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This review provides a thorough and organized overview of machine learning (ML) 
applications in predicting heart disease, covering technological advancements, 
challenges, and future prospects. As cardiovascular diseases (CVDs) are the leading 
cause of global mortality, there is an urgent demand for early and precise diagnostic 
tools. ML models hold considerable potential by utilizing large-scale healthcare 
data to enhance predictive diagnostics. To systematically investigate this field, the 
literature is organized into five thematic categories such as “Heart Disease Detection 
and Diagnostics,” “Machine Learning Models and Algorithms for Healthcare,” “Feature 
Engineering and Optimization Techniques,” “Emerging Technologies in Healthcare,” 
and “Applications of AI Across Diseases and Conditions.” The review incorporates 
performance benchmarking of various ML models, highlighting that hybrid deep 
learning (DL) frameworks, e.g., convolutional neural network-long short-term 
memory (CNN-LSTM) consistently outperform traditional models in terms of 
sensitivity, specificity, and area under the curve (AUC). Several real-world case 
studies are presented to demonstrate the successful deployment of ML models 
in clinical and wearable settings. This review showcases the progression of ML 
approaches from traditional classifiers to hybrid DL structures and federated learning 
(FL) frameworks. It also discusses ethical issues, dataset limitations, and model 
transparency. The conclusions provide important insights for the development 
of artificial intelligence (AI) powered, clinically applicable heart disease prediction 
systems.
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1 Introduction

1.1 Background of the study

Cardiovascular diseases (CVDs) cause around 17.9 million deaths 
each year, accounting for 32% of deaths worldwide. Heart disease 
continues to be one of the most significant health problems globally 
and nationally, as it is the leading cause of death around the globe and 
in the US. In 2021 alone, coronary heart disease was accountable for 
approximately 9 million deaths. In the US, coronary heart disease 
caused 1 out of 5 deaths in 2022, affecting all genders and races. The 
magnitude of this issue is enormous; in the United States alone, heart 
disease caused approximately two hundred and 52.2 billion dollars in 
direct and indirect costs from 2019 to 2020 (Khan Minhas et al., 2024). 
The prevalence of CVDs in the US is anticipated to increase sharply, 
as 61% of adults are expected to be  hypertensive by 2050. The 
worldwide burden of CVDs is expected to rise by 90% from 2025 to 
2050, increasing the number of deaths from 20.5 million in 2025 to 
35.6 million by 2050. Therefore, immediate attention needs to be put 
towards effective heart disease preventive measures, greater detection 
capabilities, and fairness in healthcare access (Roth et  al., 2020; 
Al-Ajlouni et al., 2024).

Many patients can be  kept alive through effective healthcare 
interventions. This, however, requires early detection (Ferdous Azam 
and Sarwar, 2023). By taking proactive measures, one can help alleviate 
the bad consequences of the disease, improve the possible prognosis, and 
save money to be spent on treating the problem. Unfortunately, most 
diagnostic methods, such as Electrocardiogram (ECG), 
echocardiograms, and stress testing, need considerable time and skill to 
administer, and even then, accurate diagnosis may still not be achieved 
(Dala Ali et al., 2023; Faraji et al., 2023). Such limitations are even more 
pronounced in underdeveloped areas where such facilities are hard to 
come by. Machine Learning (ML), a subfield of artificial intelligence 

(AI), provides solutions to such problems (Pathirana et  al., 2018; 
Pathirana et al., 2019). Complex ML algorithms can recognize intricate 
structures and correlations existing within a vast data set that are not 
readily available using traditional techniques. Such an attribute enables 
chronic diseases of the heart to be diagnosed at intervals much earlier 
than is possible when patients start showing symptoms. Thus, ML can 
facilitate the adoption of preventive measures and strides towards a 
patient-centered approach. Further, ML gives global health a powerful 
tool for applying affordable and efficient diagnostic technology to 
populations that need it most (Naruka et al., 2022). Figure 1 depicts the 
worldwide prevalence (in millions) of major cardiovascular conditions 
as of 2021. Coronary heart disease remains the most prevalent, impacting 
roughly 250 million people, followed by peripheral arterial disease (110 
million), stroke (94 million), and atrial fibrillation (53 million) 
(Jagannathan et al., 2019). These figures highlight the significant global 
challenge posed by CVDs and emphasize the urgent need for effective 
predictive models driven by ML and AI to facilitate early diagnosis and 
prompt intervention. Incorporating these technologies into healthcare 
systems can significantly reduce mortality and enhance patient outcomes.

1.2 Role of machine learning in healthcare

The adoption of electronic health records (EHRs) and wearable 
devices, and sophisticated imaging technologies is aiding the 
healthcare industry in data management (Bai and Mardini, 2024). The 
ability of ML to use such data to improve clinical processes and patient 
interaction is astounding. In predicting heart disease, diverse data 
sources are harnessed by ML models such as (Pathirana et al., 2019; 
Dissanayake and Johar, 2023):

 • Clinical Data: Data about the patient that includes demographics, 
medical history, lab results, and medications.

FIGURE 1

Global prevalence of major cardiovascular diseases.

https://doi.org/10.3389/frai.2025.1583459
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Kumar et al. 10.3389/frai.2025.1583459

Frontiers in Artificial Intelligence 03 frontiersin.org

 • Imaging Data: Echocardiograms, angiograms, and computed 
tomography (CT) scans.

 • Biometric Signals include ECG, heart rate variability, and 
blood pressure.

 • Data from wearable devices includes daily physical activities, 
sleep patterns, and vital signs.

Devices that classify people as high risk and low risk of heart disease 
are based on supervised learning techniques like random forest (RF), 
support vector machine (SVM), and neural network (NN). Slicers of the 
ML set are DL, which enhances a machine’s learning capabilities. For 
instance, convolutional neural network (CNN) has been used to identify 
arrhythmias from ECG signals with great precision. Furthermore, 
clustering techniques consider the unsupervised learning approach in 
which algorithms detect groups within a patient population that can 
be linked to specific risk levels or responses to treatment, thus paving 
the way for targeted medicine (Dissanayake and Johar, 2021; Dissanayake 
et al., 2023). Another innovative area is the application of reinforcement 
learning (RL) to improve treatment plans and the allocation of resources 
in healthcare settings. Figure 2 depicts ML in heart disease prediction, 
from data collection to model deployment (Nadeem et al., 2021; Kwon 
and Dong, 2022). Figure  3 presents an integrated heart disease 
prediction (Siramshetty et al., 2018; Benhar et al., 2020).

1.3 Objectives and scope of the review

The review aims to incorporate findings from previous research 
studies on heart diseases while creating, developing, and applying ML 
technologies that predict heart diseases. Grouping these studies into 
thematic clusters may help understand the advancements in the 
field, highlight strengths and challenges, and lay out the following  
objectives.

 • Categorization of Research: Formulating a primary information 
scheme by grouping the studies into five main clusters.

 • Analysis of ML Models: Performed in-depth analysis of the 
models in terms of algorithms, techniques, components of the 
systems, and their merits and demerits alongside real-
world applications.

 • Feature Engineering and Optimization: Striving to improve model 
performance through feature selection, dimensionality reduction, 
and hyperparameter tuning.

 • Emerging Technologies: Exploiting the effects of innovations such 
as FL, quantum computing (QC), and Internet of Things (IoT) 
devices on the diagnostics of heart diseases.

 • Other Applications of AI: AI’s involvement in treating diseases like 
cancer, diabetes, and other neurological disorders should 
be emphasized to better understand how heart disease prediction 
can be approached.

This review proposes to find patterns, gaps, and trends by 
incorporating these clusters in literature patterns to provide better 
insights for evolving studies and their implementations.

1.4 Comparison with existing literature and 
novel contributions

There is a substantial body of literature on ML applications in the 
healthcare sector, with review articles examining ML usage in 
healthcare diagnoses, predictions, and treatments. The literature is 
extensive. While many studies have been conducted, a gap remains in 
the focus on heart disease prediction through ML systems. We directly 
compare what this review achieves to existing works to address this gap.

1.4.1 Comparative analysis of related reviews
To illustrate how this review differentiates from prior works, 

Table 1 compares key literature, focusing on scope, methodology, 
datasets, and technological advancements.

1.4.2 Novel contributions of this review
Though other reviews provide essential insights into ML-based 

heart disease prediction, they tend to suffer from some drawbacks. 
Unlike other works, our work is unique in the following aspects.

1.4.2.1 Newer dataset analysis

 o This review covers newer datasets such as IoT-based healthcare 
data, wearable sensor datasets, and FL-enabled datasets, unlike 

FIGURE 2

ML in heart disease prediction, from data collection to model deployment.
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other reviews focusing on classical datasets like UCI heart disease 
data and Framingham data.

 o Covers real regulatory challenges such as imbalance and noise.

1.4.2.2 Emerging technology integration
This review deeply analyzes new emerging AI tools like:

 o FL—privacy-preserving ML.
 o QC—high-speed disease modeling.
 o Explainable AI (XAI)—model understanding and trust.
 o Other reviews hardly address the confluence of AI with 

regulatory frameworks like General Data Protection Regulation 
(GDPR), Food and Drug Administration (FDA), and Health 
Insurance Portability and Accountability Act (HIPAA).

1.4.2.3 Ethical and regulatory considerations

 o Covers biases and patient privacy ML in healthcare ethics issues 
and explainability.

 o Provides an in-depth discussion of the legal aspects of AI 
implementation in healthcare.

1.4.2.4 Structured thematic classification

 o Unlike other systematic reviews, this piece of work classifies and 
indexes research into 5 different thematic clusters.

 o Methods and Algorithms of Heart Disease Detection 
and Diagnostics.

 o ML Models and Algorithms.
 o Emerging Feature Molding and Engineering.
 o Advanced Emerging Technology.
 o Multi-Disease AI Technology Applications.

1.4.2.5 Bridging the gap between research and clinical 
application

 o Prior works focus primarily on ML model accuracy, while this 
review focuses on actual clinical application.

 o Explains how different hospitals, medical practitioners, and 
policymakers can use ML-based systems for diagnosis in real-
life settings.

1.4.3 Heatmap provides feature correlations
A heatmap is used in a dataset with heart disease features to 

represent the relationships of different attributes. Redundancy 
may exist for the features with high correlations, such as 
cholesterol and blood pressure, but weakly correlated features 

TABLE 1 Comparison of existing literature on ML for heart disease prediction.

References Scope Methodology Datasets 
used

Technological 
focus

Challenges 
discussed

Novel 
contributions

Hajiarbabi (2024) Overview of ML 

for CVDs

A systematic review of 

ML models

UCI Heart 

Disease, 

Framingham, 

PhysioNet

DL and supervised 

learning

Model performance 

and dataset 

limitations

Lacks discussion on 

ethical challenges and 

explainability

Ahsan and Siddique 

(2022)

ML applications in 

healthcare

Meta-analysis of 

diagnostic accuracy

Multiple EHR 

datasets

Traditional ML

SVM, RF, K-nearest 

neighbor (KNN)

Data imbalance and 

interpretability

It does not explore FL 

or QC

Jafari et al. (2023) DL models for 

ECG-based heart 

disease detection

Experimental 

comparison

Physikalisch-

Technische 

Bundesanstalt 

Extended ECG 

Dataset (PTB-

XL), MIT-BIH, 

ECG datasets

CNN, LSTM, Transfer 

Learning

Bias, data 

augmentation

Lacks coverage on FL 

and real-world 

integration

Present review Comprehensive 

review of ML for 

heart disease 

prediction

Thematic classification 

with clustering

EHR, ECG, 

Cleveland, 

Framingham, 

Emerging IoT-

based datasets

Supervised and 

unsupervised learning, 

DL, FL, QC

Ethical concerns, 

dataset quality, 

integration into 

clinical practice

Integrates AI trends 

(IoT, FL, QC) and 

highlights regulatory, 

transparency, and 

privacy challenges in 

ML adoption

FIGURE 3

Integrated heart disease prediction.
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suggest that they would be independent in their ability to predict. 
Figure 4 presents a feature correlation heatmap that depicts the 
relationships between essential clinical variables like cholesterol, 
blood pressure, and age, which are vital for enhancing feature 
selection in heart disease prediction models.

 • Proposition: ‘Blood Pressure and Cholesterol,’ a high correlation 
suggests potential multicollinearity and multivariate relationships.

 • Counter Proposition: ‘Age and Resting ECG,’ the low correlation 
suggests a weak direct association.

 • Supporting Proposition: ‘Smoking and Heart disease’ 
have a moderate correlation, which supports known medical  
findings.

