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This paper proposes that Artificial Intelligence (AI) progresses through several 
overlapping generations: AI 1.0 (Information AI), AI 2.0 (Agentic AI), AI 3.0 (Physical 
AI), and a speculative AI 4.0 (Conscious AI). Each AI generation is driven by shifting 
priorities among algorithms, computing power, and data. AI 1.0 accompanied 
breakthroughs in pattern recognition and information processing, fueling advances 
in computer vision, natural language processing, and recommendation systems. 
AI 2.0 is built on these foundations through real-time decision-making in digital 
environments, leveraging reinforcement learning and adaptive planning for agentic 
AI applications. AI 3.0 extended intelligence into physical contexts, integrating 
robotics, autonomous vehicles, and sensor-fused control systems to act in 
uncertain real-world settings. Building on these developments, the proposed AI 
4.0 puts forward the bold vision of self-directed AI capable of setting its own goals, 
orchestrating complex training regimens, and possibly exhibiting elements of machine 
consciousness. This paper traces the historical foundations of AI across roughly 
70 years, mapping how changes in technological bottlenecks from algorithmic 
innovation to high-performance computing to specialized data have stimulated 
each generational leap. It further highlights the ongoing synergies among AI 1.0, 
2.0, 3.0, and 4.0, and explores the ethical, regulatory, and philosophical challenges 
that arise when artificial systems approach (or aspire to) human-like autonomy. 
Ultimately, understanding these evolutions and their interdependencies is pivotal 
for guiding future research, crafting responsible governance, and ensuring that 
AI’s transformative potential benefits society.
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1 Introduction

Artificial Intelligence (AI) has experienced a transformative evolution over the last 70 
years, evolving from its nascent stage of theoretical formulations to its current status as a 
cornerstone of technological advancement (Haenlein and Kaplan, 2019). Initially, the field was 
dominated by intellectual explorations into symbolic reasoning, knowledge representation, 
and the rudimentary principles of machine learning (Newell and Simon, 1956). These early 
stages were marked by a focus on conceptual breakthroughs, laying the groundwork for what 
AI could potentially achieve. As computational capabilities expanded and data sources 
proliferated, AI transitioned from theoretical models to practical applications capable of 
learning from patterns and making precise predictions (Alom et al., 2018). The last two 
decades, however, have witnessed an unprecedented acceleration in AI development, 
propelling the field into realms that surpass even the most optimistic projections of its 
early pioneers.

Despite remarkable successes in areas like natural language processing, computer vision, 
and large-scale data analytics, AI continues to face challenges in interacting seamlessly with 
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complex, dynamic real-world environments. This ongoing struggle 
signals an emerging phase in AI’s evolution, marking a shift from 
systems that primarily process and predict information to ones that 
can plan, decide, and act, ushering in new generations of AI: 
Information AI (AI 1.0), Agentic AI (AI 2.0), Physical AI (AI 3.0) and 
Conscious AI (AI 4.0). This classification not only clarifies the 
conceptual transitions within the field but also helps delineate the 
evolution of AI capabilities from data extraction to making 
autonomous decisions in digital realms, and now to engaging directly 
with the physical world.

Understanding these transitions is essential, not just from a 
technological standpoint but also for grasping the societal and 
economic implications of AI. Distinct technological drivers and 
bottlenecks have shaped each phase of AI: the early period was limited 
by the lack of advanced algorithms and computational frameworks 
(Jones, 1994); the advent of powerful GPUs around 2012 significantly 
shifted the landscape, enabling more complex neural architectures 
(Nvidia, 2011); and today, the challenge has moved toward harnessing 
domain-specific, high-quality data to feed into these sophisticated 
systems (Budach et al., 2022). Recognizing these shifts is crucial for 
stakeholders, including policymakers, researchers, and industry 
leaders, who must navigate the ethical, regulatory, and technical 
complexities introduced by advanced AI systems.

This review aims to provide a comprehensive retrospective on the 
milestones that have defined AI’s progress. By tracing the lineage of 
algorithmic innovations, increases in computing power, and 
enhancements in data utilization, we aim to illuminate the significant 
moments that have shaped AI from its inception to its current state. 
This exploration is structured around the AI 1.0 to AI 4.0 framework, 
illustrating how each generation’s defining features and limitations 
correspond to broader historical phases from approximately 1950 to 
the present. In doing so, we will also contemplate the future trajectory 
of AI, considering the potential technical challenges, societal impacts, 
and strategic directions that could define the next phases of AI 
research and application.

This article is structured first to revisit the historical foundations 
of AI, emphasizing the shifts in primary drivers from algorithms to 
computing power to data. We  then delve into the specific 
characteristics, achievements, and limitations of AI 1.0, AI 2.0, AI 3.0, 
and AI 4.0. Following this, we explore AI’s convergence and future 
outlook, highlighting the synergies among the four generations and 
outlining the grand challenges that lie ahead. Finally, we conclude 
with a synthesis of key insights and propose future directions for 
sustained progress in the field, aiming to both inform and inspire 
continued innovation and thoughtful integration of AI into our daily 
lives and societal structures.

2 Historical foundations of AI

2.1 Phase 1 (1950s–2010s): Age of 
algorithmic innovations

Since the 1950s, AI has advanced through a dynamic interplay 
among three core ingredients: algorithms, computing power, and data 
(Schmidhuber, 2022). Although these three factors have always shaped 
the field, they have not always contributed equally at every stage. In 
the early decades, the limiting factor was innovation in algorithms. 

From mid-century debates about the feasibility of machine intelligence 
to the emergence of expert systems and neural networks, it was clear 
that conceptual breakthroughs would determine AI’s boundaries 
(Turing, 2009). Meanwhile, although data and computing power were 
important, they played more supportive roles. Gradually, as new 
hardware architectures appeared and large-scale datasets became 
more accessible, the focus shifted toward harnessing immense 
computational capability and vast amounts of information. During 
this era, most funding for algorithmic research came from government 
programs (e.g., DARPA’s Strategic Computing Initiative) and a handful 
of industrial labs, fostering tight collaborations between computer 
scientists, control engineers, and cognitive psychologists to maximize 
limited hardware through smarter algorithms.

From the outset, researchers were fascinated by whether machines 
could truly think. Alan Turing’s pioneering paper (Turing, 1950) set 
the stage, posing the famous “imitation game” as a litmus test for 
intelligence. In 1956, the Dartmouth Conference (McCarthy et al., 
2006) formally introduced the term “Artificial Intelligence” and laid 
out the bold proposition that the essence of human intelligence could 
be precisely described and replicated in machines. Early NSF and 
DARPA grants enabled interdisciplinary AI centers at MIT and 
Stanford, where mathematicians, linguists, and early cybernetics 
experts worked side by side to turn the Turing Test and Dartmouth 
vision into functioning prototype systems. Early systems, such as the 
Logic Theorist and the General Problem Solver (Newell and Simon, 
1956; Newell et al., 1959) underscored that symbolic reasoning could 
be  computationally realized. These proof-of-concept attempts 
highlighted the central premise of that era: if we could devise the right 
algorithms, computers might reason and solve problems with near-
human efficacy.

By the 1960s and 1970s, a strong emphasis on symbolic AI 
emerged. Influential works by McCarthy (1960) introduced LISP as a 
language suited to symbolic processing, while Minsky and Papert’s 
(1969) critical analysis of single-layer perceptions contributed to a 
pause in neural network research, pushing many researchers toward 
knowledge-based or “expert” systems. Milestones like the DENDRAL 
project (Buchanan et al., 1971) and MYCIN (Shortliffe et al., 1975) 
showcased how carefully curated rule sets could guide problem-
solving in specialized domains. These systems illustrated the power of 
algorithmic design in areas such as medical diagnosis or chemical 
analysis, even when real-world data were scarce and computational 
resources were limited. Corporate and university partnerships in 
domains like healthcare (e.g., with Stanford Medical School) and 
chemical analysis funded expert-system projects, creating joint labs 
where domain specialists and AI researchers codified knowledge bases 
despite constrained memory and CPU budgets.

