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Humans are goal-directed agents and intelligence is suggested to be a characteristic 
of such agents. AGI can be achieved following the principle of the goals-means 
correspondence that posits the necessary condition for achieving a goal is the 
correspondence between the goal and the means. The goals-means correspondence 
is used in all architectures underlying intelligent systems. There are two conventional 
architectures regarding how the correspondence can be established. One conventional 
architecture that is based on observations of animals, is intelligent agents whose 
goals, means, or criteria for its construction are determined jointly at the moment 
of the birth of an agent. The other conventional architecture that is based on 
the analysis of human actions, defines intelligent agents whose goals and means 
are constructed arbitrarily and independently from each other. The conventional 
architectures cannot explain human actions and thinking. Since the conventional 
architectures underlie all artificial intelligent systems these systems are insufficient 
to construct AGI. The formal analysis of architectures demonstrates that there 
is another architecture in that arbitrary goals and means are constructed jointly 
on the basis of the criterion of minimal construction costs. This architecture is 
suggested to underlie human goal-directed processes. The view on humans as 
goal-directed agents constructing goals and means jointly allows creating an AGI 
agent that is capable of functioning in real situations. Unlike conventional AI agents 
that have an unaltered structure, the structure of agents in the new architecture 
is alterable. The development of an AGI agent may be similar to human growth 
from an infant to an adult. A model including a simple agent based on the new 
architecture, is considered. In the model the agent wanders in a quadrangular field 
filled with various objects that stimulate the agent to move in several directions 
simultaneously, thus trapping the agent. However, changing its structure the 
agent constructs goal-directed processes; therefore it is capable of leaving traps.
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1 Introduction

The appearance of the first computers after World War II inspired outstanding researchers 
to start considering the construction of computer programs that could think like humans 
(Turing, 1950). In modern terms, they considered the construction of artificial general 
intelligence (AGI). The fundamental obstacle for this endeavor was the fact that the general 
principles and mechanisms of thinking and intelligence were absolutely unclear at that time 
(and since then the situation has not changed radically). A solution for this problem seemed 
obvious: it is necessary to simulate some narrow domains of activity where the characteristics 
of human intelligence are most evident and salient. It was reasonable to assume that certain 
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principles and methods that might be derived from such simulations 
could be generalized and then artificial general intelligence could 
be constructed.

However, the history of Artificial Intelligence has demonstrated 
that the ideas and approaches that could be  derived from the 
construction of intelligent systems for specific domains are not 
sufficient for the construction of AGI. The simulation of chess playing 
is an obvious example. Chess playing is often considered the summit 
of human intelligence. On the other hand, the rules of chess are very 
simple and unambiguous. As a result, several decades of the simulation 
of playing chess have led to chess programs that defeat any human 
player however, those are very specialized and cannot be used beyond 
chess playing (Levy, 2013). The same situation is observed in other 
domains related to Artificial Intelligence (pattern recognition, 
computer games) when artificial intelligent systems compete with or 
even exceed humans in a specific domain for which those are created; 
however, such systems are not applicable in other domains.

Modern generative chatbots that are based on large language 
models (LLMs), are capable of answering arbitrary questions, coding, 
writing essays (Bang et al., 2023; Lewkowycz et al., 2022). Therefore, 
one may argue that although LLMs process only discrete information, 
generative chatbots are not limited to a specific domain. However, 
LLMs face a fundamental difficulty. Obviously, any intelligent agent 
interacts with its environment on the basis of a model of the 
environment. The model of the environment is always simpler than 
the environment itself. As a result, the efficiency of the agent’s 
interactions with its environment is limited and the agent is needed to 
update this model through feedback loops permanently. Accordingly, 
some components of the model should be more stable than other 
components, this is necessary to compare the model to the ongoing 
situation. Human models of the ongoing situation are hierarchical, 
including both stable and temporary components because human 
actions are multi-stage. Chess programs have similar characteristics 
because although the win in a chess game is the stable component of 
a chess program but the program must flexibly respond to the moves 
of the opponent through the generation of its own moves. However, 
LLMs are autoregressive systems that consequentially generate a new 
item on the basis of previous ones (Lee, 2023); their models of the 
environment are not hierarchical, therefore, LLMs themselves cannot 
correct their hallucinations. Generative chatbots imitate some aspects 
of human intelligence only.

The fundamental distinction between artificial intelligent systems 
and real systems such as animals and humans, is that artificial systems 
are adapted to simple artificial environments, but real intelligent 
systems evolved in the real world that is infinitely complex. On the 
basis of this distinction, some scholars suggest that AGI cannot 
be devised at all (Fjelland, 2020).

In this article some general principle that underlies all intelligent 
systems is considered. Various architectures can be derived from the 
principle, including those architectures that are usually suggested to 
underpin human thinking. These conventional architectures are used 
for the construction of artificial intelligent systems. However, the 
conventional architectures cannot explain the characteristics of 
human actions and thinking. A novel architecture is assumed to 
underlie human thinking. This architecture can be  used for the 
construction of an AGI agent that is capable of functioning in real 
environments. A tentative design for such an agent is described. In 
order to demonstrate how the novel architecture can be implemented, 

a model that includes an agent based on the new architecture 
is presented.

2 The goals-means correspondence

Human beings interact with the world through actions that are 
directed to the achievement of some results in the future. Thus, 
humans are goal-directed agents. A goal-directed agent has goals that 
are the states of the agent or the environment that the agent attempts 
to achieve or to stay unchanged in the future. It is usually assumed that 
a goal is the verbal representation of a future state; however, this 
limitation is unnecessary. Indeed, the behavior of nonhuman animals 
is directed to the future but they are not verbal. To achieve goals, the 
agent uses means that are methods for interactions with the world.

I suggest that intelligence is a characteristic of goal-directed agents 
(Russell and Norvig, 2009). Intelligence reflects the efficiency of the 
agent in performing actions and achieving goals. From this point of 
view, humans are intelligent agents that are efficiently able to interact 
with arbitrary real environments through goal-directed processes. 
Therefore, in order to create AGI it is necessary to understand how 
human goal-directed processes are constructed.

Due to the complexity of the world, any intelligent agent has a 
large reservoir of methods to handle it. However, from the position of 
internal mechanisms that determine the functioning of the agent, only 
some of these methods are appropriate to achieve the current goal 
because such methods somehow correspond to the goal in the ongoing 
situation. This is the principle of the correspondence between goals 
and means for the ongoing situation. Of course, this principle is a 
necessary condition to achieve the goal only. The principle is not 
sufficient because the world is more complex than the agent; therefore 
if the agent has an appropriate means, this does not imply a priori that 
the means allows achieving the goal. The establishment of the goals-
means correspondence is a necessary prerequisite for the functioning 
of an intelligent agent in any situation.