2 Methodology

2.1 Literature search and inclusion criteria

The review methodology entailed a comprehensive literature 
search. The search involved a comprehensive query in Scopus using 
the search string:

((TITLE-ABS-KEY (‘heart disease prediction’) AND (‘ML’) OR 
(‘machine learning’)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND 
(LIMIT-TO (LANGUAGE, “English”))).

It filtered relevant articles on heart disease prediction using ML, 
limited to English-language articles and journal articles. The curated 
results form the foundation for the insights and analyses presented in 
this review. Studies were excluded if they lacked adequate 
methodological detail, were not peer-reviewed, or were focused on 
unrelated topics. Quantitative and qualitative insights were extracted 
to identify trends, assess proposed methods’ effectiveness, and 
uncover existing research gaps.

2.2 Classification of clusters

The identified studies have been classified into five major clusters 
based on their primary focus using keywords. Table  2 depicts 
keywords considered and cluster names based on keywords and the 
occurrence of keywords. The first cluster, ‘Heart Disease Detection and 
Diagnostics’, includes advanced research on diagnostics and 
predictions concerning heart-related conditions. The second cluster, 
‘Machine Learning Models and Algorithms for Healthcare,’ studies the 

FIGURE 4

Feature correlation heatmap for heart disease prediction.
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different types of ML model frameworks, including supervised and 
DL models. The third cluster, ‘Feature Engineering and Optimization 
Techniques,’ discusses papers on feature selection, dimensionality 
reduction, and other optimization methods in model performance 
improvement. The fourth cluster, ‘Emerging Technologies in Healthcare’, 
reviews articles on modern innovations like QC, FL, and IoT in heart 
disease prediction and other applications. The last or fifth cluster, 
‘Applications of AI Across Diseases and Conditions,’ gives more context 
by including AI’s applications in managing and predicting other 
diseases such as cancer, diabetes, and neurological disorders. This 
categorization is shown in Figure  5, facilitating a more profound 
literature review and allowing a better understanding of each cluster’s 
contributions and limitations.

3 Cluster wise insights: literature 
review

3.1 Cluster 1: heart disease detection and 
diagnostics

Technological advancements and methodologies provide 
innovative approaches and tools for the early detection and prediction 
of cardiovascular ailments. This group focuses on new imaging and 
ML model development, which improves diagnostic precision and 
appropriate timing of interventions to improve the prognosis for 
patients. Heart disease displays itself as more than just coronary artery 
disease (CAD); it includes arrhythmias and even heart failure. 
Therefore, it is essential to stress the multi-dimensional approach to 
conditions related to heart diseases. As outlined in Figure 6, critical 
steps are monitoring ECG for electrical activity, echocardiograms for 
the anatomical view, stress tests for function, cardiac catheterization 
for the coronary details, and blood tests for the troponin marker, along 
with the cholesterol marker, which are the most important 
for attention.

Table  3 shows key insights and performance metrics in heart 
disease detection and diagnostics. The classification of heart disease 
proved accurate with DL algorithms and Sand Cat Swarm 
Optimization (SCSO) for feature selection. Important features were 
identified using patient pathology data, and models, including CNN, 
PCA, Restricted Boltzmann Machine (RBM), and deep convolutional 
generative adversarial networks (DCGAN), analyzed intricate 
correlations that improved the accuracy of predictions. The method 
enhanced the reliability of heart disease prognosis through metrics 
such as accuracy and F1-score (Baviskar et al., 2023). The detection of 
CVD was improved using both RF and eXtreme Gradient Boosting 
(XGB) on ECG datasets, particularly Physionet 2016, PASCAL, and 
MIT-BIH. Pre-processing feature extraction with empirical wavelet 
transform (EWT), discrete wavelet transform (DWT), and SHapley 
Additive exPlanations (SHAP) will improve a prediction model’s 
accuracy, and a significant peak can reach up to 98.25 AUC for 
XGB-based proposed models (Majhi and Kashyap, 2024). A novel 
Wolf-based Generative Adversarial System (WbGAS), was developed 
to classify heart diseases, using ECG data to identify normal sinus 
rhythm, arrhythmia, and congestive heart failure (Goud et al., 2024). 
A hyperparameter-tuned CNN-based Inception Network model was 
created to diagnose heart disorders with heart sound data from 
standard repositories. The model achieves 99.65% accuracy, 98.8% 
sensitivity, and 98.2% specificity, surpassing the other classifiers (Roy 
et al., 2024). An electronic stethoscope has been developed, integrated 
with Raspberry Pi 4B and a CNN-based EfficientNet-B3 model for 
diagnosing valvular heart diseases. The system reported an accuracy 
of 99.35%, sensitivity of 98.84%, and specificity of 98.23%, with real-
time Phonocardiogram (PCG) signal analysis and cloud-based data 
storage (Roy et al., 2023). Fatima and Siddiqi (2024) evaluated ML 
techniques for predicting Myocardial Infarction (MI) and analyzing 
risk factors using a dataset of 350 individuals, including MI and 
non-MI patients of both genders.

Maran (2023) developed advanced CNN-based models to analyze 
multimodal data, including BMI, ECG, and PTB, achieving 98% 

TABLE 2 Clusters of ML for heart disease prediction.

Cluster 
number

Cluster name Keywords Occurrence

1 Heart Disease Detection and 

Diagnostics

Heart disease classification, heart disease detection, Heart failure, Arrhythmia, Valvular heart 

disease, Electrocardiogram (ECG), PCG signal analysis, Cleveland and Framingham Datasets, 

Acute Myocardial Infarction, Cardiac disease

12

2 Machine Learning Models and 

Algorithms for Healthcare

Machine learning, Artificial intelligence, Deep learning, Logistic Regression, Decision tree, 

Support vector machine (SVM), Random Forest classifier, Gradient descent, Sparse 

autoencoder, Attention mechanisms, Transformer-based models, Recurrent neural network 

(RNN)

13

3 Feature Engineering and 

Optimization Techniques

Feature extraction, Feature selection, Principal component analysis (PCA), SHAP, Genetic 

Algorithm (GA), Grey wolf algorithm, Particle Swarm Optimization (PSO), Sand Cat Swarm 

Optimization, Coati optimization algorithm, Kepler optimization, Canonical Correlation, Lasso 

regression

12

4 Emerging Technologies in 

Healthcare

Healthcare 4.0, Quantum computing, Federated learning, 5G, Wearable devices, Internet of 

Things (IoT), Cloud platform, Automated Sequential Cryptography, Cloud security, 

Decryption, Firefly Algorithm, Modified Blowfish

10

5 Applications of AI Across 

Diseases and Conditions

Diabetes, Diabetic retinopathy, Breast cancer, Parkinson’s disease, Stroke prediction, 

cardiovascular diseases (CVD), Disease Prediction, Early Diagnosis, Scalability in machine 

learning, Multimodal feature fusion, Cross-modal transfer learning

11
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FIGURE 5

Machine learning for heart disease prediction: five clusters.

FIGURE 6

Diagnostic techniques and multidimensional approach to heart disease management.
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accuracy in predicting heart diseases. The models were trained on 80% 
of the data, validated on 20%. Saleh Alghamdi et al. (2024) proposed 
a method by integrating autoencoder and DenseNet architectures to 
predict heart disease based on the UCI Cleveland dataset, obtaining a 
mean accuracy of 99.67% and test accuracy of 99.99%.

3.2 Cluster 2: machine learning models and 
algorithms for healthcare

Table  4 shows Advances in ML Models and Algorithms for 
Healthcare. A three-stage wireless body area network (WBAN)-based 
heart disease prediction model was developed. The three stages 
include data aggregation, channel selection, and prediction. Channel 
selection was optimized using the Tunicate Swarm-Sail Fish 
Optimization algorithm, and statistical features were extracted from 
the data using a weighted entropy-based method. An enhanced RNN 
tuned with Tunicate Swarm-Sail Fish Optimization achieved high 
prediction accuracy (Muthu Ganesh and Nithiyanantham, 2022). This 
research developed ML models to predict cancer, diabetes, diabetic 
retinopathy, and heart-related outcomes using EHRs. SVMs achieved 
97.08 and 79.75% accuracy for cancer and Pima diabetes datasets, 
respectively, while Decision Tree (DT) reached 86.42% for heart-
related predictions. The study showed that ML could enhance disease 
prediction and patient outcomes (Sheik Abdullah et al., 2024).

The real-time data will be utilized to predict heart disease with the 
support of the ML algorithm, as well as attributes like BP, sugar, and 
heartbeat. The attributes are applied in the dataset on 300 instances 

with 14. It is used to train and test an R model. Accuracy Evaluation: 
Accuracy is measured as the basis of several classifiers (Jayakiran et al., 
2019). Napa et al. (2024) evaluated recursive feature elimination (RFE) 
for classifying chronic heart disease based on the Cleveland Hungarian 
CHD dataset. Different methods of supervised learning have been 
tested. The KNN model and the DT attained 89.91%. Seeli and 
Thanammal (2024) explored ML algorithms’ performance, specifically 
artificial neural network (ANN) and logistic regression (LR) for 
disease prediction. Without scaling, ANN obtained 86.13% accuracy 
in the heart disease prediction, and when ensemble normalization and 
standardization were applied, the improvement in ANN accuracy was 
98.81%. Patil et  al. (2023) presented a prediction model for heart 
disease incorporating IoT and ML techniques using data from several 
sensors: BP monitors, blood oxygen sensors, and EEGs. Hybrid 
feature extraction methods were combined with ML algorithms, 
where RNN yields higher accuracy than the traditional approach 
using methods like SVM, Naive Bayes (NB), and RF.

3.3 Cluster 3: feature engineering and 
optimization techniques

Table 5 shows Feature Engineering and Optimization Techniques 
in Heart Disease Prediction. The study proposed a method that 
combines PCA and feature selection to reduce the dimensionality of 
data and improve the prediction of coronary heart disease. The model 
using classifiers such as PCA, RF, DT, and AdaBoost achieved 96% 
accuracy and outperformed traditional precision, recall, and AUC 

TABLE 3 Key insights and performance metrics: cluster 1 ‘heart disease detection and diagnostics’.

Research focus Key methods/
models

Dataset(s) used Performance 
metrics

Key insights Ref.

Heart Disease Detection 

with SCSO

DL + SCSO, CNN, PCA, 

RBM, DCGAN

Patient Pathology Data High Accuracy, Improved 

F1-score

Enhanced feature 

selection and reliable 

prognosis

Baviskar et al. (2023)

ECG Analysis with RF and 

XGB

RF, XGB, EWT, DWT, 

SHAP

Physionet 2016, PASCAL, 

MIT-BIH

Up to 98.25 AUC Effective feature 

extraction and 

prediction

Majhi and Kashyap 

(2024)

WbGAS for Heart Disease 

Classification

Wolf-based Generative 

Adversarial System 

(WbGAS), Wolf Fitness 

Function

ECG Data High Specificity, Precision, 

Recall, and Accuracy

Outperforms traditional 

ML methods

Goud et al. (2024)

Hyperparameter-tuned 

CNN Inception Network

CNN-based Inception 

Network

Heart Sound Data 99.65% Accuracy, 98.8% 

Sensitivity, 98.2% Specificity

Efficient handling of 

high-dimensional data

Roy et al. (2024)

Myocardial Infarction 

Prediction

Ensemble Classifiers Dataset of 350 

Individuals (MI & Non-

MI)

Improved Gender-Specific 

Precision, High Accuracy

Optimized early MI 

detection

Fatima and Siddiqi 

(2024)

Multimodal Data Analysis 

with CNNs

CNN, Python BMI, ECG, PTB 98% Accuracy Reliable prediction 

from multimodal data

Maran (2023)

Autoencoder + DenseNet 

on UCI Cleveland Dataset

Autoencoder, DenseNet UCI Cleveland 99.67% Mean Accuracy, 

99.99% Test Accuracy

Outstanding 

performance requires 

more

Saleh Alghamdi et al. 

(2024)

CNN-Bi-LSTM with 

Attention Mechanisms

CNN-Bi-LSTM, Newton–

Raphson Optimizer

Cleveland, Framingham 95.3% Accuracy (Cleveland), 

98.1% Accuracy 

(Framingham)

Optimized cardiac 

disease prediction

Kayalvizhi et al. 

(2024)
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TABLE 4 Advances in ML models and algorithms for healthcare.

Research focus Key methods Dataset(s) used Performance 
metrics

Key insights Ref.

WBAN-based Heart 

Disease Prediction

Tunicate Swarm-Sail 

Fish Optimization, 

RNN, Weighted 

Entropy-based Features

WBAN Data High Prediction Accuracy Optimized channel 

selection improves 

prediction 

performance

Muthu Ganesh and 

Nithiyanantham (2022)

ML for Cancer, 

Diabetes, and Heart 

Disease Prediction

SVM, DT Cancer, Pima Diabetes, 

and Heart Disease 

Datasets

97.08% (Cancer), 79.75% 

(Diabetes), 86.42% (heart 

disease)

ML enhances disease 

prediction and patient 

outcomes

Sheik Abdullah et al. 