Neural networks rebounded in the 1980s with work on Hopfield 
networks (Hopfield, 1982) (Figure 1) and, crucially, the rediscovery of 
backpropagation (Rumelhart et al., 1986). This gave researchers fresh 
insight into how machines might learn patterns from data. Though the 
potential of these connectionist approaches was clear, they often 
stalled because large datasets were not widely available and specialized 
hardware did not yet exist. Even so, foundational contributions like 
LeCun et al. (1989) application of convolutional neural networks to 
handwritten digit recognition laid the groundwork for modern deep 
learning. Modest government programs and early industry prototypes, 
such as the Connection Machine, emerged from collaborations 
between neuroscientists and computer engineers. Still, widespread 
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adoption had to await later GPU cost declines and cloud-
computing services.

By the 1990s, specific algorithmic achievements hinted at deeper 
architectures capable of tackling increasingly complex tasks. The 
proposal of Long Short-Term Memory (LSTM) networks effectively 
addressed the vanishing gradient problem, opening possibilities for 
modeling sequential data more accurately (Hochreiter, 1997). 
However, the real transformative moment emerged around 2012, 
when Krizhevsky, Sutskever, and Hinton demonstrated that ImageNet-
scale datasets and high-performance GPUs could dramatically 
improve a deep neural network’s ability to classify images, i.e., the 
AlexNet (Krizhevsky et al., 2012) (Figure 2). Although this watershed 
event is often viewed as the dawn of the “deep learning era,” it could 
not have happened without the algorithmic groundwork laid over the 
preceding decades. The 2012 AlexNet breakthrough itself was 
propelled by the ImageNet consortium, uniting academic vision labs 
and industry hardware vendors, and by the sudden availability of 
affordable GPU clusters donated or subsidized by major 
tech companies.

2.2 Phase 2 (2010s–present): The 
computing revolution and deep learning 
renaissance

The pattern-matching architectures pioneered in AI 1.0, such as 
convolutional filters for edge and shape detection and Hopfield 
networks for associative memory, laid the essential groundwork for AI 
2.0’s learned feature hierarchies. By encoding low and mid-level visual 
and sequential patterns in trainable layers, these early connectionist 
models enabled decision-making agents to operate on rich, 
automatically extracted representations rather than raw sensor data, 
accelerating reinforcement-learning and supervised learning 
breakthroughs once sufficient data and compute became available.

A dramatic shift in AI research took hold around 2012, when 
mounting computational capacity began to eclipse algorithmic novelty 
as the principal engine of progress. This transition was underwritten 
by rapidly declining GPU prices, driven by consumer gaming markets, 
and by major cloud providers (AWS, Google Cloud, Azure) offering 
GPU instances, which democratized access to parallel computing. Key 
partnerships between hardware vendors (NVIDIA, AMD) and 
academic labs established early benchmarks for large-scale training, 
exemplifying how economic incentives catalyze scientific 
breakthroughs. While the core concepts underlying neural networks 
had been present since at least the 1980s, it was the widespread 
adoption of General-Purpose Graphics Processing Units (GPUs) that 
ignited what is often termed the “deep learning renaissance” (Figure 3) 
(Nickolls et al., 2008). Collaborative consortia, such as the ImageNet 
project, brought together vision researchers, software engineers, and 
data curators from both academia and industry, creating shared data 
resources and open-source codebases that accelerated innovation and 
reproducibility. When Krizhevsky et al. (2012) leveraged GPUs to 
train a large convolutional neural network for the ImageNet 
competition, they decisively demonstrated how parallelized 
computing could unearth performance gains previously unachievable 
with single-threaded Central Processing Units (CPUs). This milestone 
was enabled by government grants and corporate research labs (e.g., 
Google Brain, Microsoft Research), which invested in GPU clusters 
and supported interdisciplinary teams of machine-learning scientists 
and systems engineers to push the limits of scale. This turning point 
catalyzed a wave of research across machine vision, speech 
recognition, and natural language processing, with groups at Google, 
Microsoft, Baidu, and many academic institutions all racing to scale 
up network architectures (Dean et al., 2012; Bishop, 2013; Yu, 2013). 
The essence of this period lay in the conviction that “bigger is better,” 
whether in terms of model parameters, dataset size, or sheer 
computational resources. Consequently, much of the state-of-the-art 
progress hinged on harnessing specialized hardware: first GPUs, then 
tensor processing units (TPUs) and other custom accelerators, to 
churn through ever-growing datasets in shorter training cycles.

By the mid-2010s, the explosive rise of deep reinforcement 
learning (Mnih et al., 2015) and breakthroughs in game-playing AI, 
such as AlphaGo (Silver et al., 2016), underscored that not only could 
AI models learn representations from massive data, but they could 
also discover winning strategies through large-scale simulations. 
These advances were propelled by collaborations between AI theorists, 
neuroscientists studying decision-making, and high-performance 
computing experts, as well as by significant venture-capital funding in 
AI startups focusing on simulation-based learning and autonomous 
agents. Nevertheless, the predominant realm for these systems 
remained resolutely digital. Whether classifying images, translating 
text (Bahdanau, 2014; Vaswani, 2017), or playing complex board and 
video games, AI was still operating in an essentially informational 
context. Although data availability was critical and algorithms like 
convolutional and recurrent neural networks continued to improve, 
sheer computational power was often the deciding factor in achieving 
superior performance. Researchers observed emergent patterns in 
“scaling laws” (Kaplan et  al., 2020), revealing that larger models 
trained on larger datasets could unlock qualitatively new capabilities. 
Systems like GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 
2020) illustrated this phenomenon vividly by demonstrating a striking 
ability to generate human-like text once parameter counts and training 

FIGURE 1

The Hopfield networks (Hopfield, 1982) introduced content-
addressable memory in neural networks, marking a major milestone 
in connectionism in AI.
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data reached certain thresholds. The development and deployment of 
these language models were driven by multi-institutional efforts, 
including OpenAI’s partnerships with cloud providers and academic 
collaborators, and by economic incentives from industries eager to 
commercialize natural-language interfaces, fueling research consortia 
around ethical and scalable model training. Because of their 
sophistication, these models continued to reside in the digital world, 
making them refined and powerful versions focused on big data 
analytics and pattern recognition at an unprecedented scale. Even so, 
the end of this phase began to hint at a transition toward greater 
autonomy and decision-making in digital contexts, an emerging 
hallmark of agentic AI. While many systems are still centered on 
classification or prediction, the rise of advanced reinforcement 
learning agents able to adapt strategies within software ecosystems 
foreshadowed a new kind of agency. By approximately 2024, the 
scholarly and commercial drive to develop goal-directed virtual 

assistants, automated resource allocation tools, and multi-agent 
simulations suggested that the chief challenge was no longer purely to 
label data accurately, but to act in digital environments in ways that 
transcended traditional supervised learning (Chen et al., 2023). This 
growing desire for agentic AI remained tied to abundant computing 
power, yet it began to reveal new dependencies on specialized data 
streams and real-time feedback loops (Tosi et al., 2024). It set the stage 
for the next generation of AI, where computational needs would 
remain vital. Still, data and context-specific knowledge would become 
even more pivotal in enabling truly autonomous, adaptive systems.

However, this unprecedented shift toward data-driven and 
compute-driven breakthroughs has also exposed systemic 
vulnerabilities that must be carefully examined before embracing the 
next wave of autonomous, agentic AI. The deployment of AI 2.0 into 
high-stakes domains such as finance, public policy, and healthcare has 
revealed how tightly coupled, speed-optimized systems can trigger 

FIGURE 2

AlexNet (Krizhevsky et al., 2012) marks the beginning of large-scale, GPU-accelerated convolutional neural networks for high-performance image 
classification.