2.1 Conventional architectures

There may be  different architectures for intelligent agents 
regarding how the correspondence between goals and means can 
be  established. Humans and animals are intelligent agents and 
observations on their activities allow revealing two architectures. One 
architecture that it is suggested to underlie the activity of nonhuman 
animals includes goal-directed agents whose basic goals and means 
are determined jointly at the moment of the agent’s birth (creation). 
The actions of such agents result from an activation of innate goals and 
means or from goals and means that are constructed on the basis of 
innate criteria for the optimization of the agent’s actions. Innate 
optimization criteria such as pain, pleasure, or fear define the 
relationship between the agent and the environment through reward 
or punishment. Automatic actions, such as habits can also be attributed 
to this architecture because the result and the method of such an 
action are activated jointly, and these entities were being constructed 
regardless of the ongoing situation. Modern intelligent systems based 
on predetermined criteria of the optimization of a loss function belong 
to this architecture (Devlin et al., 2018; Silver et al., 2018; Vinyals et al., 
2019; Krizhevsky et al., 2017 among others). Undoubtedly, like other 
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animals humans have innate mechanisms associated with survival and 
reproduction; however, it is obvious that this architecture is unable to 
explain the diversity and rapid alterations of human actions either at 
the level of a single individual or at that of a whole society 
(Buller, 1999).

Our experience teaches us that one goal can be achieved through 
various means or methods. This, also, implies that one method can 
be applied to reach different goals. Thus, the analysis of actions and 
introspection allow us to define the other architecture that includes 
goal-directed agents whose goals and means can be  constructed 
arbitrarily and independently from each other. It is usually suggested 
it is the sort of architecture that provides the efficiency and flexibility 
of human thinking and behavior. Various symbolic systems that were 
especially popular at early stages of artificial intelligence research can 
be related to this architecture (Bertino et al., 2001; Jackson, 1998; 
Newell and Simon, 1972).

If goals are constructed independently from means, then 
searching through all possible means is the only way to select one or 
several means that are appropriate to achieve the goal. Since the world 
is complex, the number of possible means may be  very large. 
Moreover, any possible means itself may result in a new diversity of 
options and so on. Therefore, with arbitrary goals, searching among 
possible means can be unrealistically long and expensive. This is the 
problem of a “combinatorial explosion” of options that was realized by 
researchers in the 1950s when the first artificial intelligence programs 
were devised, but its solution has not yet been found (Russell and 
Norvig, 2009).

Human actions are usually efficient, though people are reluctant 
to consider many options and they are not being overwhelmed by 
their decision-making processes. These facts are inconsistent with the 
suggestion about intensive conscious searching. One may assume that 
searching among possible means is activated intentionally but it 
intensively takes place at an unconscious level (Dijksterhuis and 
Nordgren, 2006). Since the span of consciousness is limited, few 
means being obtained from searching exceed the threshold of 
awareness. The most suitable means can be selected among them on 
the basis of reasoning. As a result, thinking may be efficient without 
overloading cognitive processes at the conscious level. If this 
assumption were correct, thinking should be  efficient in simple 
situations such as psychological experiments when the number of 
possible means is limited; yet, numerous studies reveal that thinking 
can be remarkably inefficient in such situations (Bruckmaier et al., 
2021; Kahneman, 2011; Meyer and Frederick, 2023, among others).

Dual-process models (Evans, 2003, 2008; Kahneman, 2011; Evans 
and Stanovich, 2013) propose the mind includes two systems. One 
system, often being designated as System 1, is fast, automatic, and 
associative. This system corresponds to one architecture described 
above. System 2 is deliberate, rational, and reflective. Accordingly, 
System 2 corresponds to the other architecture. This approach suggests 
that in most everyday situations System 1 automatically selects an 
appropriate goal and a means on the basis of past experience. Only in 
rare cases when System 1 fails, System 2 is activated and it provides 
deliberate searching. According to this approach, thinking may 
be  inefficient in simple situations because automatic processes 
performed by System 1 are activated in such cases.

However, dual-process models face fundamental challenges. A 
suggestion that most actions are performed by automatic and 
associative System 1, is hardly consistent with the general arbitrariness 

and purposefulness of actions. Indeed, automatic actions that are 
based on the schemes of past experience only and therefore are 
inconsistent with the ongoing context, are the distinctive feature of 
patients suffering from disturbances in the prefrontal cortex (Luria, 
2012). Moreover, if there are two systems of thinking then under 
specific circumstances when it is reasonable to expect the activation 
of System 1 only (for example, under time pressure), the process of 
thinking should be  qualitatively different from other situations. 
However, this assumption is inconsistent with experimental data 
(Bago and De Neys, 2017; Pennycook et al., 2014; Thompson and 
Johnson, 2014). The conventional architectures cannot explain the 
diversity and purposefulness of human actions and some 
characteristics of thinking.

2.2 Joint construction of a goal and a 
means

These two architectures are usually considered two poles of one 
axis (“automatic” versus “deliberate” or “instinct” versus “intelligence”) 
and as a result, it seems there are no other architectures. However, a 
more profound view on the architectures demonstrates that the 
situation may be more complex. Indeed, the first architecture suggests 
that the basic goals and means of goal-directed agents are constructed 
innately and jointly. The second architecture describes agents whose 
goals and means can be constructed arbitrarily and separately from 
each other. It is easy to discern that the words “innately” and 
“separately” are not antonyms; neither are the words “jointly” and 
“arbitrarily.” This may indicate that the two architectures are only an 
apparent projection of a two-dimensional structure, in which one 
dimension can be characterized as “innate” or “predetermined” versus 
“arbitrary” or “learned” and another dimension as “constructed 
jointly” versus “constructed separately.” With this assumption, a 
representation of the structure can be given as Table 1.

It is easy to notice that two cells in the table correspond to the 
conventional architectures but two novel architectures arise from the 
other cells. One novel architecture is goal-directed agents whose goals 
and means are constructed innately and separately. This architecture 
is, however, inconsistent with the principle of the goals-means 
correspondence. Indeed, since goals and means are constructed 
separately, they do not correspond to each other, in general. Yet, these 
entities cannot be modified owing to their innateness.

The other novel architecture is goal-directed agents, whose goals 
and means are constructed arbitrarily and jointly. It is not difficult to 
note clear advantages of this architecture. Indeed, because the goal and 
the means of an agent in this architecture are constructed jointly, there 
is no need to search among a potentially infinite set of means to satisfy 

TABLE 1 Formal classification of goal-directed architectures.

Jointly Separately

Innately Goals and means are 

constructed innately 

and jointly.

Goals and means are 

constructed innately and 

separately.

Arbitrarily Goals and means are 

constructed arbitrarily 

and jointly.

Goals and means are 

constructed arbitrarily and 

separately.
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the goal; this is a simple solution for the problem of combinatorial 
explosion. On the other hand, the possibility to construct goals and 
means arbitrarily indicates the actions of agents belonging to this 
architecture may be very flexible and adaptive.

In order to construct a goal and a means jointly, it is necessary to 
define a criterion that determines its construction. This criterion 
should be derived from the characteristics of the agent that are not 
linked to the relationship between the agent and its environment. 
Indeed, if the relationship underlies such a criterion, then the agent 
belongs to the architecture with innate goals and means. There may 
be various internal criteria, but the criterion of minimal construction 
costs seems very simple and universal. This criterion is that the goal 
and the means of a goal-directed process are constructed to minimize 
the costs on its construction. The criterion of minimal construction 
costs can be considered the transfer from physics to cognitive science, 
the fundamental principle of least action. In physics, the trajectory of 
an object is derived by finding the path that minimizes the action (in 
physics, a quantity that is associated with the energy of the object) 
(Landau and Lifshitz, 1976).

I posit that humans are goal-directed agents that provide the 
correspondence between goals and means through their joint 
construction on the basis of the criterion of minimal construction 
costs (Prudkov, 2010, 2021; Prudkov and Rodina, 2023). The joint 
construction of a goal and a means is an absolutely unconscious and 
uncontrollable process, but it results in the conscious representation 
of the situation and the individual; that is, the person acknowledges 
what conscious goal can be achieved in the situation, how this can 
be performed, and what conscious criteria can be used to evaluate the 
goal and the means.