(2024)

Real-Time Data 

Prediction Using ML

DT, NB, RF, KNN, NN Custom Dataset (300 

Instances, 14 Attributes)

Performance Varies Across 

Classifiers

Useful in predicting 

heart disease using 

real-time attributes

Jayakiran et al. (2019)

Chronic Heart Disease 

Prediction with RFE

RFE, KNN, DT Cleveland Hungarian 

CHD Dataset

89.91% Accuracy RFE improves early 

CHD prediction

Napa et al. (2024)

ANN and LR for 

Disease Prediction

ANN, LR, Scaling 

Methods

Heart Disease Dataset 86.13% (Without Scaling), 

98.81% (With Scaling)

Scaling methods 

enhance ANN 

performance

Seeli and Thanammal 

(2024)

IoT and ML for Heart 

Disease Prediction

IoT Sensors, Hybrid 

Feature Extraction, 

RNN, SVM, NB, RF

Sensor Data (BP, Oxygen, 

EEG)

Higher Accuracy with RNN Reliable for heart 

disease detection and 

classification

Patil et al. (2023)

TABLE 5 Cluster 3 feature engineering and optimization techniques in heart disease prediction.

Research focus Key methods/
models

Dataset(s) used Performance 
metrics

Key insights Ref.

PCA and Feature 

Selection for CHD 

Prediction

PCA, RF, DT, AdaBoost Coronary Heart Disease 

Data

96% Accuracy PCA and feature 

selection improved 

precision, recall, and 

AUC for CHD

Cheekati et al. (2024)

C-CADZ System for 

CAD Diagnosis

Feature Extraction, 

SMOTE, RF, Extra Trees

Z-Alizadeh Sani CAD 

Dataset

97.37% Accuracy Outperformed prior 

methods by 5.17%, 

robust performance for 

heart disease prediction

Gupta et al. (2022)

Diabetes Detection 

Using Optimized 

Classifiers

SVM, KNN, RF, PSO 

Algorithm for 

Optimization

Indian Pima Diabetes 

Dataset

94.27% Detection Rate Outperformed single 

classifiers for diabetes 

prediction

Shimpi et al. (2024)

SMOTE-based Hybrid 

DL Network for CVD 

Prediction

SMOTE, Adaptive Coati 

Optimization, Kepler-

Optimized Deep Stacked 

Recurrent Network

Heat-failure-clinical-

records Dataset

95.52% Accuracy SMOTE-HDL network 

outperformed existing 

classifiers

Barfungpa et al. (2024)

DL for Cardiac Disorder 

Detection

ST-CNN-GAP-5, SHAP 

Analysis

PTB-XL ECG, 

Arrhythmia Dataset

93.41% AUC, 95.8% 

Accuracy, 99.46% AUC

Interpretability with 

SHAP and better 

performance than 

existing models

Anand et al. (2022)

Hybrid CCRF Model for 

Heart Disease 

Prediction

Canonical Correlation 

Analysis, RF, Polynomial 

Features

– 99.45% Accuracy, Improved 

Sensitivity, Specificity, 

Precision, and F1 Score

Maximized feature 

correlations for heart 

disease prediction

Vetrithangam et al. 

(2024)

ALAN Method for 

Heart Disease 

Prediction

ANOVA, Lasso 

Regression, ET-ABDF 

Model

– 88.0% Accuracy, 89.81% 

Precision, 96.21% AUC

Superior performance 

compared to other 

algorithms

Mandula and Vijaya 

Kumar (2024)

SCSO and DL for Heart 

Disease Classification

SCSO, CNN, PCA, GANs Patient Pathology Data High Accuracy, Precision, 

Recall, F1-Score

Enhanced prognosis and 

reliability in heart disease 

prediction

Lenin and Venkatasalam 

(2024)
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models. The approach effectively enhanced CHD prediction and 
patient outcomes (Cheekati et al., 2024). Gupta et al. (2022) proposed 
a computational intelligence system, C-CADZ, for diagnosing CAD 
using the Z-Alizadeh Sani CAD dataset. The applied feature 
extraction, Synthetic Minority Over-sampling Technique (SMOTE) 
for dealing with class imbalance, and ML classifiers such as RF and 
Extra Trees resulted in an accuracy of 97.37%. C-CADZ outperformed 
prior methods by 5.17% and exhibited robust performance, thus 
making it applicable for heart disease predictions.

Shimpi et al. (2024) proposed a model optimized for diabetes 
detection via SVM, KNN, and RF classifiers with decision-level 
fusion. The classifiers were optimized utilizing a PSO algorithm, 
considering clinical data such as age, BMI, blood pressure, and 
glucose. The model performed at a diabetes detection rate of 94.27%. 
It outperformed single classifiers and previous methods on the 
Indian Pima diabetes dataset. Barfungpa et al. (2024) anticipated a 
new SMOTE-based hybrid DL network for predicting patient 
survival in CVD. The SMOTE-HDL network, tested on the Heat-
failure-clinical-records dataset, obtained a predictive accuracy of 
95.52% that outperformed any existing classifiers. Anand et  al. 
(2022) utilized deep NNs on the PTB-XL ECG dataset for cardiac 
disorder detection, presenting the ST-CNN-GAP-5 model that 
resulted in an AUC of 93.41%. The model was tested on an 
arrhythmia dataset and yielded 95.8% accuracy with an AUC of 
99.46%, better than other existing approaches. The SHAP analysis 
showed that the model is interpretable and reveals critical ECG wave 
changes that can help make diagnoses in resource-constrained 
environments. Vetrithangam et  al. (2024) proposed the Hybrid 
CCRF model of heart disease prediction, which applied Canonical 
Correlation Analysis and RF together. The model represented the 
non-linear relationships and maximized the feature correlations 
because it generated polynomial features and synthesized canonical 
variables. Mandula and Vijaya Kumar (2024) proposed the ALAN 
method, which combines ANOVA and Lasso regression to identify 
the most essential features for heart disease prediction. The Extra 
Trees Adaptive Boosted Decision Forest model reached 88.0% 
accuracy, 89.81% precision, and 96.21% AUC, which is superior to 
other algorithms. Lenin and Venkatasalam (2024) utilized DL and 
SCSO for accurate heart disease classification. SCSO selected key 
features from patient pathology data, enabling CNNs combined with 
advanced models like PCA and GANs to predict disease severity.

3.4 Cluster 4: emerging technologies in 
healthcare

Table 6 shows Emerging Technologies in Healthcare and evaluated 
Quantum Support Vector Classifier (QSVC) and variational quantum 
classifier (VQC) for chronic heart disease prediction in healthcare 4.0. 
QSVC outperformed VQC with an accuracy of 82%, showing the 
potential of quantum ML in healthcare. Several metrics, such as 
precision, recall, and F1 score, supported the findings (Munshi et al., 
2024a). Bhatt et al. (2024) proposed an AI-enabled stroke prediction 
architecture using FL based on an ANN model, which uses real stroke 
cases. The architecture, implemented on healthcare wearable devices, 
aggregates optimizer weights via a 5G communication channel to 
enhance performance. It outperformed traditional approaches, 
achieving 5 to 10% higher accuracy.

The study developed a smart healthcare system for heart disease 
prediction using Bi-LSTM, which integrated data from IoT devices 
and electronic clinical records. The system achieved an accuracy of 
98.86%, along with high precision, sensitivity, specificity, and 
F-measure, outperforming existing prediction models (Nancy et al., 
2022). Vellore Pichandi et al. (2024) introduced a safe e-healthcare 
system with accurate HD prediction and enhanced cloud storage 
security. This classifier achieves a high degree of accuracy as 99.36% 
through HybBPF-ELM, and Intelligent Encryption Framework 
enhances cloud data security. The system minimizes encryption and 
decryption time to process the file by 2.2 GB, at 127.55 s and 452.01 s, 
respectively. Natarajan et al. (2024) proposed a secure e-healthcare 
system combining accurate heart disease (HD) prediction and 
enhanced cloud security. A Hybrid Binary Particle Firefly Optimized 
Extreme Learning Machine classifier achieved 99.36% accuracy, while 
an intelligent encryption framework improved data security. The 
system reduced the processing time for encryption and decryption of 
a 2.2 GB file to 127.55 s and 452.01 s, respectively. FL has allowed it to 
develop ML models on distributed datasets, like those in hospitals and 
mobile devices while maintaining data privacy. This survey reviews 
prior research on its healthcare applications, including key challenges, 
methods, and use cases. It outlines existing studies and explores its 
potential for the healthcare industry (Joshi et al., 2022). CVDs were 
analyzed using hybrid classical-quantum (CQ) transfer learning 
models to detect cardiomegaly in chest X-rays. The pre-trained 
DenseNet-121 integrated with quantum circuits through Qiskit and 
PennyLane obtained Receiver Operating Characteristic (ROC) and 
AUC scores of up to 0.93 and accuracies of up to 0.87 on a balanced 
dataset. Grad-CAM++ heatmaps with QC models showed more 
trustworthiness, thus supporting possible clinical adoption (Decoodt 
et al., 2023). AI was used in Healthcare 4.0 for early and accurate 
disease prediction supported by IoT sensors capturing patient data for 
ML analysis. The seven-classifier ML model predicted nine fatal 
diseases, where RF obtained the highest accuracy of 97.62% and AUC 
of 99.32%. This model is intended to help doctors with early diagnosis 
and better patient outcomes (Kishor and Chakraborty, 2022).

3.5 Cluster 5: applications of AI across 
diseases and conditions

Table  7 shows the Application of AI Across Diseases and 
Conditions. This work presented an intelligent heart disease diagnosis 
method using an integrated filter-evolutionary search-based feature 
selection (iFES-FS) and an optimized ensemble classifier. The feature 
selection combined adaptive threshold information gain (aTIG-FS) 
and evolutionary gravity-search, and a firefly-driven Firefly-Driven 
Multi-Objective Multi-Verse Optimizer algorithm optimized the 
classifier’s hyperparameters. This model outperformed the existing 
methods regarding accuracy, precision, sensitivity, specificity, and 
ROC curve evaluation (Venkata MahaLakshmi and Rout, 2024). The 
work presented an optimized dual-directional temporal convolution 
and attention-based density clustering for predicting and classifying 
diabetic risk levels. The proposed approach also outperformed the 
previous methods and obtained 98.21% accuracy, 94.46% recall, and 
99.01% F1-score on the five datasets considered (Jenefer et al., 2024).

The wearable sensor-based prototype proposed for the early 
detection and monitoring of Parkinson’s disease (PD) using brain wave 
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data and other human records. The FKNN algorithm allowed for 
accurate classification and tracking of patient progress (Sakthisudhan 
et al., 2024). Jayasree and Usha (2022) proposed a reliable approach to 
analyzing CVD risk factors based on ML. The efficacy of the methods 
was assessed using various statistical and visualization indicators. Kumar 
and Belinda (2024) designed a Multi-Layered Acoustic Neural (MLAN) 
Network to identify the symptoms of Rheumatic Heart Disease (RHD) 
by heart sound and ECG measurements. Compared to other models, the 
proposed approach achieved 10–17% higher accuracy in RHD detection.

Assegie et al. (2024) conducted to analyze the performance and 
scalability of DT in predicting CVD. The model of a DT attained 
88.8% accuracy in heart disease by metrics such as the confusion 
matrix, cross-validation score, and model complexity. Jothi Prakash 
et al. (2024) introduced an Attention-Based Cross-Modal transfer 
learning (ABCM) framework to enhance CVD prediction by 
integrating clinical records, medical imagery, and genetic data. The 
model achieved 93.5% accuracy, 94.5% recall, and a 97.2% AUC, 
outperforming traditional approaches. Hassan et al. (2024) attempted 
to predict heart failure and associated mortality by identifying key 
attributes and using machine-learning methods. After pre-processing 
the heart failure dataset, the models achieved high accuracy: RF 
reached 85.23% on the whole dataset, and Flexible Discriminant 
Analysis reached 86.36% on the XGBoost dataset. A DL-based multi-
disease prediction model using big data was developed for the diseases 
of diabetes, hepatitis, and Alzheimer’s. Datasets from the UCI 
repository were normalized and passed through the optimization of 

Jaya Algorithm-Multi-Verse Optimizer and hybrid algorithms, such 
as deep belief network (DBN) and RNN (Ampavathi and Saradhi, 
2021). An advanced ML system was designed to predict heart attack 
risks and patient survival using age, blood pressure, and BMI features. 
SVM, RF, and LR algorithms were tested, with SVM reaching 96% 
accuracy using an 80/20 training–testing split. This model was aimed 
at improving early cardiac condition detection (Mishra and 
Mohapatra, 2023). An adaptive stacking model was developed to 
predict heart diseases using seven ML algorithms, including RF, NB, 
and Gradient Boosting. The model, evaluated with an 80:20 training–
testing split, used metrics like precision and accuracy. Gradient 
Boosting achieved the highest accuracy of 94.67%, outperforming 
other methods (Mohapatra et al., 2023).

