using radiomics. The approach was 
rigorously evaluated across multiple performance dimensions, 
including feature informativeness, classification reliability, and 

computational efficiency. The results demonstrate SERFE’s superiority 
over conventional feature extraction methods. The following 
observations highlight its contributions:

 • Enhanced Classification Accuracy: SERFE-extracted features, 
when used with the Random Forest classifier, achieved a 
balanced accuracy of 91.7% and an AUC of 0.89. SERFE showed 

FIGURE 7

SVM-based evaluation across feature extraction methods.

FIGURE 8

Random forest based evaluation across feature extraction methods.
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consistently better results than existing tools such as 
PyRadiomics, CaPTk, and LIFEx, showing its strength in 
capturing meaningful tumor features with greater precision.

 • Reduced Redundancy at Source: Unlike traditional pipelines that 
rely on post-extraction feature selection, SERFE addresses 
redundancy during the extraction stage itself. The approach 
resulted in reduction of redundant features, ensuring that the 
retained attributes contributed meaningful information to the 
classification task.

 • Improved Computational Efficiency: By embedding entropy-
based filtering and spectral decomposition directly within the 
extraction pipeline, SERFE achieved a 50–60% reduction in 
average processing time per scan. This efficiency makes it suitable 
for large-scale studies and integration into time-sensitive 
clinical workflows.

 • No Need for External Feature Selection: Conventional methods 
often require additional steps like LASSO or mRMR to eliminate 
irrelevant features after extraction. SERFE, by contrast, performs 
intrinsic optimization, eliminating the need for separate 
dimensionality reduction while preserving critical 
biological signals.

These findings affirm that SERFE offers a robust and clinically 
scalable alternative to traditional radiomics approaches. Its modular 
design, combining entropy-guided refinement with spatial encoding, 
positions it as a technically sound and application-ready tool for real-
world glioblastoma classification.

5 Conclusion

This study presents SERFE, a feature extraction framework for 
radiomics-based glioblastoma classification. By integrating 
spectral frequency decomposition, entropy-based feature 
weighting, and graph-guided spatial encoding, SERFE generates 
compact, high-quality features that enhance both the accuracy 
and efficiency of classification models. The experimental results 
consistently showed that SERFE outperforms traditional 
radiomics methods, not only in terms of predictive performance 
but also in computational scalability.

SERFE has shown that it can generate meaningful and compact 
features that help improve the accuracy and speed of glioblastoma 
classification. This makes it a good fit for real-world clinical settings 
where quick and reliable results are important. After showing strong 
results in binary classification, the next step will be to see how well 
SERFE can help identify glioblastoma subtypes and be used across 
different medical centres. Moving in this direction could support 

FIGURE 9

KNN based evaluation across feature extraction methods.

FIGURE 10

ROC curve for glioblastoma binary classification.
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more personalized and effective treatment approaches in 
neuro-oncology.
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