The proposition that humans are goal-directed agents whose goals 
and means are constructed jointly on the basis of the criterion of 
minimal construction costs elucidates why human actions are flexible 
and efficient without suffering from the combinatorial explosion of 
options. However, since thinking is determined by the criterion of 
minimal construction costs, the result of a thought process may 
be  wrong if the costs associated with incorrect information are 
minimal. This explains why thinking may be  inefficient even in 
simple situations.

The idea that a goal and a means are constructed jointly is based 
on the strong evidence that the prefrontal cortex which is responsible 
for human goal-directed behavior, does not process goals and means 
separately (Deary et al., 2010; Fuster, 2015).

It is necessary to note that the proposition that the mind 
constructs a goal and a means jointly does not imply that an individual 
deliberately cannot search through possible options as a method to 
determine an appropriate means. Indeed, the conscious thought to 
apply searching along with the awareness of several possible options 
may be the result of the ongoing goal-directed process. The criterion 
of minimal construction costs is a criterion for the construction of 
actions rather than a criterion for their selection; therefore, the 
criterion does not imply that people always minimize efforts when 
they perform actions.

In order to clarify the functioning of joint construction, consider 
a hungry individual. If she is hungry she may recall some grocery 
shops and certain information on these grocery shops: routes to it, its 
prices, and some emotional attitudes regarding the shops. This is an 
absolutely unconscious joint construction process that results in a 
coherent representation of the situation and this representation may 

be  appropriate for the satisfaction of the ongoing need. This 
representation is one among potentially possible others only and it 
may not be optimal (for example, the grocery shop with minimal 
prices may not be  recalled); however, this is the solution for the 
problem of the combinatorial explosion. The construction of the 
model of the current situation is a primary goal-directed process. In 
principle, one grocery store may be recalled, and then the person may 
decide to go to this store. When she leaves her home, a new joint 
construction process arises and results in a new model of the situation 
when the objects of the environment that may be appropriate for 
achieving the store become perceptible.

If several grocery stores are recalled then their comparisons and 
the selection of the best grocery store are necessary. From the position 
of the joint construction approach (referred to as JCA, hereinafter); 
these comparisons based on reasoning and planning are secondary 
goal-directed processes because those are performed within the 
primary model of the situation. The consequence of such comparisons 
can be the awareness of the failure of the primary model and then a 
new primary model emerges. In other words, feedback loops from 
interactions between the individual and the environment lead to the 
construction of novel goal-directed processes; however, since 
practically any action is multilevel, changes at the lower levels of a 
goal-directed process are possible without changing at its upper levels.

One may propose two obvious objections to the joint construction 
approach. First, if a goal and a means are constructed jointly, then the 
means ought to correspond to the goal somehow. However, people 
often understand what goal must be achieved but they cannot suggest 
a method to achieve the goal. For example, the author would like to 
be a winged dragon roaming between stars but he has no idea how to 
be converted into such a dragon. Yet, a person can dream of becoming 
a dragon only if she preliminary has selected information about 
dragons from the infinite variety of information about the world. The 
formation of a consistent view on a certain aspect of reality is an 
obvious condition for any activity aimed at this aspect.

The joint construction is not a method to create the best action 
(this is impossible due to the combinatorial explosion) but a method 
to create some action (because the number of possible actions is 
infinite, in principle). To some degree, an alternative to the action that 
is formed by the ongoing joint construction process is not another 
action but rather its absence. Therefore, the idea of joint construction 
is not hurt by the fact that people are able to imagine, plan, or pursue 
completely arbitrary, even unachievable goals. When the individual 
thinks that there is no method to achieve the goal, nevertheless an 
inappropriate method is chosen because the selection of a specific 
aspect of reality among other possible aspects occurred.

Second, as is pointed out above, one goal can be achieved by 
various methods and one method can be applied to achieve various 
goals. These facts seem inconsistent with JCA. The idea that goals and 
means can be constructed separately is correct at the level of social 
practice but a psychological illusion at the level of psychological 
mechanisms of a particular action.

In order to clear this proposition, imagine that one needs to 
achieve the 35th floor of a skyscraper. Firstly, this can be made by 
means of an elevator. If no elevator can be used (e.g., there is no 
voltage), it is possible to go upstairs. Finally, if the staircase is 
destroyed, then one can climb on the wall using appropriate tools. It 
seems one invariable goal can be combined with various methods to 
achieve it. However, the first method is available for everyone because 
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it requires no concentration of mental resources. The second one can 
be accepted when there is a serious need to reach the goal. The last one 
can be used only under extreme circumstances requiring the strongest 
concentration of will and energy. In other words, from the position of 
internal processes, each way requires a specific psychological 
arrangement with special goals and means and this arrangement is 
acknowledged by any individual as distinctive from the others. 
Therefore, a change in the situation results in the alteration of goals 
and means at a specific level of the hierarchy of goals. It is reasonable 
to assume that the interaction between goals and means in the process 
of the construction of a goal-directed activity is a characteristic of 
any activity.

The psychological illusion of the separate construction of goals 
and means results from the fact that it is very difficult to combine the 
involvement in a particular activity with the simultaneous 
introspective monitoring of this activity. Indeed, when an individual 
pursues an everyday goal (e.g., shopping at the supermarket), she 
usually does not pay attention to all variations in intermediate goals 
and means that are necessary for this multi-stage pursuit. As a result, 
the complex interplay of these intermediate processes is reflected by 
consciousness and memory only partially, while the success or failure 
in the achievement of the main goal is usually in the focus 
of consciousness.

Prudkov and Rodina (2023) examined a hypothesis that the joint 
construction approach determines actions entirely. In the experiment, 
participants were informed about the joint construction mechanism 
and instructed to violate its functioning by performing an action. 
Participants could violate the functioning of the mechanism at two 
levels of the action but information about one of the levels was more 
explicit than about the other level. It was assumed that participants 
would violate the functioning of the mechanism only at one level. This 
assumption was confirmed experimentally. This indicates that joint 
construction determines actions because a sort of compliance between 
these levels was necessary to perform the action. Participants really 
did not violate the mechanism of joint construction; simply, in the 
unusual conditions of the experiment, joint construction brought 
about special results.

3 Creation of an AGI agent

The understanding of humans as goal-directed agents whose goals 
and means are constructed jointly paves the road to the creation of an 
AGI agent. As is pointed out above, I suggest that an AGI agent is an 
intelligent agent that is capable of acting in the real world as flexibly 
and efficiently as human beings.

In order to interact with the world, an intelligent agent is needed 
to build the internal model of the ongoing situation and then to use 
the model as the basis for the interaction with the situation. To build 
the model, it is necessary to divide the ongoing situation into separate 
objects and relations between them. Since the world is infinitely 
complex, the division of the situation into separate objects and 
relations is always relative and it is determined by the needs and goals 
of the agent; otherwise, these needs and goals cannot be satisfied. 
Thus, dividing the situation into separate objects is a component of 
establishing the current goal-means correspondence. It is reasonable 
to suggest that the search for an efficient way for the building and 
application of the internal model of an environment through the 

optimal establishment of the goals-means correspondence is the main 
objective for research in artificial intelligence (Matsuo et al., 2022).