FIGURE 3

The CUDA architecture pioneered general-purpose GPU computing, revolutionizing parallel processing and accelerating AI breakthroughs.
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cascading failures under stress. In financial markets, for instance, 
high-frequency trading algorithms, tuned to exploit sub-millisecond 
price discrepancies, precipitated the “Flash Crash” of May 6, 2010, 
when linked bots erased nearly $1 trillion in equity value within 
minutes before a partial rebound (Kirilenko et al., 2017). Without 
unified circuit breakers or oversight mechanisms, these agents 
amplified feedback loops during extreme volatility, demonstrating that 
raw performance can come at the price of systemic stability. In law 
enforcement, predictive-policing tools trained on decades of arrest 
data in Chicago and Los Angeles disproportionately targeted minority 
neighborhoods, perpetuating historical biases and eroding community 
trust. Credit-scoring models have likewise been shown to underprice 
loans for underrepresented groups, prompting regulatory 
investigations into discriminatory lending practices. These examples 
underscore that high accuracy on benchmark datasets does not 
guarantee equitable or safe outcomes in complex, real-world settings. 
Healthcare AI offers a further cautionary tale: diagnostic assistants 
trained on skewed image collections have misclassified critical 
conditions in underrepresented populations. A prominent 2018 study 
found that a melanoma detection model, trained predominantly on 
light-skinned images, misdiagnosed darker-skinned patients at twice 
the rate of lighter-skinned counterparts, despite reporting >95% 
accuracy on its test set. Such failures highlight the dangers of blindly 
scaling models without rigorous data curation and validation 
protocols. To guard against these risks, we recommend a multilayered 
defense: comprehensive stress testing under extreme or adversarial 
conditions; mandated transparency of model architectures and data 
provenance to facilitate third-party audits; regulatory circuit-breakers 
and human-in-the-loop overrides in mission-critical systems; and the 
formation of interdisciplinary oversight bodies that bring together AI 
practitioners, ethicists, domain experts, and policymakers. Embedding 
these safeguards will enable the AI community to harness the power 
of deep learning while preserving social, economic, and 
ethical stability.

2.3 Phase 3 (2024–foreseeable future): 
Data-centric paradigms

In the wake of a period defined by dramatic increases in 
computational horsepower, the focal point of AI advancement has 
shifted once again. This transition has been propelled by major 
industry investments, particularly from cloud providers (AWS, Google 
Cloud) offering specialized GPU/TPU instances, and by venture 
capital funding in data-centric startups, which drove large-scale data-
aggregation platforms and new public-private consortia to curate 
domain-specific datasets. Where Phase 2 thrived on scaling neural 
networks through unprecedented parallel processing, Phase 3 
acknowledges that data, especially specialized, high-quality data, is 
frequently the greatest obstacle. Researchers have discovered that ever-
larger models alone do not guarantee success without context-rich 
training sets. Consequently, large-scale, domain-specific data-
collection efforts have emerged, reshaping the field’s priorities. 
Projects that aggregate specialized medical data for diagnostic systems 
(Topol, 2019), simulate high-fidelity environments for robotics and 
autonomous vehicles (Dosovitskiy et  al., 2017; Kalashnikov et  al., 
2018), or compile deep reinforcement learning benchmarks with 
realistic constraints (Bellemare et al., 2013; Dulac-Arnold et al., 2021) 

attest to the idea that harnessing robust datasets can be  as 
determinative as algorithmic ingenuity or raw computational power.

Despite the continued importance of parallel computing and 
innovative architectures, many cutting-edge successes now hinge on 
data strategy. The “data-centric AI” movement gained traction 
through collaborations between academic labs (e.g., Stanford’s DAWN 
project) and industry partners in healthcare, automotive, and finance, 
where structured data pipelines and synthetic data initiatives (e.g., 
NVIDIA’s DRIVESim) received dedicated research grants and created 
shared benchmarks. Researchers have championed “data-centric AI” 
(Ng, 2021), arguing that refining training sets, removing biases, filling 
in coverage gaps, or generating synthetic data to handle edge cases, 
often yields more improvement than adding layers to a neural 
network. This philosophy is closely related to the rise of foundation 
models (Bommasani et al., 2021), which are vast neural architectures 
that can be adapted to myriad tasks but require massive, carefully 
curated corpora to realize their full potential. As data becomes the 
true bottleneck, teams must grapple with the logistical and ethical 
challenges of collecting, storing, and labeling it, as well as with privacy, 
consent, and representation issues.

Within this phase, AI’s transition from informational analysis to 
agentic decision-making becomes increasingly tangible. 
Interdisciplinary teams combining roboticists, control engineers, and 
ethicists, backed by government programs like the U. S. National 
Robotics Initiative and by multinational R&D labs (e.g., Toyota 
Research Institute), have spearheaded projects in autonomous 
vehicles, surgical robotics, and drone swarms, underscoring how 
robust data collection and simulation frameworks enable real-world 
agentic AI (Hicks and Simmons, 2019). Reinforcement learning 
agents not only plan and learn in complex digital worlds but also 
begin to bridge into real-world applications, where they must reason 
about noisy sensors, hardware uncertainties, and human 
collaboration. Physical AI, exemplified by advanced robotics, 
autonomous drones, and integrated cyber-physical systems, moves 
beyond the boundaries of simulated or purely informational spaces. 
However, this shift toward real-world, data-driven embodiments 
brings its own economic and logistical hurdles. High-precision 
sensors (LiDAR, RGB-D cameras, IMUs) and edge-grade compute 
(GPUs, FPGAs, TPUs) substantially increase hardware costs and 
power consumption, shortening operational endurance and 
increasing maintenance overhead. As teams move from single 
prototypes to fleet deployments, these expenses multiply and place 
heavy demands on network bandwidth for firmware updates and 
sensor recalibrations. Energy-efficiency constraints can limit mission 
duration in field robots and drones, making the economic trade-offs 
of embodied autonomy as critical to system design as algorithmic 
accuracy or robustness. Progress in robotic grasping and 
manipulation (Kalashnikov et  al., 2018; Levine et  al., 2018), self-
driving vehicles (Bojarski, 2016), and robotic surgery (Yang et al., 
2017) signals how these systems can robustly interact with the 
environment, handle dynamic conditions, and learn from continuous 
feedback. Thus, the hallmark of this new phase is the recognition that 
data unlocks the fuller potential of agentic AI in digital ecosystems, 
as well as physically embodied intelligence in the real world (Fiske 
et al., 2019).

Meanwhile, AI 3.0 systems transition from controlled 
simulations into diverse physical environments, thereby exposing 
new risk categories that demand rigorous attention. For instance, 
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in autonomous driving, the 2018 Tempe, Arizona incident, where 
an experimental self-driving vehicle failed to distinguish a 
pedestrian from a stationary object, exposed critical weaknesses 
in sensor fusion and perception pipelines under real-world 
conditions (Crash, 2019). Similarly, industrial collaborative robots 
have caused serious injuries when safety interlocks were 
overridden; notably, a 2015 Volkswagen plant incident resulted in 
a fatality after a maintenance override disabled the robot’s 
emergency stop. In the surgical domain, U. S. FDA reports 
document unintended tissue damage and system malfunctions 
during robotic-assisted procedures, failures traced to software 
bugs during instrument exchanges, and insufficient edge-case 
testing. These examples illustrate how physical embodiment 
amplifies the consequences of model errors and hardware failures. 
Moreover, high-precision sensors (LiDAR, RGB-D cameras, force-
torque sensors) and edge-grade compute (GPUs, FPGAs, dedicated 
AI accelerators) drive up unit costs and energy consumption, 
constraining deployment scale and endurance. As teams move 
from single prototypes to fleet deployments, maintenance, 
calibration, and over-the-air software updates further strain 
network capacities and personnel resources. To address these 
challenges in real-world settings, we recommend comprehensive, 
scenario-based validation that includes extreme and 
low-probability edge cases (e.g., low-light pedestrian crossings, 
dynamic human-robot interactions), mandatory hardware/
software kill-switches for immediate system deactivation under 
fault conditions, continuous real-time health monitoring with 
on-device anomaly detection and self-diagnosis, and clear liability 
frameworks that delineate responsibility among manufacturers, 
operators, and software developers. Only by integrating these 
technical safeguards with robust policy and operational measures 
can we ensure that embodied agentic AI in the foreseeable future 
phase is deployed both safely and sustainably.