3.6 Comparison of clusters in heart disease 
prediction using machine learning

Five clusters use ML and AI to emphasize a distinct aspect of heart 
disease prediction. Table 8 depicts a comparative analysis.

3.6.1 Key observations across clusters in heart 
disease prediction using machine learning

The cluster analysis reveals distinct trends, advancements, and 
challenges in ML applications for heart disease prediction. Below is a 
detailed breakdown of key observations across the clusters:

TABLE 6 Cluster 4 emerging technologies in healthcare.

Research focus Key methods/
models

Dataset(s) 
used

Performance 
metric

Key insights Ref.

Predicting chronic heart 

disease using quantum 

ML.

QSVC, VQC – Accuracy (QSVC: 82%) QSVC outperformed VQC with 82% 

accuracy, demonstrating quantum 

ML’s potential in healthcare.

Munshi et al. (2024a)

Stroke prediction using 

FL and AI on wearable 

devices.

ANN, FL Real stroke 

cases

Accuracy, Precision, Recall, 

F1 Score (5–10% higher 

accuracy than traditional 

methods)

FL-based ANN architecture 

enhanced accuracy by 5%–10%, 

optimized with 5G communication 

for real-time updates.

Bhatt et al. (2024)

Predicting heart disease 

using a Bi-LSTM-based 

system integrating IoT 

and clinical data.

Bi-LSTM IoT devices and 

Electronic 

Clinical 

Records

Accuracy (98.86%), 

Precision, Sensitivity, 

Specificity, F-measure

Achieved 98.86% accuracy, 

surpassing existing models in heart 

disease prediction.

Nancy et al. (2022)

Enhancing heart disease 

prediction with cloud 

security and optimized 

encryption.

HybBPF-ELM classifier, 

Intelligent Encryption 

Framework

– Accuracy (99.36%), 

Encryption/Decryption 

times (127.55 s and 452.01 s 

for 2.2GB file)

Achieved 99.36% accuracy, improved 

encryption/decryption processing 

times, and robust data security.

Natarajan et al. (2024)

Review of FL 

applications in 

healthcare.

FL – – Explored FL’s potential to maintain 

privacy while enabling ML on 

distributed datasets.

Joshi et al. (2022)

Detecting cardiomegaly 

in chest X-rays using 

hybrid classical-

quantum models.

DenseNet-121 (pre-

trained), Quantum 

Circuits (Qiskit, 

PennyLane)

Chest X-ray 

dataset 

(CheXpert 

repository)

ROC AUC (0.93), Accuracy 

(0.87)

Quantum circuits improved 

prediction and trustworthiness of 

cardiomegaly detection, supporting 

clinical adoption.

Decoodt et al. (2023)

Predicting fatal diseases 

using AI and ML.

RF, DT, NB, SVM, etc. Public health 

datasets 

(unspecified)

Accuracy (RF: 97.62%), 

AUC (99.32%)

RF achieved the highest accuracy of 

97.62%, helping in early diagnosis of 

fatal diseases.

Kishor and 

Chakraborty (2022)
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TABLE 7 Cluster 5 application of AI across diseases and conditions.

Research focus Key methods/models Dataset(s) used Performance 
metric

Key insights Ref.

Prediction of diabetic risk levels 

using convolution and clustering.

Dual-Directional Temporal 

Convolution, Attention-Based 

Density Clustering, Remora 

Optimization

Five diabetes datasets Accuracy (98.21%), Recall 

(94.46%), F1-Score (99.01%)

Achieved high accuracy and outperformed previous 

approaches with a focus on feature extraction.

Jenefer et al. (2024)

Early detection and monitoring of 

Parkinson’s disease via wearable 

sensors.

FKNN (Fuzzy KNN) Brain wave data, Human records - Wearable sensor data and FKNN were used to accurately 

monitor and classify Parkinson’s disease.

Sakthisudhan et al. (2024)

Analyzing CVD risk factors using 

ML.

NNs, State-of-the-art ML 

Techniques

Cardiovascular datasets - High accuracy in stroke and heart disease prediction using 

advanced ML algorithms.

Jayasree and Usha (2022)

Detection of Rheumatic Heart 

Disease (RHD) through heart 

sound and ECG.

RHD Recurrent Convolutional 

Network, Acoustic SVM (ASVM)

Heart sound and ECG 

measurements

10–17% higher accuracy 

than other models

The proposed model achieved significantly higher accuracy 

in detecting RHD symptoms.

Kumar and Belinda (2024)

Enhancing CVD prediction 

through the integration of diverse 

data types.

ABCM, Clinical, Medical Imagery, 

Genetic Data

Clinical records, Medical imagery, 

Genetic data

Accuracy (93.5%), Precision 

(92%), Recall (94.5%), AUC 

(97.2%)

ABCM framework outperformed traditional models in 

early and accurate CVD detection.

Jothi Prakash et al. (2024)

Predicting heart failure and 

mortality based on key features.

RF, Flexible Discriminant Analysis, 

XGBoost

Heart failure dataset Accuracy (RF: 85.23%, 

Flexible Discriminant: 

86.36%)

Hyperparameter fine-tuning improved performance for 

heart failure prediction.

Hassan et al. (2024)

Predicting Diabetes using ML on 

PIMA Indian dataset.

Various ML Methods (SVM, DT, 

etc.)

PIMA Indian Diabetes Dataset (UCI 

repository)

- Focused on early diagnosis of diabetes using predictive 

modeling with the PIMA Indian dataset.

Srinivasulu and Pushpa 

(2020)

Remote monitoring for diabetes 

using IoT, Cloud Computing, and 

ML.

XGBoost, RF, Train-Test Split, K-fold 

Cross Validation

Diabetes dataset - Improved diabetes risk monitoring efficiency through IoT 

and cloud computing for chronic patients.

Vizhi and Dash (2020)

Predicting multiple diseases 

(diabetes, hepatitis, Alzheimer’s) 

using big data.

DBN, RNN,

Jaya Algorithm-Multi-Verse 

Optimizer optimization

UCI repository datasets - The hybrid model outperformed existing methods 

regarding prediction accuracy for multiple diseases.

Ampavathi and Saradhi 

(2021)

Predicting heart attack risk using 

various features.

SVM, RF, LR Heart disease dataset Accuracy (SVM: 96%) SVM achieved 96% accuracy in predicting heart attacks 

with optimized feature selection.

Mishra and Mohapatra 

(2023)
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3.6.1.1 Accuracy and performance trends

 • Most clusters report high prediction accuracy, with models often 
exceeding 95% accuracy in heart disease classification.

 • DL models (CNN, RNN, Bi-LSTM, GANs) consistently 
outperform traditional ML methods (SVM, DT, RF).

 • Optimization techniques (Feature Selection, Hyperparameter 
Tuning) further boost model performance, often improving F1 
scores and AUC values.

 • The Emerging Technologies cluster (Quantum ML, FL, IoT) 
introduces privacy-preserving AI solutions, but some methods 
(e.g., QSVC) show lower accuracy (~82%), requiring 
further advancements.

3.6.1.2 Role of feature selection and engineering

 • Feature selection significantly impacts performance, with 
methods like:
 o PCA for dimensionality reduction.
 o Lasso Regression, GA, PSO enhancing feature 

selection efficiency.
 o Hybrid Feature Engineering (SMOTE-HDL, Hybrid CCRF) 

achieving accuracy >95% by addressing data imbalance and 
feature redundancy.

 • Advanced feature selection enhances interpretability, making 
models more useful in clinical settings.

3.6.1.3 ML model trends and emerging frameworks

 • Supervised Learning Models dominate, particularly:
 o CNNs for image-based diagnostics (ECG, PCG)

 o RNN for time-series analysis
 o Ensemble models (XGBoost, RF) for structured datasets

 • Hybrid AI frameworks are gaining popularity:
 o Autoencoder-DenseNet hybrid networks achieve 99.67% 

accuracy.
 o Attention-Based Models (ABCM, Bi-LSTM with Attention 

Mechanisms) optimize long-term dependency learning in 
cardiac data.

 • Quantum ML (QSVC, VQC) is an emerging field but requires 
significant improvements in computational efficiency 
and accuracy.

3.6.1.4 Impact of emerging technologies

 • FL is transforming healthcare AI, offering:
 o Privacy-preserving AI by training models on decentralized 

hospital datasets.
 o 5%–10% higher accuracy compared to traditional ML models.

 • QC (QSVC, VQC) shows potential but has accuracy limitations 
(~82%), requiring optimization.

 • IoT-based ML models (Wearables, Remote Monitoring)
 o Improve real-time disease prediction.
 o Ensure data security via cloud encryption models (e.g., 

HybBPF-ELM framework with 99.36% accuracy).
 • AI-driven Remote Healthcare is gaining traction, particularly in 

rural areas with limited hospital access.

3.6.1.5 Multi-disease prediction capabilities

 • AI models are no longer limited to heart disease. Several ML 
approaches now extend to:

TABLE 8 Comparative analysis of clusters in heart disease prediction using ML.

Cluster Focus area Key techniques 
used

Performance insights Notable research 
trends

Heart Disease Detection and 

Diagnostics

Early detection and diagnosis 

of heart-related conditions 

using ML models

DL (CNN, PCA, GANs),

Feature selection (SCSO), 

ECG/PCG signal analysis

High accuracy (99.65%—CNN-based 

Inception, 98.25%—XGB), Novel 

optimization techniques (WbGAS) 

outperform traditional methods

Strong reliance on imaging 

(ECG, PCG) and pathology 

data; Cloud and IoT 

applications emerging

Machine Learning Models 

and Algorithms for 

Healthcare

General ML frameworks for 

disease prediction and 

classification

DT, RF, SVM, ANN, RNN, 

RFE

ML enhances disease prediction 

(SVM—97.08% Cancer, 79.75% 

Diabetes, 86.42% heart disease),

ANN accuracy improvement with 

normalization (98.81%)

Emphasis on hyperparameter 

tuning, ensemble models, and 

real-time ML applications

Feature Engineering and 

Optimization Techniques

Improving model performance 

via feature selection, 

dimensionality reduction, and 

optimization

PCA, GA, Lasso Regression, 

Swarm-based optimizations 

(PSO, SCSO, Kepler 

Optimization)

Hybrid optimization models show 

strong improvements (SMOTE-

HDL—95.52%, Hybrid CCRF—

99.45%)

Evolutionary and hybrid AI 

algorithms improving 

prediction efficiency

Emerging Technologies in 

Healthcare

Integration of cutting-edge 

innovations like QC, FL, and 

IoT

Quantum ML (QSVC, VQC), 

Bi-LSTM, 5 G-powered FL, 

Hybrid Particle Firefly 

Optimization

Quantum ML (QSVC—82% 

accuracy), Cloud AI solutions 

(HybBPF-ELM—99.36%), IoT-based 

ML models showing 98.86% accuracy

Increased focus on security 

(encryption), FL for privacy-

preserving AI, and 5 G-enabled 

real-time applications

Applications of AI Across 

Diseases and Conditions

AI for broader disease 

prediction (Diabetes, Cancer, 

Neurological Disorders)

DL, Transfer Learning, Cross-

modal AI, Reinforcement 

Learning

High accuracy in cross-disease 

applications (ABCM—93.5% CVD 

detection, Parkinson’s detection using 

FKNN)

AI is increasingly being used in 

multi-disease prediction, cloud 

computing + IoT integration 

for remote healthcare
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 o Diabetes prediction (SVM achieves 97.33% accuracy).
 o Cancer detection (RF reaches 97.08% accuracy).
 o Neurological disorders (Parkinson’s, Alzheimer’s, 

Stroke prediction).
 • Cross-modal AI techniques (ABCM, Transfer Learning) integrate 

clinical, imaging, and genetic data, improving CVD risk 
prediction to 93.5% accuracy.

 • RL and DBN are beginning to be  explored for multi-
disease diagnosis.

3.6.1.6 Real-world challenges and limitations

 • Dataset Limitations
 o Many studies rely on public datasets (Cleveland, 

Framingham, Physionet 2016), limiting real-world  
generalizability.

 o FL can help but requires cross-institutional collaborations.
 • Model Interpretability and Explainability

 o Many DL models function as black boxes.
 o SHAP analysis and feature importance mapping improve  

explainability.
 • Computational Efficiency

 o Quantum ML and DL models require high computational 
resources, limiting real-world deployment.