As is noted above, building the internal model by humans is an 
instant and unconscious process and only its result is available to 
consciousness. On the other hand, the interaction with the situation 
is an effortful conscious activity. As a result, people are intended to 
neglect the complication of the division of the situation into objects 
and they preferably pay attention to the importance of some tools, 
such as reasoning or heuristics that can be used to function in the 
situation efficiently. This characteristic of human thinking has 
influenced the advance in the field of AI.

In the 1950s when AI research started, the architecture with the 
independent and separate construction of a goal and a means 
underpinned the activity of most researchers and they considered 
symbolic systems to be intelligent agents. In accordance with the idea 
on the importance of tools, those researchers suggested that the 
combinatorial explosion is the main obstacle for the creation of 
AI. They believed the mitigation of the combinatorial explosion was 
sufficient to establish the goals-means correspondence regardless of 
the complexity of the environment; therefore, they used artificial 
environments with very simple and unequivocal objects such as chess 
rules and pieces.

In the 1960s various techniques against the combinatorial 
explosion were proposed and some scientists optimistically wrote that 
the problem of artificial intelligence will be solved in a generation 
(Crevier, 1993). When researchers started to use environments with 
more complex and diverse objects, they attempted to define the 
required characteristics of such objects “by hand,” that is, by the 
explicit and deliberate selection of those characteristics and relations 
that may be appropriate for the efficient establishment of the goals-
means correspondence. However, they revealed that this approach did 
not allow establishing the adequate goals-means correspondence for 
complex artificial environments. This caused a very long period of 
stagnation in Artificial Intelligence research (Crevier, 1993; Russell 
and Norvig, 2009). The failure of symbolic systems can be considered 
another piece of evidence favoring a notion that the architecture with 
the independent and separate construction of a goal and a means does 
not underlie the establishment of the goals-means correspondence 
in humans.

The contemporary approach considers networks with neuron-like 
units intelligent agents whose goals and means are constructed 
together applying a predetermined optimization criterion (or criteria) 
associated with supervision or reinforcement. This approach describes 
objects at a sub-symbolic level and, in accordance with the idea of the 
importance of tools, the main task is considered to be searching for 
techniques for the “automatic” establishment of the goals-means 
correspondence as learning in a multi-layer network of neuron-like 
units. The appearance of such techniques and incredible increase in 
computer power enable the establishment of the goals-means 
correspondence for very complex artificial environments and the 
construction of such agents as generative chatbots.

Such results encourage some researchers to claim that this 
approach is the solution to artificial general intelligence (Silver et al., 
2021). This statement faces two obvious problems. First, the world is 
infinitely complex and changeable; therefore, it is impossible to 
establish the goals-means correspondence that could be appropriate 
for arbitrary goals and situations in advance. Second, although the 
establishment of the goals-means correspondence itself is an 
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“automatic” process in the approach, various characteristics associated 
with supervision/reinforcement, the optimization criterion (criteria), 
and the objects in the environment are defined “by hand”; therefore, 
generally, these entities are not related to each other. As a result, the 
establishment of the goals-means correspondence may be a time-
consuming and often multi-stage process. Such a process is feasible for 
artificial systems because artificial systems are entirely controllable. 
The state of an artificial agent and the state of an artificial environment 
can be reproduced or changed as many times as necessary; yet, this is 
not feasible for real situations (Matsuo et al., 2022).

JCA posits that the division of the world into objects and relations 
is a component of the joint construction of a goal and a means; 
therefore, a JCA agent theoretically can establish the goals-means 
correspondence for real environments fast and automatically. JCA 
suggests that like humans, a JCA agent is capable of developing; 
therefore, if the agent starts from short-term goals and simple 
characteristics of objects, then long-lasting goals and means based on 
the complex characteristics of objects can be  achieved gradually 
through interactions with the world. Such characteristics of human 
intelligence as reasoning and planning can be the results of gradual 
changes in the functioning of the agent because, as it is pointed out 
above, reasoning and planning are also goal-directed processes.

The basic goals of an artificial agent in the conventional 
architectures, that is, some results that the agent is intended to achieve 
according to the agent’s creators, are built into the design and structure 
of the agent directly or through optimization criteria and this 
determines the agent’s behavior. As is pointed out above, it is difficult 
to predict how a chess program can play in a concrete game but in any 
game the program strives to win because this is built into its design. 
Accordingly, corresponding means are also designed directly or 
through criteria of optimization. Yet, a goal-directed agent based on 
JCA has no basic goals and means; in general, its goals and means are 
arbitrary and should be learned. It is reasonable to assume that a JCA 
agent is a distributed system such as a neural network. In this case, the 
goal and the means of a goal-directed process are constructed from 
some interactions among the elements of the network following the 
criterion of minimal construction costs. These interactions may 
increase the coordination and coherence among the elements, for 
example, by generating novel constituents of the network or 
eliminating present ones. If the level of coherence exceeds a threshold, 
then the construction of a goal and a means is completed and a novel 
goal-directed process starts. The goal and the means are distributed 
over the changed structure of the agent. The coherent functioning of 
the network may be stable and persistent; therefore, it may regulate 
the actions of the agent and direct the agent to its goals. Thus, unlike 
conventional AI agents that have an unchangeable structure, the 
structure of JCA agents is alterable.

From this position, the construction of a new goal-directed 
process on the basis of the criterion of minimal construction costs 
involves two constituents. One constituent is the minimization of 
interactions among the elements of the network and the second 
constituent is the minimization of changes in the structure of the 
network that are caused by these interactions.

Let us denote the variable structure of the neural network 
representing the agent at moment t as Ω(t). ρ() is a metric of an 
element of the network in the space of the elements of the network. Λ 
is an operator, that describes interactions among the elements. Ξ is an 
operator that describes changes in the structure.

Then the construction of a new goal-directed process meets the 
following optimization problem:

 ( )
( )( )( ) ( )( )( ) ( )( )ρ ζ

Ω
Φ Λ Ω Ξ Ω Ω >min ( ,  ,

t
t t given that t T

 
(1)

here Φ is an operator; ζ () is a coherence function; T is a threshold 
of coherence.

It is reasonable to assume that the state of the space and the 
operator of changes in the structure are independent from each other, 
then Equation (1) can be presented as follows:

 ( )
( )( )

( )
( )( ) ( )( )ρ ζ

Ω Ω
Λ Ω + Ξ Ω Ω >Τmin ( min  

t t
t t given that t

 
(2)

A satisfactory definition for the components of Equation (2) and 
its optimization is not a trivial problem. The methods of neural 
architecture search (Stanley et  al., 2019; Ren et  al., 2021; Parker-
Holder et al., 2022) do not seem appropriate for this because these 
methods enable selecting an agent with an unchangeable structure 
among other similar agents on the basis of criteria linked to the 
relationship between the agent and the environment.

It is not simple to define conditions under which a goal-directed 
process may start or complete because with a changeable structure 
determined by internal processes, the agent is similar to a black box. 
Moreover, the agent’s view on the situation may be distinctive from 
the researcher’s view because different characteristics of the objects 
may underlie these views. However, a rough estimate of the agent’s 
state at moment t is obviously possible. One may say that this estimate 
is similar to human EEG. Let us denote the estimate as λ(t). λ(t) may 
be a vector; however, for simplicity, λ(t) is a number. One can present 
λ(t) as follows:

 ( ) ( ) ( )( )t H t K tλ = θ , ,
 (3)

where θ(t) is a function.
Η(t) is an operator that describes the anticipations of the agent 

based on the current goal regarding the environment at moment t. The 
higher Η(t), the more the agent expects changes in the environment. 
Κ(t) is an operator that describes a real state of the environment from 
the agent’s position at moment t. The higher Κ(t), the greater the 
changes in the environment.