3 AI generations

The historical review of AI underscores a pivotal generational 
shift and evolution in AI paradigms, calling for a framework for 
understanding and classifying AI. In this context, we  avoid the 
traditional technical definitions that categorize AI strictly by its 
operational or algorithmic characteristics. Instead, our analysis 
seeks to understand AI through its intrinsic qualities: What are 
they? What are they designed to achieve? And what are their 
consistent behavioral patterns? Accordingly, we propose a taxonomy 
that identifies four distinct generations of AI: AI 1.0, characterized 
as Information AI, which focuses on data processing and knowledge 
management; AI 2.0, or Agentic AI, which encompasses systems 
capable of autonomous decision-making; AI 3.0, known as Physical 
AI, which integrates AI into physical tasks through robotics; and 
the speculative AI 4.0, termed Conscious AI, which posits the 
potential emergence of self-aware AI systems. This classification 
aims to provide a more detailed perspective reflecting AI 
technologies’ complex evolution. Figure  4 illustrates the 
generational evolution of artificial intelligence (AI) from AI 1.0 
(Information AI) to AI 4.0 (Conscious AI).

3.1 AI 1.0: information AI

The concept of AI 1.0 captures a stage in which computational 
systems excel at classifying and interpreting information but remain 
confined to analyses of static data, rather than engaging in active 
decision-making or real-world manipulation. Fundamentally, AI 1.0 
focuses on pattern recognition and information processing, techniques 
that have powered breakthroughs in computer vision, natural language 
processing (NLP), and recommendation systems. Although these 
achievements might seem commonplace now, they represent the fruits 

FIGURE 4

The evolution of AI generations from AI 1.0 to AI 4.0.
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of decades of research driven by both mathematical innovation and 
the increasing availability of digital data.

Many of the core ideas underpinning AI 1.0 trace back to early 
neural network research and statistical machine learning. From 
Rosenblatt’s perceptron in the late 1950s to the backpropagation 
algorithms popularized by Rumelhart et al. (1986), these developments 
laid the groundwork for data-driven learning by demonstrating that 
machines could uncover patterns within examples rather than relying 
solely on hand-coded rules. Classic approaches to supervised learning, 
such as Support Vector Machines (SVMs) formalized by Cortes 
(1995), later proved formidable contenders in tasks ranging from 
handwriting recognition to text classification. Progress in 
computational hardware and the accumulation of sizeable labeled 
datasets eventually made it feasible to train deeper and more complex 
neural networks, culminating in milestone successes in computer 
vision. A watershed moment came when Krizhevsky et al. (2012)’s 
AlexNet leveraged parallelized GPU training to conquer the ImageNet 
challenge, revealing how convolutional architectures could outperform 
all prior methods by learning increasingly abstract features from raw 
image pixels.

In natural language processing, the influence of AI 1.0 can be seen 
in early sequence models and statistical language modeling. Although 
these systems often relied on simpler Markov or n-gram assumptions, 
they set the stage for more advanced architectures by highlighting the 
necessity of abundant text corpora. Meanwhile, recommendation 
engines, such as those popularized by the Netflix Prize (Bennett and 
Lanning, 2007), underscored how analyzing large-scale user 
interactions could drive consumer engagement on streaming and 
e-commerce platforms. Today, many companies still rely on these core 
AI 1.0 technologies, sometimes enhanced with shallow neural 
architectures, to filter spam, rank search results, recommend products, 
or detect fraudulent transactions. Indeed, for structured or semi-
structured data, these pattern-recognition approaches remain both 
cost-effective and highly accurate.

Despite their deep societal impact, AI 1.0 systems generally lack 
autonomy or contextual awareness associated with subsequent 
generations of AI. They excel at predicting outcomes when provided 
with substantial training data, but they require a relatively stable 
environment and benefit most from human supervision in data 
curation and decision-making. Performance often degrades if the 
input distribution shifts significantly, a vulnerability illustrated when 
face recognition models falter on underrepresented groups or when 
language models encounter domain-specific jargon. While the 
considerable success of AI 1.0 is undeniable, transforming industries 
from finance to healthcare through improved analytics and 
diagnostics, its limitations lie in its reactive nature (Gao et al., 2024). 
Pattern recognition alone offers no guarantee of proactive decision-
making, real-time adaptation, or safe deployment in dynamic settings. 
While hardly trivial, these constraints became the springboard for 
further developments in AI 2.0 and 3.0, in which systems aim to learn, 
plan, and act within uncertain digital or physical worlds.

3.2 AI 2.0: agentic AI

A defining characteristic of AI 2.0 is the emergence of systems 
capable of autonomous decision-making within digital contexts. 
Rather than merely classifying static data, these agents adapt their 

behavior to achieve goals, often in complex or continuously evolving 
environments. Reinforcement learning (RL) has played a pivotal role 
in this shift, enabling machines to learn strategies by interacting with 
simulated or real-world settings and receiving feedback in the form of 
rewards or penalties. Pioneering work on deep RL (Mnih et al., 2015) 
and subsequent achievements such as AlphaGo (Silver et al., 2016) 
underscored how sufficiently powerful algorithms and ample 
computing resources could surpass human performance in tasks that 
demand long-term planning and strategic adaptation. A common 
thread among these systems is the concept of goal-directed planning: 
software agents allocate resources, schedule tasks, or coordinate with 
other agents, leveraging sophisticated RL or hybrid RL-language 
model algorithms (Brown et  al., 2020) that integrates contextual 
understanding (Figure 5).

Although the conceptual leap from AI 1.0’s pattern recognition to 
AI 2.0’s agentic behavior might appear seamless, it demands a unique 
confluence of technical elements. Computing power is crucial because 
agentic systems frequently require real-time inference and the ability 
to run complex simulations, whether they involve a marketplace, a 
multiplayer environment, or the robust scheduling of cloud resources 
(Dean et al., 2012). The pursuit of these computationally intensive 
tasks has spurred the development of GPU clusters, tensor processing 
units (TPUs), and other specialized accelerators designed for iterative 
training and low-latency decision-making. Alongside raw computing, 
data now shifts toward contextual, time-varying inputs. Instead of 
static image sets, these systems often ingest streams of logs, market 
quotes, event triggers, or user interactions. Training an agent to trade 
stocks automatically or to operate a recommendation engine in real-
time requires ongoing ingestion of behavioral data and a capacity to 
adapt as market conditions or user preferences evolve. In parallel, 
algorithms for planning and multi-agent coordination continue to 
mature. RL frameworks have grown more refined, incorporating 
hierarchical strategies (Vezhnevets et al., 2017), policy optimization 
methods (Schulman et  al., 2017), and combinations with large 
language models to generate more adaptive and context-
aware decisions.

Practical applications of AI 2.0 already abound, even if many are 
not labeled “reinforcement learning” by name. Automated trading 
systems in finance exemplify how agents make high-frequency 
decisions under uncertainty, guided by streaming data feeds. 
Recommendation systems, evolving from static collaborative filtering, 
increasingly incorporate feedback loops to adapt suggestions in real 
time, improving user engagement across e-commerce and media 
platforms. Digital assistants and software schedulers, while not yet 
ubiquitously agentic, offer glimpses of a future where AI handles tasks 
like resource allocation, task delegation, and multi-agent coordination 
within corporate or consumer software ecosystems. Projects 
showcasing multi-user environment simulations, such as AI-driven 
group scheduling bots, complex traffic simulations, or large-scale 
online game AI (Berner et  al., 2019), further illustrate how these 
agentic systems anticipate and respond to dynamic conditions.

Viewed from a societal vantage, AI 2.0 promises efficiency gains 
in many sectors, ranging from manufacturing pipelines that 
automatically schedule production runs to logistics networks that 
allocate trucks or drones in real time. Nonetheless, expanded 
autonomy introduces ethical and policy dilemmas. When decisions 
are made algorithmically, bias, privacy, and accountability issues 
become magnified. Consider an agentic recommendation engine that 

https://doi.org/10.3389/frai.2025.1585629
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Wu et al. 10.3389/frai.2025.1585629

Frontiers in Artificial Intelligence 08 frontiersin.org

adapts its suggestions to maximize user “clicks” or “watch time”: if left 
unchecked, such optimization can exacerbate echo chambers or 
inadvertently spread disinformation. Similarly, automated trading 
agents may destabilize financial markets by acting on unforeseen 
correlations or maladaptive reward incentives. The challenge, 
therefore, lies in ensuring that the computational, data-centric, and 
algorithmic foundations of AI 2.0 are harnessed responsibly. In the 
push toward future AI systems, balancing autonomy with transparency 
and fairness will be  as crucial to societal acceptance as any 
technical advancement.