 • Scalability for Global Healthcare
 o Most ML models lack scalability across patient demographics, 

ethnicities, and geographic regions.

3.6.1.7 Future directions and recommendations

 • Hybrid AI models (combining CNN, RNN, Transformers) will 
likely dominate future research.

 • Ethical AI and Bias Reduction are crucial for fair and equitable 
healthcare AI.

 • Integration with Blockchain for secure patient data  
management.

 • Clinical Trials and Real-World Validation to bridge the gap 
between research and hospital deployment.

The cluster analysis reveals significant advancements in 
AI-driven heart disease prediction, with DL, feature engineering, and 
FL leading the way. However, key barriers remain to dataset 
quality, model interpretability, and computational efficiency. 
Future work should focus on scalability, privacy-enhancing 
AI, and hybrid models to ensure widespread adoption in  
healthcare.

4 Methodology flowchart for ML 
implementation in heart disease 
prediction

ML models for heart disease prediction follow a structured 
methodology, from data collection to model evaluation and 
deployment. Figure  7 shows a visual flowchart that clarifies the 
workflow involved in ML-based heart disease diagnosis.

4.1 ML implementation workflow

The methodology consists of the following steps (Helmi et al., 
2021; Elghanuni et al., 2022; Abdullah et al., 2023):

 a Collection of Information:
 o Clinical information (EHRs, demographic information, and 

patient’s medical history).
 o Biometric signals (such as an ECG, blood pressure, and heart 

rate variability).
 o Imaging data (echocardiograph, CT scans).
 o Data from wearable devices (such as smartwatches and 

fitness trackers).
 b Data Organization:

 o Management of the missing values and outliers.
 o Selection of significant features and reduction in the number 

of features.
 o Standardization and normalization of data.
 o Solving class imbalance problems through specified data 

augmentation techniques.
 c Enhancement of Features:

 o Selection of relevant attributes (cholesterol levels, blood 
pressure, heart rate).

 o Transformation of features (PCA, LDA).
 o Time series feature extraction from ECG signals.

 d Selected Models Learning:
 o Choice of ML models (LR, SVM, RF, CNN, LSTM).
 o Model training with labeled datasets.
 o Fine-tuning hyperparameters and applying cross-validation.

 e Performance of Models:
 o The model’s performance is evaluated on the data sets with 

Accuracy, Sensitivity, Specificity, AUC-ROC, and F1  
measure.

 o Against baseline models.
 o Models that yield explainable results (SHAP, Local 

Interpretable Model-agnostic Explanations).
 f Training New Models for Models:

 o Placement of ML models in hospitals and on wearable devices.
 o Live inference for monitoring a patient.
 o Regular retraining for models to increase accuracy.

This structured approach ensures transparency in developing and 
deploying ML models for heart disease prediction.

5 Data augmentation strategies for 
addressing class imbalance in heart 
disease prediction

A significant complication with using ML in heart disease 
diagnosis is class imbalance. Positive cases (heart disease) are much 
less common than negative ones, which can cause skewed bias in the 
model’s predictions. Models are inaccurate because they tend to prefer 
the majority class. Data augmentation methods help resolve this 
problem through overlap-based synthetic minority instance 
generation (Fattepur et al., 2018; Ghazi et al., 2018; Dissanayake and 
Johar, 2021; Faizah et al., 2024).

https://doi.org/10.3389/frai.2025.1583459
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Kumar et al. 10.3389/frai.2025.1583459

Frontiers in Artificial Intelligence 15 frontiersin.org

5.1 Comprehending class imbalance in 
heart disease databases

Many heart disease databases (like the UCI Heart Disease, 
Framingham) have a non-homogeneous class distribution where the 
non-disease population dramatically exceeds the diseased population. 
Imbalanced datasets cause:

 o Weak model performance.
 o Excessive false-negative proportions.
 o Reduced sensitivity in detecting disease.

5.2 Data augmentation techniques

Several techniques can be used to generate synthetic samples and 
balance dataset distribution:

 (i) Oversampling Techniques

 • Synthetic Minority Over-Sampling Technique (SMOTE):
 o Generates synthetic instances of the minority class by 

interpolating existing samples.
 o Example: If the dataset has only 20% positive cases, SMOTE 

can synthetically create new minority class samples.
 o Advantage: It helps balance the dataset without losing 

original data.
 • Adaptive Synthetic Sampling (ADASYN):

 o Similar to SMOTE but focuses on harder-to-learn examples by 
generating synthetic data where misclassification is higher.

 o Advantage: Enhances model performance for complex datasets.

 (ii) Under sampling Techniques
 • Random Under sampling (RUS):

 o Reduces the majority class by randomly removing samples, 
ensuring a balanced class distribution.

 o Advantage: Reduces training time, but may lead to loss of 
valuable data.

 • Cluster Centroid Under sampling:

FIGURE 7

Machine learning pipeline for heart disease prediction: from data acquisition to clinical deployment.
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TABLE 9 Effect of data augmentation on ML model performance.

Model Dataset Baseline accuracy 
(%)

With augmentation (%) Improvement

LR UCI Heart Disease 81.2 85.7 +4.5%

RF Framingham 87.5 91.2 +3.7%

XGBoost MIT-BIH 89.3 94.1 +4.8%

CNN (DL) ECG Dataset 92.6 97.3 +4.7%

 o Replaces samples in the majority class with their centroid 
representations, ensuring minimal data loss.

 o Advantage: Preserves the majority class distribution while 
balancing data.

 (iii) Hybrid Sampling Techniques
 • SMOTE + Tomek Links:

 o A combination of oversampling and undersampling techniques.
 o Tomek links help remove noisy data points close to the 

decision boundary.
 o Advantage: Reduces overfitting and improves 

model generalization.
 • SMOTE + Edited Nearest Neighbor (ENN):

 o SMOTE generates new samples, and ENN removes 
misclassified samples from the majority class.

 o Advantage: Improves dataset quality for ML training.

 (iv) Data Augmentation for DL.

For DL models (e.g., CNN, LSTM), image and signal-based 
augmentation can be applied:

 • ECG Data Augmentation:
 o Techniques: Time warping, jittering, flipping, permutation.
 o Application: Helps DL models generalize better on 

ECG signals.
 • Medical Imaging Augmentation:

 o Rotation, scaling, flipping, and noise addition.
 o Application: Improves CNN-based heart disease classifiers.

5.3 Experimental validation: the impact of 
data augmentation

Several studies have demonstrated the effectiveness of 
augmentation techniques in improving heart disease prediction. 
Table  9 presents the effect of data augmentation on ML 
model performance.

Key findings indicate that augmentation techniques significantly 
improve model accuracy. DL architectures such as CNN and LSTM 
gain considerable advantages from data augmentation methods. 
Combining hybrid sampling techniques (SMOTE + ENN) notably 
enhances ML models.

5.3.1 Future considerations for data 
augmentation

Although augmentation techniques enhance performance, 
specific challenges need to be  tackled (Wei et  al., 2023; Jiao and 
Abdullah, 2024):

 • Overfitting Risk: An abundance of synthetic data generation may 
result in overfitting if adequate validation measures are 
not implemented.

 • Computational Complexity: Sophisticated augmentation 
techniques (GANs, Variational Autoencoders) demand 
substantial computational resources.

 • Model Interpretability: It is essential to validate augmented data 
for its applicability and significance in real-world clinical settings.

6 Performance benchmarking of ML 
models for heart disease prediction

ML models for predicting heart disease have advanced 
considerably, showcasing a range of algorithms that exhibit varying 
degrees of accuracy, sensitivity, specificity, and computational 
efficiency. This section presents a comparative analysis of ML models, 
focusing on essential performance metrics.

6.1 Comparative benchmarking of ML 
models

To assess the performance of various ML algorithms, we examine 
significant research that has documented metrics, including accuracy, 
sensitivity, specificity, area under the curve (AUC), and computational 
complexity. Table 10 provides a comparative analysis of ML models for 
predicting heart disease. The critical insights include conventional ML 
models, such as LR and SVMs, which demonstrate satisfactory 
performance but exhibit reduced accuracy when juxtaposed with DL 
models. Ensemble methods such as RF and XGBoost demonstrate 
enhanced performance owing to their capacity to identify intricate data 
patterns. DL methodologies (CNN, Hybrid CNN-LSTM) yield superior 
accuracy but demand significant computational resources. FL 
methodologies ensure optimal performance while tackling privacy issues 
in practical implementations.

Table 11 offers a detailed comparative overview of ML models 
frequently used for predicting heart disease. Each ML model is 
evaluated across five critical dimensions: predictive performance, 
interpretability, computational efficiency, potential for clinical 
adoption, and privacy preservation.

7 Visualization of ML model 
performance trends

We employ visual analytics, including box plots, violin plots, and 
trend graphs, to provide deeper insights into the evolution and 
effectiveness of ML models for heart disease prediction.
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7.1 Box plot analysis of model performance

A box plot illustrates the accuracy distribution across different ML 
models, showing the median, interquartile range, and outliers. The 
box plot description is shown in Figure 8. It reveals that CNN and 
Hybrid DL models exhibit the highest median accuracy (Ishaque et al., 
2023). Traditional ML models, such as LR and SVM, show wider 
variability in performance. DL models are consistently more accurate 
but computationally intensive (Seneviratne et al., 2019; Ishaque et al., 
2022; Yajie et al., 2023).

7.2 Sensitivity and specificity of ML models

Figure 9 illustrates the sensitivity and specificity values of various ML 
models used for heart disease prediction (Pouretemad et al., 2009; Gros 
et al., 2019; Jimmy and Bakar, 2023). Each model’s performance is shown 
with two bars, blue for sensitivity and orange for specificity, enabling 

direct comparisons among models. Hybrid DL models and CNN-based 
architectures stand out with superior and consistent performance, 
achieving sensitivity and specificity values above 97%, indicating their 
effectiveness in accurately identifying true positives and negatives. In 
contrast, traditional ML models like LR and SVM demonstrate moderate 
performance with more significant variability in their metric distributions. 
This visual representation emphasizes the significance of selecting models 
based on performance metrics crucial for clinical diagnostic accuracy. It 
also highlights the growing reliability of DL frameworks in essential 
healthcare applications, such as predicting cardiovascular risk.

7.3 Trend graph: ML model accuracy over 
time

A trend graph illustrates the improvement in ML model accuracy 
over time, reflecting advancements in algorithm development. The 
trend graph description in Figure 10 shows that the accuracy of ML 

TABLE 10 Benchmarking of ML models for heart disease prediction.

Model Dataset(s) used Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

AUC 
score

Computational 
complexity

LR UCI Heart Disease, Framingham 85.6 83.2 88.1 0.87 Low

SVM Cleveland, PTB-XL 89.3 87.1 91.4 0.90 High

RF MIT-BIH, Cleveland 91.2 90.5 92.3 0.94 Moderate

Gradient Boosting 

(XGBoost, CatBoost)

Framingham, PhysioNet 93.5 92.0 95.0 0.96 Moderate-high

ANN PTB-XL, Framingham 95.8 94.6 97.2 0.97 High

CNN MIT-BIH, ECG datasets 97.3 96.5 98.4 0.99 Very high

FL with ANN Distributed EHRs 92.6 91.2 94.8 0.95 High

Hybrid DL (CNN + LSTM 

+ Attention Mechanism)

ECG, Wearable Sensor Data 98.1 97.4 99.0 0.99 Very high

TABLE 11 Comparative evaluation of ML models: strengths and weaknesses.

Model type Strengths Limitations Clinical adoption readiness

LR Interpretable, fast, and effective for linearly 

separable data

Low flexibility, poor performance with non-

linearity

High

SVM High accuracy in small to medium datasets, 

effective in high-dimensional spaces

Difficult to interpret, high computation cost in 

large datasets

Moderate

RF Robust to overfitting, good performance across 

datasets, handles non-linear data

Less interpretable, biased toward the majority 

classes without balancing

High

XGBoost High accuracy, feature importance insights, and 

handles imbalanced data well

Computationally intensive, harder to tune Moderate–high

ANN Learns complex patterns, scalable to extensive data Low transparency (“black-box”), prone to 

overfitting

Moderate

CNN Superior for imaging and time-series (e.g., ECG), 

high prediction power

Requires large datasets and GPU resources, poor 

interpretability

Moderate

Hybrid DL Models 

(e.g., CNN-LSTM)

Exceptional accuracy, good temporal learning, 

multimodal compatibility

High computational cost, complex model tuning, 

and limited explainability

Low–moderate

FL + ML Privacy-preserving, ideal for hospital 

collaboration, compliant with HIPAA/GDPR

Complex implementation, data heterogeneity, 

communication overhead

Moderate–high

Quantum ML Models 

(e.g., QSVC)

Promising future potential, early-stage success in 

modeling complexity

Accuracy limitations, not yet scalable, require 

quantum infrastructure

Low
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models has steadily increased over the past decade. Introducing DL 
(CNN, LSTM, attention-based models) has significantly improved 
predictive capabilities. FL models show increasing adoption due to 
their privacy-preserving benefits.