θ(t), Η(t), and Κ(t) are not available for the researcher. Although 
Η(t) and Κ(t) can be interconnected because the agent could interact 
with the environment at early moments, in general, the changes in the 
environment are independent from the agent’s actions. Also, let us 
assume that θ(t) is a constant, Η(t), and Κ(t) are functions. Then one 
can approximate Equation (3) as follows:

 ( ) ( ) ( )t c H t K tλ = ∗ ∗
 (4)

There may be several conclusions from Equation (4). If λ(t) is 
large, this indicates Η(t) and Κ(t) are large. In this case, a new goal-
directed process is needed to respond to changes in the situation. If 
λ(t) is not very large, then the ongoing process is sufficient, although 
some changes in the structure and state of the agent are possible, for 
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example, when another means is activated. If λ(t) is small, this meets 
three different options: Η(t) and Κ(t) are small; Η(t) is small and Κ(t) 
is not small; Η(t) is not small and Κ(t) is small. The first two options 
indicate that the goal has been achieved and the third option indicates 
the environment is stable. These situations are different; hence, in 
general, it is difficult to establish a criterion for the achievement of 
the goal.

These results are related to a simple agent that has one level. Let 
us consider, that an agent has two levels, level 1 and level 2. Level 2 
receives some information from level 1 through feed-forward 
connections, generalizes the information and then controls level 1 via 
feedback loops. Let us assume that λ(t)1 and λ(t)2 are the estimates of 
activity at level 1 and level 2, respectively. It is reasonable to suggest 
that λ(t)1 usually is greater than λ(t)2. This indicates that there are two 
active processes and the process at level 2 controls the process at 
level 1.

If λ(t)1 is less than λ(t)2 this indicates the achievement of the goal 
at level 1. It is reasonable to assume that if λ(t)2 is small within a long 
interval of time and λ(t)1 is variable at that time, this indicates the 
achievement of the goal at level 2. This approach can be generalized 
for agents with many levels.

It is reasonable to suggest that the development of an AGI agent 
should be similar to human maturation. An infant is able to perform 
short-term actions on the basis of sensorial information. The actions 
of an adult can be a long-term even life-term hierarchical systems 
based on symbolic representations of future results. Although the 
mechanism of growing up is poorly understood, it can be assumed 
that this is the result of a particular architecture in the prefrontal 
cortex. There is a caudal-rostral gradient in the prefrontal cortex 
where caudal regions respond to immediate sensory stimuli, middle 
regions select actions on the basis of prevailing context, and rostral 
regions form more abstract rules to enable long-term control of 
behavior (Abdallah et al., 2022; Fuster, 2015). Rostral regions achieve 
maturation later than caudal ones (Dumontheil et al., 2008; Tau and 
Peterson, 2010; Burgess and Wu, 2013) and this likely contributes to 
long-lasting and complex goal-directed processes in adulthood. This 
evidence can be used to design an AGI agent. A possible design for an 
AGI agent is presented in Figure 1.

The agent can be described as a multi-component system. Input 
sensorial information is processed by the special sensorial component 
and influences on external objects are provided by the motor 
component. These components are multi-layer systems with 
unchangeable structures, but its detailed descriptions are beyond the 
scope of the article. It is important to notice that the division of the 
world into separate objects is not the function of the sensorial 
component only. The agent also includes the reward/punishment 
component that provides innate influences on the behavior of the 
agent. These influences are similar to pain or pleasure being felt by 
infants. However, the activity of infants cannot be reduced only to the 
maximization or minimization of such feelings. Similarly, the innate 
reward/punishment component is involved in the construction of 
goal-directed processes and provides a particular sort of feedback 
from the situation; however, the behavior of the agent, in general, is 
not determined by the criteria being embedded in this component.

The main part of the agent’s design is the goal component, which 
is multilevel and hierarchical. Each level is a multi-layer neural 
network with an alterable structure. Levels are distinguished by their 
threshold of coherence and all layers relating to the given level have 
the same threshold of coherence. The detailed description of these 
networks is beyond the scope of the paper, yet it is suggested that 
owing to a more complex design the threshold of coherence for upper 
levels is higher than for lower ones. There are feed forward and 
feedback connections between adjacent levels. The lowermost level is 
connected with the input and output components of the agent. Due to 
the different design of the levels, the formation of stable goal-directed 
processes at level j is more complex and slower than at level j−1. Since 
the changes in the units associated with ongoing goal-directed 
processes may be local, information on many processes can be stored 
and reactivated at each level of the goal component.

Obviously, the development of an AGI agent is distinctive from 
learning in conventional AI systems. In such systems the researcher 
is familiar with the design of the intelligent agent, that is, the criteria 
that are applied to learn the agent in neural networks or the goals 
that the agent should be  capable of achieving in symbolic 
processing. The researcher is able directly to alter the design if the 
performance of the agent is inappropriate. However, the structure 

Innate 
reward/punishment

Motor output Goal component.  Level 1

Sensorial input 

Goal component.  Level k

Goal component.  Level k-1

FIGURE 1

Tentative design of an AGI agent.
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of an AGI agent, in general, is not transparent to the researcher; 
therefore, the development of the agent would be  similar to 
nurturing humans. The tutor immerses the agent in various 
situations and on the basis of the agent’s responses, the tutor 
changes the agent’s actions.

The development of an AGI agent can be described as follows. 
Initially the units in the goal component have a low coherence and 
there are no goal-directed processes. The tutor creates simple 
situations and goal-directed processes are performed at level 1. After 
performing various processes at level 1, the tutor concludes that the 
agent is capable of functioning under such simple conditions 
efficiently. Then the tutor immerses the agent in novel environments 
that are a little more complex. This limited complexity of new 
environments and accumulated skills may lead to goal-directed 
processes at level 2. Such processes are more long-term and 
persistent than processes at level 1 because they have a higher 
threshold of coherence. The goal component is a hierarchical system; 
therefore, processes at level 2 may activate and inhibit processes at 
level 1. In a similar vein, level 3 can be achieved, etc. Ultimately, the 
agent becomes capable of achieving its goals in arbitrary 
real situations.

This design for an AGI agent can obviously be  considered a 
backbone. Additional components may be necessary. For example, if 
an AGI agent should function at the human level then the agent 
should be  able to acquire a human-like language and construct 
symbolic models of the situation. The human brain includes areas that 
are responsible for acquiring a language and processing verbal 
information (Luria, 2012). It is reasonable to assume that an AGI agent 
also should include a language component that has a changeable 
structure with special layers and separate connections with the 
motor component.

It is of interest to note that JCA constrains the capabilities of all 
AGI agents. Indeed, regardless of the computer power of an AGI 
agent, ineffective actions are possible if the cost of its construction 
is minimal.

4 A simple agent that exhibits 
goal-directed behavior

In this chapter a model that demonstrates how the joint 
construction approach can be implemented is presented. The model 
consists of a quadrangular field filled with different objects and an 
organism that is capable of moving in discrete time (Figure 2).