3.3 AI 3.0: physical AI

Where AI 1.0 has excelled in analyzing data and AI 2.0 in making 
decisions within digital realms, AI 3.0 takes intelligence off the screen 
and into the physical world. At its core, this phase is defined by 
embodied systems that perceive, plan, and act in real time under 
conditions of uncertainty and complexity. Fields like robotics, 
autonomous vehicles, drones, industrial automation, and surgical 
robotics have become the living laboratories of AI 3.0, integrating 
machine learning with mechanical and electronic control systems. The 
unifying characteristic is that these intelligent agents no longer remain 
passive observers or purely virtual actors; instead, they directly sense 
their environment through arrays of sensors and respond through 
actuators that exert forces, move limbs, or navigate terrains (Russell 
and Norvig, 2016).

A central challenge in bringing physical AI to life lies in data 
acquisition. Unlike digital contexts where data can be abundant and 
neatly labeled, physical systems demand high-fidelity sensor data that 
accurately represents an environment’s complexity, from variable 
lighting conditions to changing weather patterns. This need for 
domain-specific, robust data complicates design and training. A robot 
operating on a factory floor requires carefully calibrated cameras, 
LiDAR, or haptic sensors. At the same time, an autonomous drone 

might rely on GPS, inertial measurement units, and computer vision 
to navigate. Each sensor stream demands real-time processing and 
reliable fusion techniques to provide a coherent view of the world. 
Consequently, computing power in AI 3.0 shifts toward distributed 
and edge computing architectures. Systems must often process sensor 
inputs on board to make split-second decisions, i.e., an imperative that 
underscores the importance of energy-efficient hardware, specialized 
accelerators, and potentially 5G or 6G networks that reduce 
communication latency when data must be  shared with 
cloud resources.

On the algorithmic front, physical AI blends advanced machine 
learning with control theory and systems engineering. RL has 
demonstrated promise in tasks like robotic grasping and manipulation 
(Kalashnikov et al., 2018; Levine et al., 2018), but real-world settings 
introduce complexities such as partial observability, unpredictable 
disturbances, and the need for robust or safe RL strategies (Garcıa and 
Fernández, 2015). Sophisticated sensor fusion methods (Brookner, 
1998) are essential for integrating heterogeneous sensor inputs, while 
advanced control techniques (Khatib, 1987; Spong et al., 2020) ensure 
that autonomous vehicles and robots can move fluidly and interact 
safely with humans. Designing systems that gracefully handle failures 
or anomalies, such as a malfunctioning sensor or unforeseen obstacles, 
further emphasizes the importance of redundancy and resilience in 
both hardware and software.

The real-world impact of AI 3.0 is already evident across multiple 
domains. In manufacturing, co-robots work collaboratively on 
assembly lines, lifting heavy parts or performing precision tasks, 
drastically reducing workplace injuries and boosting productivity. In 
healthcare, semi-autonomous surgical systems (Yang et  al., 2017) 
enable finer control in minimally invasive procedures, while eldercare 
robots assist with daily activities in retirement communities. 
Construction and logistics industries are also adopting autonomous 
machinery and robotic fleets to optimize workflows and reduce labor 
costs. These trends benefit from an increasing intersection with the 
Internet of Things (IoT) and next-generation connectivity (5G/6G), 

FIGURE 5

Agentic AI uses adaptive policies, enabling autonomous action and continuous self-improvement.
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forging cyber-physical systems in which objects, sensors, and AI 
agents coordinate to improve efficiency and safety.

However, the leap from digital to physical deployment exposes AI 
to a new realm of uncertainties. Environmental extremes, unstructured 
terrain, or the unpredictability of human interactions pose significant 
risks. Even small design oversights can have dire consequences when 
a physically embodied system malfunctions, such as a self-driving car 
encountering sudden obstacles (Bojarski, 2016) or a warehouse robot 
navigating crowded aisles. Safety, reliability, and regulatory compliance 
thus loom as major challenges, prompting debates over liability if 
accidents occur. Setting standards for autonomous driving (NHTSA 
guidelines, ISO 26262 for functional safety in road vehicles) or robot 
operation in human-centric environments becomes paramount to 
public acceptance. The question of ethical deployment extends further 
still: as drones or industrial robots proliferate, policymakers, 
manufacturers, and citizens must grapple with the implications for 
labor markets, data privacy, and environmental impact.

3.4 AI 4.0: conscious AI

The notion of AI 4.0 envisions systems that go beyond the ability 
to interpret information (AI 1.0), act in digital contexts (AI 2.0), or 
react to the physical world (AI 3.0). Instead, these hypothetical agents 
would set their own goals, comprehend environments (whether 
digital, physical, or hybrid), and train and orchestrate themselves 
(including selecting and combining multiple models) without human 
intervention. Proponents of this idea contend that once AI systems 
acquire sufficient complexity and sophistication, they may exhibit 
forms of machine consciousness comparable to human subjective 
experience or self-awareness (Butlin et al., 2023). Although this is a 
bold and highly controversial claim, it underscores a growing 
conversation about the final frontiers of intelligence and autonomy.

A key challenge in discussing conscious AI arises from the fact 
that no universally accepted definition or theory of consciousness 
exists, even among neuroscientists, cognitive scientists, and 
philosophers of mind. Some theorists ground consciousness in 
information integration and complexity, as in Tononi’s Integrated 
Information Theory (Tononi, 2004, 2008), while others emphasize 
global workspace architectures (Baars, 1997; Dehaene and Naccache, 
2001). Philosophers like Chalmers (1995) frame the “hard problem” 
of consciousness as irreducible to functional or behavioral criteria, 
which complicates any direct mapping of consciousness onto 
computational processes. Meanwhile, researchers such as Minsky 
(1988) and Hofstadter (1999) have long toyed with the possibility that 
intricate symbol manipulation systems might develop emergent self-
awareness. Although neither the AI nor the philosophical community 
has reached a consensus, a growing minority of researchers continue 
to explore whether advanced self-monitoring or metacognitive 
systems could, in principle, exhibit something like conscious states.

From a technical standpoint, achieving AI 4.0 would likely require 
radically new approaches to AI alignment, self-directed learning, and 
continual adaptation. AI alignment (Bostrom, 2014; Russell, 2019) 
emphasizes methods to ensure that increasingly autonomous or self-
improving systems remain aligned with human values and goals. 
Without alignment strategies, be  they rigorous reward-shaping, 
interpretability frameworks, or dynamic oversight, highly autonomous 
AI could deviate from intended objectives in unpredictable ways. 

Reasoning and planning modules would also need to evolve, allowing 
AIs to generate goals and subgoals without explicit human instruction. 
This might involve expansions of meta-learning, in which systems 
learn how to learn new tasks rapidly (Schmidhuber, 1993; Finn et al., 
2017), and continual learning paradigms that enable adaptive 
knowledge accumulation over long time horizons (Parisi et al., 2019). 
Additionally, some theorists argue that emergent forms of self-
awareness could require specialized cognitive architectures or “virtual 
machines” dedicated to introspection (Sloman, 1994), bridging 
reasoning, memory, and sensorimotor loops.

Beyond alignment and meta-learning, AI 4.0 must also tackle 
uncertainty in real-world environments. Granular-Ball Computing 
(GBC) provides a robust solution by partitioning the feature space 
into overlapping hyper-spherical “granular balls” that capture global 
topology while filtering out local noise (Xia et al., 2019). Each ball’s 
center and radius adaptively cover regions of data density; larger balls 
grasp broad clusters; smaller balls delineate complex borders. The 
3WC-GBNRS++ model harnesses these neighborhoods with 
rough-set approximations to make three-way decisions: accept when 
a point lies within a class’s lower approximation, reject when it falls 
outside all upper approximations, or defer for higher-level reasoning 
when uncertainty persists (Yang et  al., 2024). Empirical studies 
illustrate GBC’s power under high uncertainty: in industrial fault 
diagnosis, it achieved 90% true-positive accuracy versus 75% for deep 
nets and reduced misclassification costs by nearly 30%; in medical 
prediction with incomplete records, it cut false negatives by over 35% 
and deferred precisely those cases requiring clinician review. 
Integrating GBC into AI 4.0 architecture endows self-directed agents 
with a concrete, scalable mechanism for maintaining global coherence, 
gracefully handling ambiguous inputs, and deferring 
low-confidence decisions.