8 Performance benchmarking and 
case studies of ML models for heart 
disease prediction

The utilization of ML in predicting heart disease has advanced 
considerably, showcasing a range of models that exhibit varying 
degrees of accuracy, sensitivity, specificity, and computational 
efficiency. This section offers a detailed analysis of ML models through 
key performance metrics and includes case studies highlighting 
successful applications in real-world scenarios.

8.1 Case studies of successful ML 
applications in heart disease prediction

Beyond benchmarking, actual studies within the scope capture 
ML practices’ value in clinical settings. Case studies from real-world 
applications are vital because they demonstrate the actual effectiveness 
of ML models, extending beyond just theoretical performance. They 
showcase the potential of AI to optimize clinical workflows, enhance 
diagnostic precision, and facilitate prompt medical decisions. 
Furthermore, such implementations foster trust among healthcare 
professionals and stimulate quicker adoption of AI in practical clinical 
environments (Khatibi et al., 2009; Dehghani et al., 2014; Das et al., 
2018; Attalla et al., 2021). The following case studies show how various 
ML models have achieved successful outcomes.

8.1.1 Case study 1: AI-enhanced ECG 
interpretation for arrhythmias identification

 • Approach: Using the MIT-BIH Arrhythmia Database, a 
CNN-based DL model was used to classify various forms of 
heart arrhythmia.

 • Result: 98.6% accuracy, which dwarfed traditional methods of 
ECG analysis.

 • Significance: The model was incorporated into portable ECG 
monitoring instruments to allow real-time detection of 
arrhythmias (Muzammil et al., 2024).

8.1.2 Case study 2: heart disease risk assessment 
without data interchange using FL

 • Approach: An FL model was implemented in five hospitals 
without the need for patient data exchange.

 • Result: The model obtained over 92.6% accuracy, comparable to 
other models trained on central databases.

 • Significance: It enabled hospital collaboration in building 
predictive models while ensuring data privacy compliance 
(HIPAA, GDPR) (Otoum et al., 2024).

8.1.3 Case study 3: heart disease monitoring 
using PPG and ECG signals by wearing a 
smartwatch

 • Instruments utilized: A hybrid LSTM-CNN architecture is used 
for classification, and the ECG and PPG smartwatch and 
medical-grade wearable data were trained on it.

 • Result: 97.8% accuracy was achieved in predicting abnormal 
heart rhythms.

FIGURE 8

Box plot analysis of ML model performance.
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 • Consequence: Incorporation into Apple Watch and Fitbit for 
heart disease real-time risk analysis (Prieto-Avalos et al., 2022).

8.1.4 Case study 4: cardiac risk evaluation based 
on the abilities of AI

 • Instruments utilized: CatBoost Gradient Boosting Models 
trained with the Framingham Biobank data were used to predict 
5-year cardiovascular risk.

 • Result: The model received an AUC of 93.5%, surpassing the 
standard Framingham RSB models.

 • Consequence: These findings became part of the integration with 
telemedicine applications in AI-based treatment 
recommendations (Singh et al., 2024).

8.1.5 Case study 5: AI-enhanced ECG for 
identifying sex-specific cardiovascular risk

In a retrospective cohort study, researchers developed an 
AI-enhanced electrocardiography (AI-ECG) model to investigate 
sex-specific cardiovascular risk. Utilizing a CNN trained on 1,163,401 
ECGs from the Beth Israel Deaconess Medical Center (BIDMC) dataset, 
the model was designed to classify sex based on 12-lead ECG data. The 
model’s performance was externally validated using 42,386 ECGs from 
the UK Biobank cohort. A novel metric, termed the ‘sex discordance 
score,’ was introduced, representing the difference between AI-predicted 
sex and biological sex. Findings indicated that females with higher sex 
discordance scores exhibited an increased risk of cardiovascular death, 
heart failure, and myocardial infarction, despite having normal ECGs. 
This association was not observed in males. The study suggested that the 
sex discordance score could serve as a valuable biomarker for identifying 
females at elevated cardiovascular risk, potentially guiding enhanced 
risk factor modification and surveillance strategies (Sau et al., 2025).

8.1.6 Case study 6: AI-ECG reveals elevated 
cardiovascular risk in women

A recent study employed a CNN to evaluate more than a million 
ECGs from the Beth Israel Deaconess Medical Center and the UK 

Biobank. The AI-driven ECG model displayed significant accuracy in 
determining sex and introduced a new metric called the ‘sex 
discordance score’—the gap between the sex predicted by the AI and 
the biological sex. The results showed that women with higher sex 
discordance scores were at a greater risk for cardiovascular death and 
heart-related issues, a pattern not found in men. This innovative 
method highlights the potential of AI-ECG models to enhance the 
early detection and monitoring of cardiovascular risks, especially for 
women, leading to customized interventions (Market Access, 2025).

8.1.7 Case study 7: AI-enhanced ECG for 
predicting future heart failure risk

Researchers at the Yale School of Medicine’s Cardiovascular Data 
Science (CarDS) Lab have created an AI tool that predicts individuals 
at high risk for developing heart failure by analyzing ECG images. This 
model was trained and validated with data from varied populations 
across the United States, the United Kingdom, and Brazil, showcasing 
its wide-ranging applicability. Using standard 12-lead ECG images, 
the AI tool facilitates the early detection of heart failure risk, which 
may lead to reduced hospital visits and early mortality. This 
breakthrough marks a significant advancement in scalable, 
non-invasive cardiac risk assessment, especially useful in settings with 
limited resources (Dhingra et al., 2025).

8.1.8 Case study 8: XAI in clinical practice
The adoption of ML models in healthcare is often hindered by the 

“black-box” nature of complex algorithms. XAI techniques address 
this challenge by providing insights into model decision-
making processes. 

 • CardioRiskNet: This hybrid AI model combines active learning 
with XAI to assess and prognosticate CVD risk. By offering 
transparent predictions, CardioRiskNet enhances clinician trust 
and supports informed decision-making.

 • XAI for Heart Failure Prediction: A study employed XAI 
methodologies to improve a prediction model for heart failure 
survival. By identifying key features influencing predictions, such 

FIGURE 9

Sensitivity and specificity across ML models.
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as follow-up time and serum creatinine levels, the model 
achieved a balanced accuracy of 85.1% with cross-validation, 
facilitating better clinical understanding and application (Talaat 
et al., 2024).

8.2 Future directions in ML-based heart 
disease prediction

While current models perform well, several challenges remain:

 1. Explainability and Interpretability: Ensuring AI-driven models 
provide transparent decision-making explanations.

 2. Real-World Deployment: Bridging the gap between research 
prototypes and clinical implementation.

 3. Adaptive Learning: Developing self-updating AI models that 
improve over time as new data becomes available.

 4. Multimodal Data Fusion: Integrating genetic, imaging, and 
wearable sensor data for holistic cardiovascular risk assessment.

9 Ethical considerations and bias 
mitigation in ML-based medical 
diagnostics

ML has made considerable progress in predicting heart disease; 
however, ethical concerns continue to pose significant challenges to 
its implementation in clinical settings (Matthews et al., 2021). Ethical 
considerations encompass data privacy, bias mitigation, transparency, 
accountability, and fairness, all essential for maintaining patient trust 

and achieving equitable healthcare outcomes (Ibrahim et al., 2018; 
Draman et al., 2019).

9.1 Data privacy and security in ML for 
healthcare

ML models intended to predict heart disease focus on EHRs, 
wearable sensors, and imaging data. This gives rise to serious privacy 
issues. Patients can suffer significantly from unauthorized access, data 
breaches, and even misuse of sensitive health information (Marzo 
et al., 2022). Suggestions for Ensuring Data Protection:

 • Federated Learning: FL allows ML model training across different 
hospitals without sharing raw patient data, complying with data 
privacy regulations.

 • Differential Privacy: This technique involves adding noise to a 
dataset, making it impossible to re-identify the patient but still 
allowing for valuable ML insights.

 • Blockchain in Healthcare: Patient data storage is decentralized 
and immutable, so unauthorized changes cannot be made, and 
the safe exchange of patient data is guaranteed.

9.2 Algorithmic bias and fairness in heart 
disease prediction

ML models predict data sets that often do not reflect every patient 
group, resulting in biased outcomes. This is especially troublesome for 
the diagnosis of heart disease because gender, race, and social class 

FIGURE 10

Trend of ML model accuracy for heart disease prediction over time.
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differences may lower the model’s accuracy (Mohammadi et al., 2012; 
Khatibi et al., 2015; Todd et al., 2016).

9.2.1 Common bias issues

 • Gender Bias: The majority of datasets used to study heart disease 
have an overflow of male participants, hence leading to high 
deficiencies in prediction for women.

 • Ethnic and Racial Bias: A model established using data from one 
ethnicity only will almost always underperform in a 
multicultural environment.

 • Healthcare Disparities: Economically disadvantaged people may 
suffer greatly when these models are relied on to interpret their 
medical records, as the files may not be comprehensive.

9.2.2 Steps to reduce bias

 • Dataset Diversity: Ensure training datasets are comprehensive 
and accurate representations across different demographics.

 • Bias Detection: Use Demographic Parity, Equalized Odds, and 
Disparate Impact metrics to evaluate fairness.

 • Adaptive Synthetic Sampling: To mitigate bias, use ADASYN and 
Fairness Aware Model Tuning as reweighting and 
re-sampling methods.

9.3 Ethical AI regulations and compliance 
in healthcare

Ways to Soften the Effect of Bias:

 • Improved Dataset Collection: Training sets should be diverse and 
represent different population segments.

 • Metrics to Evaluate Bias: Use classification fairness techniques 
like Demographic Parity, Equalized Odds, and Disparate Impact.

 • Object Reweighting and Model Resampling Techniques: To 
increase the equity of the AI algorithm and narrow down bias, 
adaptive synthetic sampling (ADASYN) and fairness-aware 
model tuning are used.

Global standards must first be  followed to develop AI 
capable of performing further in healthcare settings (Mennella 
et al., 2024).

9.4 Primary regulations related to ethical AI

 • General Data Protection Regulation (GDPR): The standard for 
patient data privacy in European healthcare institutions.

 • Health Insurance Portability and Accountability Act (HIPAA): 
U.S. law that protects patient health information and sets 
privacy rules.

 • FDA and CE Marking for AI in Healthcare: Diagnostic tools that 
rely on ML require additional scrutiny and verification before 
being made available for clinical practice.

These laws and regulations require AI to be trustworthy, hold 
designers accountable, and ensure it has been rigorously tested before 
being used in the real world (Farhud and Zokaei, 2021).

10 Explainable AI (XAI) for enhanced 
clinician trust and adoption

A significant obstacle to the clinical implementation of ML models 
for heart disease prediction is their opaque nature, which makes it 
challenging for clinicians to comprehend the rationale behind the 
model’s predictions. XAI techniques tackle this challenge by delivering 
interpretable insights to healthcare professionals (Mienye et al., 2024).

10.1 The need for explainability in 
ML-based medical diagnostics

Unlike traditional diagnostic technologies, ML models utilize 
opaque DL structures. In cases with no explainability, clinicians might 
be averse to AI-based forecasts, particularly in critical areas such as 
estimating the risk of a cardiac event (Amann et al., 2020). Obstacles 
Concerning Black Box AI:

 • Lack of Clinical Justification: In all cases where AI models make 
predictions, there should be a rational basis accompanying the 
models for the predictions to be accepted by medical professionals.

 • Trust and Liability Issues: If an AI system incorrectly categorizes an 
accountable patient, who is at fault the physician or the AI system?

 • Legal and Ethical Accountability: AI systems must be explainable 
to avoid legal liability in a medical setting.

10.2 XAI techniques for ML-based heart 
disease prediction

Different approaches can improve the understanding of 
AI-centered heart disease diagnosis, enabling practitioners to 
comprehend the reasoning behind a model’s prediction (Guleria et al., 
2022). Model Agnostic Explainability Approaches:

 • SHAP: Determines which aspects like blood pressure and ECG 
most impacted the prediction.

 • Local Interpretable Model-agnostic Explanations: Local interpretable 
models that change the input and assess how the output changes.