There are four sorts of objects being distinguished by their colors. 
The organism “perceives” several objects simultaneously and then 
moves to or from these objects depending on their colors. If the 
organism touches an object, the object disappears and some changes 
in the organism occur. These changes force the organism to approach 
some objects and avoid other ones. If the center of the organism 
reaches the border of the field, the organism leaps to a random 
position that is on a straight line connecting the point where the 
center reaches the border and the starting point.

It is obvious that the organism exists in a complex environment 
when it can be concurrently stimulated to move in several directions 
and, as a result, it cannot move at all. To some extent, the organism is 
similar to Buridan’s Ass. The objective of the model was to study how 
JCA can influence the behavior of the organism under such conditions.

4.1 Description of the organism

The organism is a neural network and in terms of the previous 
chapter, its goal component includes only one level with one layer. 
The organism can function as a system having an unchangeable or 
changeable structure depending on some parameters. It is suggested 
that if the structure is changeable, goal-directed processes underpin 
the organism’s behavior. The design of the organism is presented in 
Figure 3.

Figure  2 displays that the organism has two whiskers. The 
whiskers constrain the organism’s field of vision. The field of vision can 
be variable but the field of vision equals to π  radians was used in the 
simulations only. The organism perceives objects by means of 
receptors. The field of the vision of each receptor is the field of the 
vision of the organism divided by the number of receptors. If there are 
several objects in the field of the vision of a receptor then the receptor 
sends information on the nearest object. Each receptor transmits a 
Euclidean distance between the organism and the object (Do), an angle 
between the organism and the object (Ao) and the color of the object. 
The color is a negative or positive number (color-number, hereinafter). 
The distance and the angle are normalized:

 ( ) ( )= + = +o o o oD 1/ 1 D ,A 1/ 1 A .

Each perceptive neuron is connected with NC receptors in a 
topographic fashion. Consequently, neighboring receptors project to 
neighboring perceptive neurons. NC is the number of connections 
between one unit of the organism and other units. The number of 
perceptive neurons is greater than the number of receptors. The input 
of perceptive neuron j at time t is defined as follows:
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where col, dist, ang are the color-number, distance and angle of the 
object perceived by receptor i, wi,j is the weight of the connection 

FIGURE 2

The organism and objects.
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between receptor i  and perceptive neuron j. All such weights are 
random numbers in a range from 0 to 0.5. The output of perceptive 
neuron j is as follows:

 
( ) ( )( )−= + −Input t

jjOutput t 2 / 1 e 1

Initially, each goal neuron is connected with NC perceptive 
neurons in a topographic fashion. The number of goal neurons is 
greater than the number of perceptive neurons. Moreover, each 
goal neuron initially is connected with other NC goal neurons that 

are selected randomly. The input of goal neuron m at time t is 
as follows:

 ( ) ( ) ( )= ∑ ∗ +∑ ∗ −m j,m j !m,m !mInput t w Output t w Output t 1 ,

where wj,m is the weight of the connection between perceptive 
neuron j and goal neuron m, w!m,m is the weight of the connection 
between goal neuron m and another goal neuron!m. Thus, the layer 
of goal neurons is a recurrent neural net. Initially, all weights between 
perceptive and goal neurons are random numbers in a range from 0 
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Motor neurons

Executors
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FIGURE 3

Design of the organism.
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to 0.5 and all weights between goal neurons are random numbers in 
a range from −0.5 to 0.5. The output of goal neuron m is as follows:

 
( ) ( )( )−= + −Input t

mmOutput t 2 / 1 e 1

Initially, each motor neuron is connected with NC goal neurons 
that are selected randomly. The number of motor neurons is fewer 
than the number of goal neurons and even. The input of motor neuron 
n at time t is as follows:

 ( ) ( )= ∑ ∗n m,n mInput t w Output t ,

where wm,n is the weight of the connection between goal neuron 
m and motor neuron n. Initially, all weights between goal and motor 
neurons are random numbers in a range from 0 to 0.5. The output of 
motor neuron n is as follows:

 
( ) ( )( )−= + −Input t

nnOutput t 2 / 1 e 1

All motor neurons with odd numbers (2n−1) are connected with 
ExecutorX which moves the organism along X-axis at a distance of 
DX and all motor neurons with even numbers (2n) are connected 
with ExecutorY which moves the organism along Y-axis at a 
distance of DY:
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where kdx and kdy are coefficients and TM is the number of 
motor neurons.

All weights between the layers of the organism are positive, 
initially; therefore if the color-number of an object is positive then the 
organism initially approaches the object: otherwise, it moves away 
from the object. The velocity of movement is proportional to the 
modulus of the color-number.

If the organism perceives no objects, it starts rotating until an 
object is perceived. As is pointed out above, there are four sorts of 
objects. Red, green and yellow objects have positive and different 
color-numbers and blue objects have a negative color-number. If the 
distance between the center of the organism and an object is less than 
the size of the organism, this indicates the organism touches the object 
and the object vanishes. The organism touches objects only if these 
objects are within its field of vision. Touching blue and yellow objects 
does not influence the state of the organism. If the organism touches 
a green object, then for goal neuron m:

 

( ) ( )
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For a red object the formulas are as follows:
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where wj,m and wm,n are the weights of the connections between 
goal neuron m and perceptive neuron j and motor neuron n, 
accordingly. Tact, k1, k2, colrm are parameters. Colrm is used to 
prevent the overflow of weights; therefore, after each change of 
weights colrm is decreased by multiplication by a number that is 
less than 1.

It can be  concluded from these formulas that if the organism 
touches a green object this stimulates the organism to approach green 
objects. The touch of a red object stimulates the avoidance of red objects.

In the model λ (t) is formulated as follows:

 
( ) ( ) ( )( ) λ = − − 

 ∑
2TGN

m mt Output t Output t 1 / TGN,

where TGN is the total number of goal neurons. Two parameters, 
designated as T1 and T2 (T1 < T2) determine changes in the 
goal layer.

If λ(t) < T1 this indicates the situation is unaltered. In this case, 
there are no changes in the goal layer. If T1 < λ (t) < T2 this indicates 
that the situation is changed to some extent. The change in the 
situation is useful for leaving possible traps and therefore such a state 
of the organism is reinforced. A simple gradient descent algorithm is 
used for this as follows:
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where wj,m is the weight of the connection between perceptive 
neuron j and goal neuron m, w!m,m is the weight of the connection 
between goal neuron m and another goal neuron!m, and KB is 
a coefficient.

If λ(t) > T2 this indicates that the situation is altered considerably 
and a new goal-directed process is necessary to respond to such 
changes. The construction of a novel process corresponds to 
Equation (1) and includes the generation of novel goal neurons.