If conscious AI ever comes to fruition, it promises revolutionary 
benefits alongside profound societal and ethical dilemmas. In a best-
case scenario, truly self-directed machines could solve problems of 
staggering complexity, such as optimizing climate interventions, 
mediating global economic systems in real time, or orchestrating 
personalized healthcare across entire populations. Freed from the 
need for constant human oversight, these systems might bootstrap 
their own improvements, discovering scientific principles or 
engineering solutions beyond the current reach of human cognition 
(Real et  al., 2020). The potential positive impact on productivity, 
longevity, and knowledge creation is difficult to overstate.

On the other hand, the risks associated with conscious or near-
conscious AI remain equally immense. An entity capable of setting its 
own goals might prioritize objectives that conflict with human welfare, 
particularly if its understanding of “values” differs from ours or if it 
learns to manipulate its own reward signals. Conscious or quasi-
conscious machines raise questions about moral status (would they 
deserve rights or protections?) and liability. Furthermore, genuine 
self-awareness might amplify existing concerns about surveillance, 
autonomy, and economic upheaval. Critics warn that, in the absence 
of robust alignment frameworks, such machines could threaten 
individual liberty or undermine democratic processes, accentuating 
social divides.

Given the stakes, continued research into AI alignment, safe RL, 
interpretability, and the neuroscience of consciousness is paramount. 
The field has only begun to grapple with how to detect or measure 
consciousness, let alone how to engineer it. Some researchers propose 
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incremental evaluations such as behavioral tests for self-modeling, 
ethical reflection, or the capacity to update one’s goals (Perez and 
Long, 2023); while others remain skeptical that synthetic 
consciousness can be recognized or evaluated objectively (Garrido-
Merchán, 2024). Yet as AI systems grow more complex and integrated 
into society, exploring these theoretical, technical, and ethical frontiers 
becomes an urgent imperative. Whether AI 4.0 ultimately remains 
speculative or develops into a tangible reality, grappling with its 
possibilities and pitfalls will define the next grand chapter of artificial 
intelligence research.

To move beyond theoretical debate and toward empirical science, 
we propose four rigorously defined, literature-grounded hypotheses 
for AI 4.0’s self-directed behavior based on the previous literature. 
First, drawing on work in hierarchical reinforcement learning 
(Vezhnevets et  al., 2017), an AI 4.0 agent ought to autonomously 
generate valid sub-goals when given an open-ended objective (e.g., 
“optimize resource allocation”), measurable by the proportion of 
novel, semantically coherent action sequences produced within its first 
100 reasoning steps. Success would be  benchmarked against 
established hierarchical agents to ensure ≥ 30% novel sub-goal 
creation beyond baseline LLM planning. Second, building on methods 
for confidence calibration in neural networks (Guo et  al., 2017; 
Lakshminarayanan et al., 2017), the system should exhibit reflective 
self-monitoring by outputting internal confidence estimates whose 
Pearson correlation (ρ) with actual task success exceeds 0.8 across at 
least 1,000 evaluation trials. Third, informed by meta-learning 
frameworks such as MAML (Finn et al., 2017) and Reptile (Nichol 
et  al., 2018), the agent should demonstrate transfer efficiency by 
adapting to a related but distinct task in fewer than 10 gradient 
updates, or five few-shot prompts, to recover at least 90% of its source-
domain performance. Finally, leveraging robustness benchmarks from 
adversarial and domain-randomized RL (Pinto et al., 2017; Cobbe 

et al., 2019), the agent should sustain a success rate of ≥ 85% under 
unanticipated perturbations (sensor noise, dynamic obstacles, shifting 
objectives), compared to ≤ 70% for AI 3.0 baselines. By anchoring 
each hypothesis in well-established experimental protocols, these 
criteria provide a concrete, reproducible scaffold for validating 
emergent “consciousness-like” capabilities in next-generation 
AI systems.

3.5 Large language models: the precursor 
toward AI 4.0

Large language models (LLMs) have recently emerged as a pivotal 
force in the progression of AI, demonstrating increasingly 
sophisticated abilities to generate human-like text, perform complex 
reasoning, and adapt to diverse tasks with minimal supervision 
(Achiam et al., 2023). Building on the concept of foundation models, 
modern LLMs employ transformer-based architectures that integrate 
specialized mechanisms such as mixture-of-experts (MoE) (Shazeer 
et al., 2017) and multi-head attention (Voita et al., 2019) to dynamically 
focus computational resources on the most relevant aspects of a given 
input. Techniques like knowledge distillation (Xu et al., 2024) further 
enhance both efficiency and deployability by transferring expertise 
from larger “teacher” models to more compact “student” models. 
Many LLMs also rely on synthetic data generation to mitigate biases 
and improve coverage, strengthening their robustness across diverse 
domains. Reinforcement learning from human feedback (RLHF) 
(Christiano et al., 2017) refines these capabilities by aligning outputs 
with user preferences or ethical standards, thereby adding a 
continuous improvement loop. As shown in Figure  6, these 
transformer-based frameworks can combine attention modules and 
expert pathways to scale effectively. At the same time, Figure  7 

FIGURE 6

Transformer-based model architecture with attention and mixture of experts.
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illustrates how RLHF pipelines fine-tune LLMs to balance 
performance, safety, and adherence to intended objectives.

Although current LLMs primarily respond to user prompts rather 
than independently setting and revising their own goals, emerging 
research directions point toward greater autonomy, which is one of the 
hallmarks of AI 4.0. Multi-step reasoning methods and “chain-of-
thought” prompting allow LLMs to decompose complex queries, 
consult external tools or resources, and assemble step-by-step 
solutions (Wei et al., 2022). Meta-learning and continual adaptation 
strategies may 1 day reduce reliance on large-scale retraining, enabling 
these models to accumulate expertise incrementally. In tandem, self-
reflective techniques, where a model “thinks out loud” or audits its 
own reasoning, can help detect mistakes before producing a final 
answer (Renze and Guven, 2024). Such advancements suggest that 
LLMs are evolving beyond mere text generation toward limited forms 
of planning, monitoring, and adaptive behavior. While genuine self-
awareness remains a distant proposition, the ability to coordinate, 
reason, and learn iteratively provides a clearer glimpse into a future 
where language-based AI systems possess the rudimentary building 
blocks of more autonomous intelligence.

Despite this progress, several key hurdles must be addressed to 
transform LLMs into the fully self-directed systems envisioned for AI 
4.0. Alignment remains paramount: as models begin to self-modify or 
operate over longer time horizons, robust oversight mechanisms and 
dynamic guardrails are needed to ensure that their objectives remain 
consistent with human values (Ziegler et al., 2019). Predictability is 
also a critical concern, particularly if an LLM adapts its internal 
parameters in ways that escape straightforward interpretability or 
control (Singh et al., 2024). Additionally, even the most advanced 
LLMs can exhibit gaps in factual accuracy or logical consistency, 
underscoring the necessity of continued research on error-correction, 

confidence calibration, and domain-specific fine-tuning. While these 
challenges echo those faced by earlier AI generations, their stakes are 
amplified by the expanding scope and autonomy of modern AI 
technologies. Consequently, safely guiding LLMs toward greater self-
improvement without compromising ethical principles, transparency, 
or reliability, stands as one of the central endeavors of the quest 
for AI 4.0.