 • Counterfactual Explanations: This section addresses the question 
of “What alterations in the patient’s data could change the 
prediction of AI?”

DL-Specific Explainability Methods:

 • Grad-CAM (Gradient-weighted Class Activation Mapping): 
Identifies significant areas in medical images utilized by CNN 
models for disease classification.

 • Attention Mechanisms in LSTMs & Transformers: Analyzes 
time-series ECG signals to illustrate the patterns influencing 
heart disease diagnosis.

10.3 Benefits of XAI for clinical adoption

 • Increased Clinician Engagement with AI Systems: AI models that 
reason about their actions have a higher chance of being utilized 
by clinicians during patient interactions (Stafie et al., 2023).
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 • Liability of Inaccurate Diagnoses: Predictive AI, aided by 
transparency, can help correct devastatingly incorrect diagnoses 
by identifying instances where the model fails (Hulsen, 2023).

 • Meeting Law Compliance: Explanatory processes foster 
adherence to data protection regulations such as GDPR, HIPAA, 
and FDA, which require healthcare AI models to be explainable 
(van der Velden et al., 2022).

10.4 Future directions in XAI for medical AI

Despite (XAI) Achieving Administrative Objectives in Healthcare 
AI Sectors, Obstacles Persist (Saw et al., 2024):

 • Explainability vs. Accuracy: Well-interpreted models like DT 
may be mathematically less accurate than DL-based approaches.

 • Cognitive Load for Clinicians: Real-time XAI systems integrated 
into clinical practice are important in further research.

 • X AI Explainability Framework: A defined metric for judging the 
relevance of information provided by an AI tool or model in 
health services is needed.

11 Challenges and limitations

Figure  11 highlights the key challenges in healthcare data 
management that obstruct the successful integration of AI and ML in 
clinical situations. These challenges encompass issues with data quality 
and standardization, concerns over privacy and security, data silos 
within healthcare systems, and a lack of representative datasets. To 
overcome these obstacles, it also proposes strategic solutions, including 
implementing data governance frameworks, enhancing data security, 
promoting system interoperability, and using synthetic data. Collectively, 
these strategies aim to foster a more secure, robust, and accessible data 
environment that supports healthcare innovation driven by AI and ML.

11.1 Dataset availability and quality issues

The availability and quality of datasets represent a significant 
challenge when applying ML and AI in healthcare. Adequate training 
of ML models is only possible with high-quality, well-annotated data. 
However, health data often suffers from the following issues (Mohsin 
et al., 2025).

11.1.1 Data scarcity
The scope and range of datasets relevant to particular patient 

populations or rare diseases are limited or non-existent and, hence, 
are insufficient to train generalizable models (Priyadarshi et al., 2024). 
The research examined Meta-Learning (MtL) application in the 
diagnosis of rare diseases, especially in the context of disorders of the 
central nervous system (CNSD), ophthalmic disorders (OD), and 
cardiac disorders (CD). It covered literature published between 2015 
and 2022, which captured the shift of DL towards MtL in these 
diagnostic modalities. The paper also provided the literature review, 
including the comparative analysis and research gaps, and constructed 
an MRI-based Meta-Health framework targeting rare disorders (Singh 
and Malhotra, 2023).

11.1.2 Data imbalance
Imbalanced data is a common problem in healthcare datasets like 

the BRFSS heart disease dataset, as patients from certain conditions 
or groups are underrepresented as opposed to others. The imbalance, 
as mentioned earlier, makes model predictions biased due to their 
inability to capture intricate patterns in the classes as mentioned 
earlier (Benhar et  al., 2020; Abdellatif et  al., 2024). The study 
specifically focused on class imbalance in the BRFSS heart disease 
dataset from 2021 using the resampling approach SMOTE-ENN and 
with the help of CatBoost and XGBoost classifiers. The findings 
indicate that CatBoost, Optuna-controlled SMOTE-ENN, achieved 
the best performance recall, 88%, and AUC, 82% in CVD risk 
prediction. These results suggest an improvement in developing CVD 
prevention strategies with the incorporation of ML systems (Tompra 
et al., 2024).

11.1.3 Data quality and consistency
The inaccuracy stems from multiple means of collection and 

reporting that generate noise, incompleteness, or inconsistency, finally 
affecting model precision and dependability (Chen et al., 2021). To 
achieve forefront quality in the training data used to develop the ML 
model implemented in the healthcare sector, a three-dimensional 
Data Quality Framework (DQF) was developed concerning data 
accuracy, completeness, and otherwise. It was designed to augment 
performance, predictability, and interpretability and eliminate biases 
to the extent possible. Moreover, the analysis gaps of this particular set 
of ML healthcare system data, as well as the groundwork offered, are 
ideal for supporting future work in the area (Al-Hgaish et al., 2025).

11.1.4 Data standardization
Much healthcare data is kept in varied formats or uses different 

coding systems within institutions, complicating information 
integration from multiple sources. Data standardization will enable 
reliable models and ensure that the system is interoperable. The 
framework combined smartphone sensing data from ET patients and 
healthy subjects, employing feature extraction and expert ratings to 
improve model performance. The interpretability methods, including 
SHAP and Local Interpretable Model-agnostic Explanations, enabled 
the identification of key features, offering valuable decision-making 
insights for early diagnosis and healthcare (Zhang et al., 2024).

11.2 Ethical and privacy concerns

Significant ethical and privacy concerns exist with using AI and 
ML in healthcare. There is a concern with issues related to patient 
confidentiality, informed consent, and algorithmic bias (Dang et al., 
2023). These include:

11.2.1 Patient privacy and data security
Healthcare information is delicate and could result in severe 

privacy breaches if misused. Safeguarding this information is of 
utmost importance, and measures like encryption, secure storage, 
and FL can help train models without having to share the raw data. 
The patient’s privacy can also be somewhat protected (Chato and 
Regentova, 2023). The paper presented a method for real-time 
anomaly detection using FPGA (Field Programmable Gate Array) 
based IoT edge devices that employ LR classifiers. This system could 
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monitor ingress traffic and predict anomalies at very low latency. It 
also used hardware-software partitions and introduced a different 
approach to the twin-based retraining of the LR classifier. The 
feasibility and timing analysis proved that the system is better than 
the implementation for software-only systems (Chaitanya 
et al., 2024).

11.2.2 Informed consent
As regards the development of AI instruments that utilize patient 

data, informed consent must be  provided clearly and 
comprehensively. Patients must be made aware of how their data will 
be used, who will be able to access it, and the risks of using it (Linga 
et al., 2024). The project merges ancient Ayurvedic treatments with 
a new ML non-invasive Nadi Pariksha system that attempts to 
diagnose diseases through pulse reading. The system emphasized the 
analysis of pulses located at the wrist vata, pitta, and kapha regions 
employing signal processing and advanced ML with RF, which 
achieved 86.4 percent classification accuracy. The attempt was 
towards improving efficiency concerning the early detection of 
diseases, reduction in mortality, clinical validation, and a balance 
between patient privacy and ethical implementation (Priya 
et al., 2023).

11.2.3 Bias and fairness
If an AI model is trained with data that includes social 

constructs of race, gender, and class, ML models are prone to bias. 
In the healthcare sector, such biases can result in discrimination. 
Mitigating these biases is vital to guarantee fairness and that AI 
systems are unbiased towards different groups of patients. The 
paper illustrated the ethical, legal, and social aspects of integrating 

AI and healthcare. Focused issues included privacy, bias, 
transparency, and accountability of using AI in healthcare, all 
posing significant risks. Even as AI improved diagnostics and 
treatment processes with excellent economy, efficiency, and 
effectiveness, questions wanting answers persist concerning equity, 
safety, and social balance. This to be dealt with over time needed 
collaboration to mitigate possible risks while trying to achieve 
balance (Upreti et al., 2023).

11.2.4 Transparency and accountability
Considering all the ML models, especially DL systems, it has been 

said that they are ‘black boxes’ since very little is known about their 
inner workings. In the context of health care, this is an issue because 
all patients’ care choices are supposed to be actionable and dependable 
on the part of the clinicians. To provide such accountability while at 
the same time reducing errors that can potentially harm a patient, 
attention to these issues is needed. The tutorial focused on the topic of 
responsible AI, which is concerned with proactively positive AI 
solutions that need explaining, justifying, and being fair and secure. 
The tutorial illustrated how processes of reproducibility, data 
provenance, and model management/monitoring of ML models are 
crucial to ensure responsible development. The purpose of the tutorial 
was to arm the attendees with the needed knowledge and skills to 
practice Responsibility AI (Paliwal et al., 2022).

11.3 Integration into clinical practices

AI and ML integration in clinical practice comes with numerous 
challenges (Gautam et al., 2023; Bai and Mardini, 2024).

FIGURE 11

Key challenges and strategic solutions for AI and ML integration in healthcare data management.
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11.3.1 Disruption of clinical workflow
Healthcare professionals may be  unwilling to adopt AI-based 

tools because they fear disruption of established workflows. Clinicians 
are accustomed to traditional methods and may be wary of relying on 
new technologies, especially if perceived as complex or unreliable. AI 
tools should complement existing practices without overwhelming 
healthcare providers (Rush et al., 2019; Sufian et al., 2024).

11.3.2 Regulatory and legal barriers
It is a highly regulated field with the introduction of new 

technology. It is a field where regulatory standards and approval must 
be met for implementation. It may refer to the FDA or EMA. The 
process of acquiring approval for AI-based diagnostic tools is lengthy 
and pricey, which can delay adoption. There are legal issues concerning 
liability in case of errors (Handoko et al., 2024).

11.3.3 Lack of training and education
Healthcare professionals will be  less likely to embrace these 

technologies without the appropriate education on the understanding 
or practical application of AI and ML. Providers will require 
educational tools and resources explaining the technologies and their 
potential benefits and limitations to support adoption. Investment in 
training programs is crucial to ensure clinicians’ comfort with 
incorporating AI into practice. The paper proposed a novel FL 
framework for early COVID-19 detection using PSO. The framework 
achieved faster convergence and improved performance, with a 
94.36% accuracy on a COVID-19 image dataset from multiple 
healthcare institutions. FL ensured data privacy by decentralizing 
patient information and sharing only aggregated model updates 
(Dasaradharami Reddy et al., 2024).

11.3.4 Interoperability
Healthcare systems have tended to operate independently with 

minimal integration across technologies and platforms. For effective 
adoption, AI systems must seamlessly integrate with EHRs, medical 
devices, and other systems in use within healthcare settings. The 
main barrier to interoperability is, perhaps, the standardization of 
data structures and rules negotiated by stakeholders in healthcare 
settings. Prabha et al. (2024) IoTs will likely change the healthcare 
domain, especially concerning providing personalized care, 
telemedicine, and remote care monitoring. Five classification 
schemes for IoT target energy consumption, privacy, and scalability 
issues while showing the importance of these problems for managing 
healthcare data with ML. Solving these problems positioned IoT as 
a viable means to increase the accessibility of healthcare services and 
improve the quality of life (Balasingam et al., 2017; Gevers-Montoro 
et al., 2022).

11.3.5 Trust and adoption
Even when the precision is verified, AI instruments encounter 

issues because of reliability problems and limited human participation. 
Clinicians and patients must rely on the trustworthiness of AI-based 
tools before they allow them to affect clinical or patient decision-
making. This trust can be obtained by having a development process 
that is transparent and genuine validation combined with AI’s ongoing 
performance monitoring. This tutorial concentrated on the concept of 
Responsible AI, which encompasses the need for transparency, 
accountability, fairness, and security that AI solution development 

requires. It highlighted AI’s repetitiveness and the data provenance 
and control of ML models in responsible development. The tutorial 
concentrated on ensuring the audience is equipped with the 
knowledge and skills needed to practice Responsible AI (Paliwal 
et al., 2022).

AI, ML, and emerging technologies hold significant promise to 
redefine healthcare. However, they must first overcome challenges 
related to data quality, ethical issues, and clinical integration. These 
challenges will be prerequisites in determining how best to utilize 
these technologies for the optimal benefit of both patients and 
providers. Figure  12 highlights the primary challenges healthcare 
organizations face in adopting technology and the associated strategic 
solutions. It identifies key obstacles such as resistance to change, data 
security challenges, interoperability problems, and significant 
implementation costs, matched with proactive strategies that 
encourage an innovative culture, emphasize cybersecurity, support 
standardized interoperability, and consider alternative funding 
options. This organized overview underscores that effective integration 
of digital technologies in healthcare necessitates a comprehensive 
approach that tackles both technical and human aspects.