Let us introduce the following designations:
ρ(gni) = (Outputi(t)-Outputi(t-1))2 is a metric of goal neuron i in 

the space of goal neurons.
gn(i).conIm is input connection m of goal neuron i; gn(i).conIWm 

is the weight of this connection; len(gn(i).conI) is the number of 
input connections.

gn(i).conOm is output connection m of goal neuron i; gn(i).
conOWm is the weight of this connection; len(gn(i).conO) is the 
number of output connections. gn.t is a parameter; df is a constant; 
rand(0,b) is a random number in a range from 0 to b.
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The pseudo-code for Equation (1) can be described as follows: 
         ζ =0;

 While ζ < Τ do
 Find  goal neuron 1 and  goal neuron 2 for which ρ(gn) are 

minimal and ρ(1)< ρ(2);
  Create a novel goal neuron, neuron + ;
  for a=1 to  len(1.conI)  do
    if rand(0, 1)<p (p>0.5)
       gn(+).conIa= gn(1).conIa ; gn(+).conIWa= gn(1).conIWa; gn(1).

t=gn(1).t+ df ;ζ =ζ+gn(1).t;
    else
      gn(+).conIa= gn(2).conIa ;  gn(+).conIWa= gn(2).conIWa; gn(2).

t= gn(2).t+df ; ζ =ζ+gn(2).t;
  for a=1 to  len(1.conO)  do
    if rand(0, 1)<p
         gn(+).conOa= gn(1).conOa ;    gn(+).conOWa= gn(1).conOWa; 

           else
        gn(+).ConOa=random motor neuron; gn(+).conOWa=rand 

(0,0.5); 
Add neuron+ to the goal neuron layer;  

ρ(+)=(Output+(t)-Output1(t-1))**2
end

The minimization of Λ() follows from the fact that only two 
neurons c minimal ρ() interact and participate in the creation of a 
novel neuron. The minimization of Ξ() is associated with gn().t. This 
parameter reflects the “memory” of a goal neuron regarding its 
participation in the creation of novel neurons. The higher this 
parameter in the neurons that are involved in interactions, the fewer 
novel neurons are created. Since each novel goal neuron gets its 
components from other goal neurons, one may say that each novel 
neuron increases the coherence in the layer of goal neurons.

After all possible changes, the goal layer determines the movement 
of the organism again. Since the organism has only one goal level, the 
criterion for the achievement of a goal is not formulated in the model.

4.2 Simulations and discussion

It is easy to notice that the organism is able to function in four 
modes of learning depending on the values of three parameters. The 
term “learning” stands for any changes in the state or the structure of 
the organism. If Tact, T1, and T2 are very large then the organism is 
not capable of learning at all. This is Mode 1. In Mode 2, when Tact is 
less than an empirical threshold and T1 and T2 are very large, the 
weights between neurons are changed only if the organism touches a 
red or green object. In Mode 3, when Tact, T1 are less than empirical 
thresholds and T2 is very large, the weights can additionally 
be changed by the gradient descent algorithm. Obviously, Mode 2 and 
Mode 3 can be considered the versions of conventional learning with 
reinforcement when the structure of the organism is unchangeable. In 
Mode 4 Tact, T1,T2 are less than empirical thresholds; therefore, the 
structure of the organism is changeable in this mode.

A typical behavior of the organism in Modes 1, 2, and 4 is 
presented in Supplementary Videos 1–3. The behavior in Mode 3 is 
similar to that in Mode 2.

There usually are many objects around the organism and due to 
the organism’s design and the initial randomness of connections 

between neurons, the organism may easily be  trapped. When the 
organism is trapped, owing to negative weights between goal neurons 
the organism usually repeats movements within a limited area. Such 
a behavior is presented in Supplementary Video 1. Learning can 
be considered a way of decreasing the randomness in the state of the 
organism owing to interactions with the environment and therefore 
learning may allow the organism to leave possible traps. There are 
three modes in which the state of the organism can be altered and it 
can be  suggested that each of these modes influences how the 
organism leaves traps. These ideas can be used as a prerequisite for 
three hypotheses. First, it is necessary to examine whether the 
organism may be  trapped. The second hypothesis suggests the 
organism is capable of learning in three modes. The third hypothesis 
suggests Mode 4 is most suitable for leaving possible traps because in 
this mode there may be  the coherence in the functioning of goal 
neurons. This may benefit the organism to select a direction 
of movement.

The number of disappeared objects can be used as an estimate of 
the organism’s activity. In this case, the first hypothesis is that the total 
number of disappeared objects is considerably fewer than the total 
number of objects in Mode 1. The second hypothesis expects the 
number of red disappeared objects is fewer than the number of the 
disappeared objects of the other colors in three modes because the 
organism can be learned to avoid red objects. Moreover, the number 
of green disappeared objects may be greater than the number of blue 
and yellow disappeared objects in three modes. The third hypothesis 
suggests that the total number of disappeared objects in Mode 4 is 
greater than that in the other modes.

The model was coded in Python and run on a standard PC. There 
were 50 simulations for each mode. In these simulations there were 50 
objects of each color that were located randomly. The color-numbers 
for red, green, yellow, and blue objects were 8, 2, 1, and −1, 
respectively. In each simulation the organism performed for 15 min. 
In preliminary probes it was found that this interval of time was 
sufficient to reveal all possible effects associated with the modes and 
the colors definitely. In Mode 4 the initial number of goal neurons was 
28 but the number of goal neurons tended to increase over time and 
sometimes this number was about 2000. In preliminary tests it was 
found the number of goal neurons influenced the behavior of the 
organism weakly, if this amount is constant. Nevertheless, to minimize 
the possible effect of the number of goal neurons, this parameter was 
1,000 in Modes 1–3. The values of the other parameters were identical 
for all modes (the list of parameters is in Appendix). Of course, the 
values for Tact, T1, T2 were used in Mode 4 only. In other modes the 
values, that were necessary for the given mode were applied. The 
results of simulations are presented in Table 2.

TABLE 2 An average number of disappeared objects for four modes and 
four colors.

Color

Mode Red Green Blue Yellow Total

Mode 1 4.65 4.53 4.05 5.02 18.24

Mode 2 1.98 2.5 2.74 2.8 10.02

Mode 3 1.94 2.9 3.22 2.38 10.44

Mode 4 13.74 15.72 16.12 15.78 61.36
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There were eight receptors and the organism usually perceived 
5–6 objects simultaneously. Table 2 shows that the organism was 
really similar to Buridan’s Ass because in Mode 1 the organism 
touched less than 10 percent of possible objects. The Friedman 
ANOVA analysis demonstrates that there was not a significant 
distinction between the number of the disappeared objects of 
different colors in Mode 1 (p = 0.32). Table 2 also shows that in 
three modes the organism was capable of learning. Indeed, in 
these modes red objects disappeared significantly less than other 
objects when compared on the Wilcoxon matched pairs test (all 
ps < 0.05), although the color-number of red objects was positive. 
There were no significant distinctions between the pairs of other 
colors in these modes. This indicates that the organism was not 
learned to approach green objects, probably owing to a minor 
difference between the color-number of green objects and the 
color-numbers of blue and yellow ones. Table  2 shows that in 
Mode 4 the number of vanished objects was several times greater 
than in the other modes. This confirms the third hypothesis.

The results of the simulations show the organism is capable of 
learning in Mode 2 and Mode 3, however, those conventional 
methods for the establishment of the goals-means correspondence 
were not efficient for leaving traps. On the contrary, since in Mode 
1 the total number of disappeared objects was greater than that in 
Mode 2 and Mode 3, the methods make leaving traps less probable. 
It is reasonable to suggest that there may be a sort of reinforcement 
that may be  appropriate for the withdrawal from a trap. For 
example, the organism can be rewarded if it left the trap. However, 
the definition of a trap is necessary in this case; therefore, such a 
sort of reinforcement is of limited use. In Mode 4 the organism 
was capable of leaving traps efficiently despite the organism’s 
initial random structure. It is important to note that although the 
innate characteristics associated with the colors of objects 
influenced the behavior of the organism in Mode 4, these 
characteristics were not the main determinants of the 
organism’s actions.