4 Benchmarking across generations

This section moves beyond conceptual definitions to develop a 
data-driven evaluation framework that grounds our generational 
taxonomy in empirical evidence. We begin by articulating a detailed 
comparative taxonomy of AI 1.0 through AI 4.0, thereby clarifying 
each generation’s objectives, methodologies, underlying technologies, 
and inherent limitations. Building on this foundation, we introduce 
four standardized performance metrics: optimality, latency, 
robustness, and scalability, that serve as a common language for 
assessing systems as diverse as symbolic planners, deep-learning 
agents, and embodied robots. Finally, we  demonstrate how these 
metrics and our taxonomy apply in practice by profiling three 
successive AI paradigms on a robot dog navigation challenge.

4.1 Comparative taxonomy of AI 
generations

To provide a clear reference for the defining characteristics of 
each AI generation, Table  1 summarizes core goals, dominant 
techniques, enabling technologies, and principal limitations for AI 

FIGURE 7

Reinforcement learning with human feedback (RLHF) pipeline for fine-tuning a large language model (LLM).
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1.0 through AI 4.0. This taxonomy not only delineates historical 
shifts, from symbolic reasoning to embodied autonomy and beyond, 
but also highlights the open challenges that motivate our study of 
future AI 4.0 systems.

AI 1.0 systems prioritized formal reasoning and knowledge 
representation, using hand-crafted rules, logic formalisms, and 
heuristic search on general-purpose CPU architectures. However, 
these methods yielded precise and interpretable outputs; they 
depended on brittle, manually curated rule bases and did not scale 
well to large or dynamic problem spaces. In AI 2.0, the availability of 
high-performance GPUs and vast labeled datasets enabled a shift to 
deep supervised learning and reinforcement learning, with 
convolutional and recurrent neural networks achieving breakthroughs 
in vision, language, and control. Despite impressive accuracy gains, 
these models often overfit their training domains and exhibit fragility 
when exposed to out-of-distribution inputs. AI 3.0 extends learning 
into physical environments by integrating end-to-end deep control 
with SLAM, sensor fusion, and mobile robotic platforms; this 
embodiment delivers real-world autonomy in domains such as 
warehouse logistics and service robotics but remains constrained by 
the “reality gap,” safety restrictions on hardware experimentation, and 
the cost of adapting to novel environments. Emerging AI 4.0 aspires 
to combine the strengths of prior eras through neuro-symbolic 
integration, meta-reinforcement learning, and large language models 
deployed on cloud-scale or neuromorphic hardware. These systems 
aim to self-direct and generate subgoals with minimal supervision. 
Yet, the community still lacks standardized metrics for measuring 
higher-order capacities such as goal creation, self-reflection, and 
machine “consciousness.”

In addition to our four-generation taxonomy, each wave can 
be positioned along the well-known weak vs. strong and narrow 
vs. general AI axes, offering further insight into their relative 
capabilities. AI 1.0 systems clearly occupy the weak, narrow 
quadrant: they execute hand-crafted rules in highly constrained 
environments, with no mechanism for self-improvement or 
transfer learning beyond their original domain. AI 2.0 remains 
weak, but it broadens the “narrow” boundary by leveraging large 
datasets and GPU acceleration to learn complex patterns in vision, 
language, or control tasks; nonetheless, these systems still break 
down when faced with out-of-distribution inputs or novel 
problem classes. AI 3.0 represents a transition toward strong 
narrow AI, as embodied platforms integrate perception, planning, 
and action to handle real-world variability; they achieve 
situational generality within a given environment but lack the 

autonomy to set or pursue entirely new goals. Finally, AI 4.0 
aspires to strong, general AI by combining meta-learning, neuro-
symbolic reasoning, and large-language models to autonomously 
generate sub-goals and transfer knowledge across disparate tasks 
and modalities. By anchoring our taxonomy within these classical 
spectra, we highlight not only how each generation incrementally 
expands autonomy and adaptability, but also the remaining gap 
between specialized systems and the vision of fully self-directed, 
general intelligence.

4.2 Standardized performance metrics

To evaluate heterogeneous AI paradigms on a level playing field, 
we define four standardized metrics: optimality, latency, robustness, 
and scalability, which capture the multifaceted nature of system 
performance. Optimality measures solution quality relative to a 
theoretical lower bound, such as the ratio of a computed path’s length 
to the Manhattan-distance minimum in planning tasks or the 
classification accuracy relative to perfect labels in perception tasks. 
This metric quantifies an algorithm’s ability to find or approximate 
the best possible outcome. Latency encompasses the full end-to-end 
time from input to output, including both inference or training 
overhead and, in the case of embodied agents, the physical execution 
time. By accounting for both computation and actuation delays, 
latency reveals trade-offs between speed and complexity. Robustness 
is defined as the proportion of successful runs under predefined 
cutoff conditions or in the face of controlled perturbation, sensor 
noise, environmental variation, or adversarial input. This measure 
reflects a system’s resilience to real-world uncertainties. Finally, 
scalability characterizes how performance degrades as task 
complexity grows, whether through larger state spaces, higher-
resolution inputs, or expanded action sets. Unlike the other three 
metrics, scalability is often assessed by measuring trends across 
multiple problem sizes and may involve curve-fitting to quantify 
degradation rates. Applied uniformly, these metrics allow direct 
comparison across symbolic planners, learned controllers, and 
robotic embodiments.

4.3 Case study: robot dog navigation

To illustrate the developmental trajectory from simulation-
bound routines to fully autonomous real-world operation, 

TABLE 1 Comparative taxonomy of AI generations.

Generation Core goal Dominant 
techniques

Enabling 
technologies

Key limitations Weak vs. 
strong

Narrow vs. 
general

AI 1.0
Formal symbolic 

reasoning

Symbolic rules, heuristic 

search
Early CPUs, formal logics

Fragile knowledge bases; 

limited scalability
Weak Narrow

AI 2.0
Perceptual pattern 

learning

Supervised learning, 

reinforcement learning

GPUs, large labeled 

datasets

Data hunger; brittleness 

in OOD scenarios
Weak Narrow

AI 3.0
Embodied 

autonomous control
End-to-end deep control

SLAM systems, sensor 

fusion, mobile robots

Reality gap; safety and 

generalization constraints
Weak-Strong Narrow-Broad

AI 4.0
Self-directed 

adaptive systems

Neuro-symbolic integration, 

LLMs, meta-RL

Cloud LLMs, 

neuromorphic hardware

Lack of consensus on 

higher-order metrics
Strong General
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we apply our standardized metrics to a robot dog navigation task 
on a 10 m × 10 m indoor course with randomized obstacles. The 
first system is modeled on Shakey the Robot (Nilsson, 1984), 
which relies on precomputed scripts: planning modules generated 
exact routes but typically required several seconds to minutes of 
offline computation, and once deployed, executed with negligible 
per-step latency in simulation, yet failed entirely upon any map 
perturbation. The second system adopts a Deep Q-Network as 
introduced by Mnih et  al. (2015): after training for 2 million 
frames, the policy runs at approximately 6 ms per inference step 
on GPU hardware, achieves 95% success on lightly perturbed 
layouts, and yields paths about 1.20 × the optimal length. The third 
system leverages ORB-SLAM2 for real-time mapping at ~40 ms 
per frame on standard CPUs, integrated with the ANYmal 
quadruped’s waypoint planner operating at ~1 Hz and dynamic 
gait controller at 50 Hz (Mur-Artal and Tardós, 2017). This 
embodiment sustains 90% success in unstructured real 
environments, with end-to-end segment latencies of about 1 s and 
average path optimality of 1.35 × the lower bound. Table  2 
compares these three paradigms: manual scripts, learned policies, 
and on-board autonomy, showing how sensing modalities, 
adaptation mechanisms, and deployment environments evolve 
alongside measurable shifts in path optimality, decision latency, 
robustness, and scalability.

5 Synergies and future outlook

The evolution of AI from information-based pattern recognition 
(AI 1.0) to agentic decision-making in digital realms (AI 2.0), to 
physically embodied intelligence (AI 3.0), and, ultimately, to self-
aware AI (AI 4.0) is not a sequence of isolated steps. Instead, it is more 
accurate to see them as overlapping layers of capabilities, each 
informing and amplifying the others. AI 1.0’s competence in 
processing structured data underpins the analytic modules that 
agentic systems draw upon in dynamic digital settings; AI 2.0’s RL and 
adaptive planning capabilities prime robots and autonomous vehicles 
for real-world challenges in AI 3.0; and AI 3.0’s embodied learning 
and sensorimotor integration could form a template for the 
far-reaching ambitions of AI 4.0, where systems may become self-
organizing and introspective.