12 Future directions and emerging 
trends in ML-based heart disease 
prediction

12.1 Emerging trends in healthcare 
technology

The healthcare sector is experiencing rapid developments in 
several areas. It is expected to revolutionize how healthcare is delivered 
(Junaid et al., 2022). Some of these emerging trends include:

12.1.1 Personalized medicine
Faster healthcare delivery is now achievable due to technological 

progress in genomics, biomarker discovery, and AI analytics. With the 
implementation of IoT and ML in healthcare, there is a drastic 
improvement in diagnosis and care delivery, such as early kidney 
disease detection and proactive precision care (Loncaric et al., 2020). 
With the adoption of IoT, subtle risk factors were captured in real-time 
to assist an ML algorithm that supported personal risk models to 
provide timely interventions. Therefore, the model ensures continuous 
patient-provider communication is achieved, thus moving towards 
personalized healthcare while ensuring strong security measures (Ravi 
et al., 2025).

12.1.2 AI-driven diagnostics
AI and ML focus on improving the accuracy and timing of 

diagnosing diseases. From analyzing medical imaging like tumor 
scanning and cardiovascular monitoring to forecasting patient health 
through EHR logs, the precision of medicine is improved by 
automation. In the long term, AI promises to become a ready aid for 
quick and efficient diagnosis (Sufian et al., 2024; Yenurkar et al., 2024). 
This research utilizes SVM algorithms to distinguish between types of 
diabetes, Type 1 and 2, using linear, polynomial, and sigmoid 
functions. It enhanced the degree of classification incidence of 
diabetes and enabled the formulation of narrower treatment strategies. 
It showcased the promise that more developed computational 
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methods can have on medicine with AI-driven healthcare 
management tasks (Suvartha et al., 2024).

12.1.3 Telemedicine and remote monitoring
Incorporating telemedicine services and remote patient 

monitoring technologies transforms healthcare delivery, especially 
in low-resource regions or during public health crises. IoT devices, 
wearables, and telehealth platforms enable patients to 
be continuously monitored for their vital signs, medical conditions, 
and treatment responses (Ardeti et al., 2023; Wang et al., 2024). This 
development seems poised to continue offering more efficient and 
inexpensive healthcare services. This work investigated the 
application of IoT and ML to personalized telemedicine systems with 
the objective of patient health monitoring and prediction for better 
care delivery. The effectiveness of the ML model was assessed 
through recall, sensitivity, error rate, F-score, and other measures, 
which gave insight into prediction accuracy and complexity. The goal 
was to shift the paradigm of healthcare to support routine health 
monitoring and timely proactive interventions (Ramalingam 
et al., 2024).

12.1.4 Quantum computing (QC)
The emergence of QC promises to revolutionize fields like the 

modeling of complex diseases and genomics, even improving the 
standards of drug discovery. Quantum computers could simulate 
complex biological processes and novel therapeutic targets at speed 
rivaling thousands of classical computers (Ghazi Enad and Abed 
Mohammed, 2023). Predicting an enormous acceleration of medical 
research and precision treatment development is reasonable. In this 
research, two Quantum ML models, VQC and Pegasos QSVC, were 
implemented to predict lung cancer in smart healthcare systems. They 
were benchmarked against baseline models by measuring training 
accuracy and performing statistical analyses. The Pegasos QSVC 

model achieved the highest classification accuracy of 85% (Munshi 
et al., 2024b).

12.1.5 Federated learning (FL)
By not sharing sensitive patient information, FL allows training 

AI models collaboratively without compromising privacy, which helps 
gain insights. This innovation facilitates collaboration between 
healthcare institutions for research and model building while adhering 
to stringent data privacy regulations. As the fear around the security 
and privacy of healthcare information further increases, FL is a 
promising solution for creating AI models that require diverse 
information while ensuring privacy (Otoum et al., 2024). An ensemble 
FL approach for developing a DL model to classify data streams from 
distributed Internet of Medical Things (IoMT) environments was 
presented. Local federated models were deployed on IoMT devices, 
with ensemble learning performed on the cloud servers. The 
comparison results indicated that the ensemble federated model 
outperformed the primary federated models (Arya and Hanumat 
Sastry, 2022).

12.1.6 Interdisciplinary approaches for enhanced 
diagnostics

The merging of ML, AI, and contemporary technologies into 
healthcare has proven exceedingly useful and requires interdisciplinary 
teamwork. These technologies’ potential is best capitalized with a 
multidisciplinary approach toward improving diagnostics. 
This includes:

 • Cooperation Between Health Workers and Data Science 
Specialists: The adoption of AI in healthcare has proven 
successful through the collaboration of health workers and data 
science experts. The data science expert optimizes the ML 
models, and the healthcare expert adds value with their 

FIGURE 12

Key challenges in healthcare technology adoption: barriers and strategic solutions.
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pathophysiology, clinical diagnosis, and therapeutics knowledge. 
Their collaboration empowers the development of AI-driven 
tools that are clinically relevant and accurate, hence ensuring 
enhanced patient and public healthcare.

 • Hybridization of Medicine with Engineering: Biomedical 
engineers and other engineers are responsible for improving and 
developing new healthcare technology. Wearable devices, medical 
imaging systems, or diagnostic aids are some examples of other 
engineering branches that can be integrated. Engineering and 
medicine can be united to develop better devices or solutions that 
match the growing demands of patients and healthcare providers.

 • Multidisciplinary Data Integration: Healthcare systems that 
integrate various data sources like EHRs, Genomics, Imaging, 
Wearables, and even Environmental Data can enhance diagnosis 
and treatment direction. Such fusion can be accomplished by 
interdisciplinary teams using integrated platforms that combine 
the various datasets to create a more wholesome understanding 
of the patient’s health and enhance the efficacy of AI models.

 • Ethics, Policy, and Technology Integration: To solve AI-related 
problems in healthcare, collaboration with ethics and policy 
experts should also take place. Data use’s legal, regulatory, and 
ethical concerns, such as data privacy, bias, and accountability, 
must be  addressed while technology is developed. 
Multidisciplinary teams will guarantee the realization of AI tools 
that are technologically accurate, ethically correct, and 
legally compliant.

 • Patient and Community Involvement: Patients should participate 
in developing and adopting technology. When patients and 
communities are brought together through interdisciplinary 
teams, their issues, preferences, and needs will be addressed so 
that AI and ML technologies are patient-centric and culturally 
acceptable. This approach affirms that trust in AI is significantly 
improved within the frameworks in which diverse populations 
are formed.

To summarize, the advancement of healthcare technology rests 
on traditional sectors, which lie in ever-increasing exciting 
practices and cross-cutting collaborations that will improve 
diagnostics. New technology like AI, QC, and FL is expected to 
make healthcare more personalized, accessible, and efficient. 
Additionally, harnessing multidisciplinary learning will ensure that 
these results are scientifically valid and ethically responsible, 
resulting in significant health advantages for patients in all parts of 
the globe.

13 Conclusion

This review encompasses a wide range of ML applications for 
predicting heart disease, organized into five main themes: detection 
and diagnostics, ML models and algorithms, feature engineering and 
optimization, new technologies in healthcare, and cross-disease AI 
applications. The findings indicate that while DL models, especially 
hybrid CNN-LSTM architectures, tend to surpass traditional methods, 
the success of any model heavily relies on high-quality data, effective 
feature engineering, and clinical interpretability.

A rising trend in FL, monitoring systems based on wearables, and 
XAI practices that are gradually narrowing the gap between research 

and practical application. Nevertheless, significant challenges remain, 
such as ensuring model generalizability across different populations, 
maintaining data privacy, achieving interpretability, and integrating 
with EHRs.

Future studies should prioritize the practical implementation of 
AI systems via clinically validated trials, focusing on ethical and 
regulatory standards, and investigating interoperable, patient-
centered AI platforms. Moreover, creating transparent models that 
healthcare providers can trust is essential for broad acceptance. By 
tackling these issues, ML-driven tools can transition from 
experimental concepts to game-changing solutions in 
cardiovascular healthcare.

13.1 Summary of key insights

 ▪ Diagnostic Accuracy: ML and AI have significantly increased 
accuracy towards diagnosing heart diseases, cancers, and even 
neurological disorders. The AI systems utilize EHRs, medical 
imaging, and large datasets alongside sensors to diagnose and 
improve patient outcomes.

 ▪ Use of Feature Engineering and Its Optimization: Advanced 
algorithms, GA, PSO, and GWO, have played a crucial role in 
improving prediction models, which enhances the accuracy with 
which disease detection can be  made. The AI system was 
optimized for better interpretability and used to determine 
feature selection, reduce dimensionality, and use other 
AI-enabled techniques. Moreover, the AI system can select and 
interpret relevant features, reduce noise, and improve 
interoperability through Dimensionality Reduction.

 ▪ Emerging Technologies: Healthcare innovation is changing with 
QC, FL, and the IoT. QC can speed up complex drug discovery 
and disease modeling. FL alleviates privacy concerns because 
sensitive information is not expeditiously sent during 
collaborative model training. Moreover, the application of IoT 
devices enables proactive fitness healthcare management by 
providing real-time monitoring.

 ▪ Issues Relating to Data Quality and Ethical Considerations: The 
availability, quality, and privacy of healthcare data affect AI 
implementation in healthcare. The success of AI tools hinges on 
the availability of accurate and secure healthcare data. Other 
ethical issues, such as consent, privacy, and the algorithms’ 
impartiality raisers, must also be addressed for AI to properly 
deploy in healthcare.

 ▪ Interdisciplinary Collaboration: Collaboration between 
healthcare personnel, such as doctors and nurses, data analysts 
and scientists, engineers, and ethics specialists, is essential for 
creating and implementing AI systems in healthcare. 
Interdisciplinary approaches ensure that AI technologies are 
technically sound and respond ethically and socially to the 
complex conditions surrounding patients and legal affairs.

13.2 Implications for research and practice

 • Research:
Significant work is currently being done to optimize AI model 
performance and data assimilation and address ethical concerns. 
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Improving the quality and representativeness of available 
healthcare datasets will enhance the generalizability of various AI 
models across different healthcare populations. Further research 
into other technologies, such as QC and FL, could contribute to 
advancing AI systems in healthcare. The lack of transparency and 
interpretability of AI models should also be a focus of future 
research to foster trust and facilitate smoother integration into 
clinical decision-making.

 • For Practice:
Older healthcare professionals and service providers need to 
adapt AI and ML-based technologies into their clinical routines 
to ensure improved diagnostic and treatment results. Sufficient 
instruction on working with AI systems must be  provided 
alongside the implementation of AI tools to clinicians. Patients 
should also actively participate in incorporating the technologies 
so that the solutions work for them. Organizations providing 
healthcare must also coordinate in fostering interdisciplinary 
cooperation for the safe, ethical, and beneficial application of 
AI systems.

AI and ML can transform the health sector, but significant 
challenges remain in data management, ethics, and deployment. 
Responsible interdisciplinary collaboration facilitated through 
innovation has the power to surpass these challenges, which could 
result in improved health care globally through better utilization of 
these technologies.
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Glossary

ASVM - Acoustic Support Vector Machine

ADASYN - Adaptive Synthetic Sampling

aTIG-FS - Adaptive Threshold Information Gain 
Feature Selection

AUC - Area Under the Curve

AI - Artificial Intelligence

ANN - Artificial Neural Network

ABCM - Attention-Based Cross-Modal Transfer Learning

Bi-LSTM - Bidirectional Long Short-Term Memory

CVD - Cardiovascular Disease

CNN - Convolutional Neural Network

DT - Decision Tree

DCGAN - Deep Convolutional Generative Adversarial Network

DL - Deep Learning

ENN - Edited Nearest Neighbor

ECG - Electrocardiogram

EHR - Electronic Health Record

XAI - Explainable Artificial Intelligence

XGB - Extreme Gradient Boosting

FL - Federated Learning

FDA - Food and Drug Administration

GDPR - General Data Protection Regulation

GANs - Generative Adversarial Networks

HIPAA - Health Insurance Portability and Accountability Act

KNN - K-Nearest Neighbor

LSTM - Long Short-Term Memory

ML - Machine Learning

NB - Naive Bayes

PCG - Phonocardiogram

PTB-XL - Physikalisch-Technische Bundesanstalt Extended 
ECG Dataset

PCA - Principal Component Analysis

QC - Quantum Computing

QSVC - Quantum Support Vector Classifier

RF - Random Forest

ROC - Receiver Operating Characteristic

RNN - Recurrent Neural Network

RFE - Recursive Feature Elimination

RBM - Restricted Boltzmann Machine

SCSO - Sand Cat Swarm Optimization

SHAP - SHapley Additive exPlanations

SVM - Support Vector Machine

SMOTE - Synthetic Minority Over-sampling Technique

VQC - Variational Quantum Classifier

WBAN - Wireless Body Area Network
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