Оne may say that 50 simulations are insufficient to reveal real 
differences between modes. Such a proposal does not seem correct. 
There is a huge difference between the average number of 
disappeared objects in Mode 3 and Mode 4 (61.36 versus 10.44). 
This difference is highly significant, according to the T-criterion: 
t(98) = 15.41, p = 0.0, and Cohen’s d = 3.08. Since pseudo-random 
numbers are the only source of variability in the model, it is unclear 
why the addition of new simulations can alter the difference. The 
increase in the number of simulations simply makes the difference 
between the performance of the organism in Mode 3 and Mode 4 
even more discernible. Probably the change in the number of 
simulations can affect other differences, for example, the difference 
between the performance in Mode 2 and Mode 3; however, such 
differences are not relevant for the investigation of the role of 
joint construction.

Another important problem is the sensitivity of the model to 
changes in its parameters, especially such as Tact, T1 and T2. 
Preliminary trials demonstrated changes in Tact and T1 affect the 
model weakly. If Tact is very small, the organism cannot learn to avoid 
red objects, but an increase in Tact causes the organism to evade red 
objects. Changes in T1 practically do not influence performance. The 
considerable increase in T2, of course, makes the behavior of the 
organism in Mode 4 similar to that in other modes; however, relatively 

small changes in T2 do not affect the behavior in Mode 4 because the 
generation of new goal neurons stays possible.

Since the goals that the organism may achieve are not 
described explicitly and the state of the organism when a goal is 
achieved is not formulated, one may claim that the behavior of the 
organism is not goal-directed in Mode 4. Simply, the organism 
acquires the ability to walk through potential traps. Indeed, the 
behavior of an agent can be characterized as goal-directed if it is 
clear that the agent repeatedly attempts to achieve some state 
despite changes in the situation. It does not appear that the 
behavior of the organism, when it wanders through the field, 
corresponds to such a criterion.

However, the organism is able to exhibit another sort of behavior. 
If the organism, when it is trapped in an area for a long time, is 
manually moved to another position, then in Modes 1–3 the organism 
starts moving chaotically until it is trapped in a new area. Such 
behavior is presented in Supplementary Videos 4, 5. The organism 
becomes red while it is being forced to move.

In Mode 4 the organism sometimes comes to its trap back and 
does it fast. Such behavior is presented in Supplementary Videos 6, 7.

The organism exhibits such behaviors in about 10 percent of 
simulations, given that the duration of a simulation is longer than 
10 min and the number of goal neurons exceeds 1,500. If the 
organism is forcefully moved from the area at early moments, then 
the organism does not come back and simply wanders through new 
traps. It is not clear how the organism finds its way back. Since the 
organism is capable of coming back after long roaming, it can 
be  hypothesized that the organism has a map of the field and 
somehow uses it. However, if the organism that is capable of coming 
back in Mode 4 is converted in another mode while keeping its other 
characteristics invariable, it loses this capability. Thus, the generation 
of novel goal neurons rather than the map of the field is important 
for the capability of coming back.

Obviously, coming back is a goal-directed behavior. One can 
say that if the organism does not leave an area for a long time, then 
the organism sometimes “decides” that its aim is to stay in this 
area. It can be hypothesized that a coherent structure emerging in 
such cases is distributed over the goal layer very widely. As a result, 
this structure determines the construction of the novel goal-
directed processes that arise after moving the organism to another 
area manually, and such processes become the means that brings 
the organism back. Since leaving traps is based on the same 
mechanism as coming back, leaving traps in Mode 4 is a goal-
directed behavior.

There may be two sorts of goal-directed behaviors. One of these 
sorts is a behavior being aimed at the achievement of some changes in 
the agent and/or the environment. The other sort is a behavior aimed 
at the maintenance of the current state in the agent and/or the 
environment. The simulations display that an agent with one goal level 
performs both sorts of goal-directed behaviors. It is reasonable to 
assume that an agent with multiple goal levels may be  capable of 
combining both sorts to achieve multi-stage goals in more 
complex environments.

The model demonstrates that the joint construction approach 
allows constructing goal-directed processes with arbitrary goals and 
means. Of course, other methods for the construction of goal-directed 
processes are possible and may be efficient. For example, in the model, 
ρ() is a metric in an absolutely abstract space and therefore only two 
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neurons interact at any moment. However, it is possible that ρ() 
should take the topology of the network into account. In this case, 
many local minima of ρ() are possible and several neurons may 
interact with each other in each minimum concurrently. In the model, 
a novel neuron arises from the interaction. Although new neurons 
arise in the adult brain (Denoth-Lippuner and Jessberger, 2021), this 
is a rare event. The emergence of new connections seems more 
physiologically plausible, especially if several neurons interact jointly. 
It is possible that the number of neurons involved in the interaction 
may determine what components of the network (neurons or 
connections) should be altered. These ideas can also be applicable for 
multilevel agents.

It is critical to note the given model is absolutely illustrative; the 
objective of its creation was simply to show that the implementation 
of the joint construction approach is possible and feasible. The results 
of the simulation demonstrate the organism exhibits various sorts of 
goal-directed behavior. This is a necessary prerequisite for more 
realistic models and, finally, for the creation of agents that can function 
in real environments. Of course, the advance from a simple model to 
real AGI agents should be a very complex process, including many 
trials and errors. The conventional approaches have been developed 
for decades but agents and systems based on these approaches mostly 
function in artificial environments. It is reasonable to assume that the 
development of agents based on JCA can be more successful owing to 
its adequate theoretical basis.

5 Conclusion

Humans are goal-directed agents; therefore; AGI can 
be  constructed following the fundamental principle of the goals-
means correspondence. There may be different architectures regarding 
how the goals-means correspondence can be  implemented in the 
architecture of goal-directed agents. A conventional view that is based 
on the observations of animals, humans and self-reports suggests 
there are two goal-directed architectures. However, the conventional 
architectures cannot explain the purposefulness and flexibility of 
actions and some characteristics of thinking. The formal analysis of 
possible architectures displays that there may be another architecture 
in that arbitrary goals and means are constructed jointly. I posit the 
joint construction of a goal and a means underlies human goal-
directed processes. The idea of the joint construction of goals and 
means explains the flexibility of human actions and the characteristics 
of thinking.

The view on humans as intelligent agents that are based on the 
joint construction of goals and means allows achieving artificial 
general intelligence. An AGI agent has no basic goals and means; 
therefore, an AGI agent constructs goal-directed processes by making 
its structure more coherent. The development of an AGI agent should 
be gradual, from short and simple goal-directed processes to long and 
complex ones; hence an AGI agent may be a multilevel system with 
different thresholds of coherence.

The joint construction approach is used in a model including a 
simple agent based on a neural network. The model demonstrates that 
JCA allows the agent to adapt to the complex environment more 
efficiently than alternative approaches because when JCA is enabled, 
the behavior of the agent can be characterized as goal-directed.
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Typical forced behavior in Mode 3.
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Appendix

The number of receptors is 8. The number of perceptive neurons is 16. The number of motor neurons is 20. NC = 5, kdx = kdy = 20, Tact = 0.1, 
k1 = k2 = 0.3. KB = 100, T1 = 0.01, T2 = 0.05, p = 0.7, Τ = 1, df = 0.01.
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