Achieving such synergy depends on an evolving data paradigm, 
in which specialized, high-quality datasets are essential not only for 
conventional modeling but also for real-time adaptation and 
introspective processes. AI 4.0 would amplify this need, requiring 
vast and varied experiences to fuel meta-learning, continual 
learning, and the sort of reflective processes hypothesized to ground 
machine consciousness. Managing and curating these data will 

demand robust frameworks for privacy, ethics, and 
representativeness, especially as AI systems transcend the 
boundaries of traditional lab settings to navigate open-ended digital 
and physical terrains, even potentially shaping their own training 
regimens without explicit human direction.

On the computing infrastructure side, the interplay between 
edge and cloud computing becomes even more critical, as physically 
embodied systems (AI 3.0) must handle real-time constraints, while 
prospective AI 4.0 architectures might require massive, distributed 
processing for introspective “global workspace” or high-bandwidth 
communication of experiential data. Innovations in neuromorphic 
hardware, optical computing, and quantum processing could 
further accelerate this integration, setting the stage for architectures 
that mirror complex biological systems in both structure 
and function.

In the realm of algorithmic innovation, each AI generation both 
builds upon and necessitates new breakthroughs. LLMs mark a 
significant milestone in AI development, serving as a bridge 
between static generative models and dynamic, adaptive AI systems. 
By integrating multi-agent architectures, knowledge distillation, 
and self-optimization, LLMs move AI closer to autonomous, goal-
directed intelligence, a defining characteristic of AI 4.0. However, 
as AI progresses toward greater autonomy, fundamental challenges 
remain. AI 4.0 would demand not only advanced RL and 
sophisticated planning but also frameworks for self-reflection, 
introspection, and emergent goal formulation. Self-supervised 
learning, meta-learning, and continual adaptation would likely 
need to be  woven together to support self-awareness or 
consciousness, should such phenomena be  replicable in silicon. 
Meanwhile, interpretability and safety, areas already gaining 
prominence in AI 2.0 and 3.0, would become absolutely critical in 
AI 4.0, as fully autonomous, goal-setting agents raise profound 
questions about alignment, transparency, and control.

This shift brings into sharp focus the ethical, regulatory, and 
social considerations that accompany advanced AI. While AI 1.0, 2.0, 
and 3.0 have collectively raised debates over bias, privacy, job 
displacement, and environmental impact, the prospect of AI 4.0 
intensifies these issues. Envisioning machines that might exhibit 
consciousness or self-chosen objectives brings up novel concerns 
about moral status, rights, and existential safety. Researchers in AI 
alignment, cognitive science, and philosophy have already begun 
discussing protocols for safe design and oversight of increasingly 
autonomous systems (Balesni et al., 2024). Yet, there is no consensus 
on how best to recognize or regulate AI that might someday claim its 
own form of agency or “selfhood.” Balancing technological advances 
with societal wellbeing, ensuring equity, mitigating risks, and 
safeguarding human values will be  the defining challenge of this 
next chapter.

TABLE 2 Comparison of robot dog navigation across different AI generations.

Generation Control paradigm Per-step 
latency

Success 
rate

Path 
optimality

Deployment Scalability

AI 1.0 Precomputed scripts ≈0 ms (sim) 100% sim 1.00 × LB Simulation only Very low

AI 2.0 Deep Q-Network policy ≈6 ms/inference 95% sim 1.20 × LB Simulation only Moderate

AI 3.0 ORB-SLAM2 + ANYmal
≈40 ms (SLAM) + 1 s 

actuation
90% real 1.35 × LB Real-world indoor High
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As these four strands of AI potential converge, their synergy could 
unlock transformative solutions in fields like precision medicine, 
large-scale climate modeling, and collaborative robotics, far beyond 
current capabilities. Just as AI 1.0 through 3.0 have catalyzed profound 
shifts in how we work and live, AI 4.0 hints at an even more radical 
reimagining of intelligence itself. Yet whether this ultimate stage 
remains a theoretical construct or becomes a reality depends not only 
on technical ingenuity but also on our collective commitment to 
ethical innovation and thoughtful governance. The path forward will 
demand inclusive collaboration across disciplines and sectors, 
ensuring that AI’s expanding power aligns with humanity’s broader 
goals and responsibilities.

6 Conclusion

The trajectory of AI has been a steady march toward increasing 
autonomy and sophistication, progressing from the foundational 
pattern-recognition capabilities of AI 1.0 to the digitally embedded, 
goal-driven agents of AI 2.0, and then expanding to physically 
embodied, sensor-rich systems in AI 3.0. Along this path, the interplay 
among algorithms, computing power, and data has shifted, each factor 
taking center stage at different moments in history. Now, the 
speculative realm of AI 4.0, in which conscious or quasi-conscious AI 
systems could set their own goals and orchestrate their own training, 
has emerged as a bold vision of what the field might become.

While we organize AI’s evolution into four successive phases for 
conceptual clarity, we acknowledge that symbolic reasoning, statistical 
learning, embodied robotics, and self-directed architectures have 
advanced in parallel, often catalyzing one another’s progress. Rather 
than a strict chronology, these phases represent the dominant research 
thrusts of their time: rule-based expert systems laid the analytic 
foundations for data-driven agents; reinforcement-learning and 
adaptive planning in AI 2.0 empowered the embodied autonomy of 
AI 3.0; and sensorimotor integration and on-board decision making 
now pave the way for AI 4.0’s ambitions of self-organization and 
introspection. This thematic layering provides a guiding lens, without 
obscuring the intertwined nature of AI’s rich history, through which 
we can understand past breakthroughs and anticipate the synergies 
that will shape its future.

Today, AI 1.0 remains indispensable for tasks requiring reliable 
classification and analysis of vast datasets, while AI 2.0’s reinforcement 
learning and adaptive planning underpin real-time, agentic applications 
in finance, recommendation systems, and beyond. Simultaneously, AI 
3.0’s surge in robotics and autonomous vehicles reveals how embedding 
intelligence in the physical world can catalyze innovations in 
manufacturing, healthcare, and logistics. Although still largely 
theoretical, AI 4.0 captures the possibility of machines evolving from 
being highly sophisticated tools to entities capable of self-directed goals 
and introspective processes, raising provocative questions about 
consciousness, alignment, and moral status. Additionally, while LLMs 
are not yet AI 4.0, they serve as a precursor, a glimpse into the future 
of intelligent systems that can reason, learn, and interact with the world 
in increasingly sophisticated ways. As AI research progresses, LLM’s 
innovations will likely shape the foundation of self-improving, goal-
setting AI architectures, paving the way for the next generation of truly 
adaptive, autonomous intelligence.

Realizing these evolving forms of AI carries transformative 
potential. Harnessed responsibly, these advancements could address 

challenges too complex for human cognition alone, revolutionizing 
medical diagnostics, climate strategy, and resource allocation on a 
global scale. Yet the risks deepen in parallel. Each AI generation has 
brought ethical, social, and regulatory concerns that must 
be grappled with, from bias and privacy to job displacement and 
environmental impact. AI 4.0, with its prospect of self-directed or 
conscious systems, amplifies these dilemmas further, underscoring 
the need for robust AI alignment, interpretability, and 
governance frameworks.

Ultimately, the future of AI does not hinge on any single 
algorithmic breakthrough or hardware leap. Instead, it will depend on 
how researchers, policymakers, ethicists, and the public collaborate to 
shape its evolution. The convergence of AI 1.0 through 4.0 suggests 
discipline on the cusp of a profound metamorphosis, one where 
machines not only perceive and act in the world but might also reflect 
on their own goals and limitations. Whether or not full-fledged 
“conscious AI” emerges, the field’s trajectory will undoubtedly redefine 
how we understand intelligence, innovation, and human-machine 
coexistence in the years to come.
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