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Federated knee injury diagnosis 
using few shot learning
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Introduction: Knee injuries, especially Anterior Cruciate Ligament (ACL) tears 
and meniscus tears, are becoming increasingly common and can severely restrict 
mobility and quality of life. Early diagnosis is essential for effective treatment 
and for preventing long-term complications such as knee osteoarthritis. While 
deep learning approaches have shown promise in identifying knee injuries from 
MRI scans, they often require large amounts of labeled data, which can be both 
scarce and privacy-sensitive.

Methods: This paper analyses a hybrid methodology that integrates few-shot 
learning with federated learning for the diagnosis of knee injuries using MRI 
scans. The proposed model used a 3DResNet50 architecture as the backbone 
to enhance both feature extraction and embedding representation. A combined 
Centralized and Federated Few-Shot Learning Framework is analysed to 
leverage episodic-intermittent training strategy based on Prototypical Networks. 
The model is trained incorporating Stochastic Gradient Descent (SGD), Cross-
Entropy Loss, and a MultiStep Learning Rate scheduler to enhance few-shot 
classification. This model also addressed the challenge of limited annotated 
data ensuring patient data privacy through distributed learning across multiple 
regions.

Results: The models performance was evaluated on the MRNet dataset for multi-
label classification. In the centralized setting, the model achieved accuracies of 85.3% 
on axial views, 82.1% on sagittal views, and 71% on coronal views. The propose work 
attained accuracies as 83% (axial), 83.9% (sagittal), and 65% (coronal), demonstrating 
the framework’s effectiveness across different learning configurations.

Discussion: The proposed method outperforms in diagnostic accuracy, 
generalization across MRI planes, and patient privacy via federated learning. 
However, it faces limitations, including lower coronal view performance and 
high computational demands due to its complex architecture.
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1 Introduction

The knee joint is essential for both mobility and stability but is particularly vulnerable to 
injuries like anterior cruciate ligament (ACL) tears and meniscal damage. ACL which is a major 
stabilizing ligament in the knee, is often torn during sudden turning or twisting gestures, leading 
to symptoms like pain, swelling, and joint instability. Similarly, the meniscus, a C-shaped cartilage 
that cushions the knee also suffers injury from abrupt movements or gradual wear, resulting in 
discomfort and limited range of motion. These types of injuries are frequently found in athletes 
and often necessitate clinical treatment, which may include physical rehabilitation, bracing, or 
surgery. While advancements in imaging techniques and medical interventions have enhanced 
diagnostic capabilities, attaining early and accurate identification of ACL and meniscus injuries 
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remains a significant clinical obstacle. Misdiagnosis or delays in 
treatment can degrade outcomes, accelerating the development of knee 
osteoarthritis and recovery. Maniar et al. (2022) observed a growing 
incidence of knee injuries, with ACL tears and knee contusions being the 
most prevalent particularly among female athletes.

According to the study by 2030–2031, there will be  a sharp 
increase in ACL injuries, which is predicted to double from 2017 to 
2018 levels and reach a worrying rate of 77.2 per 100,000 people. The 
increase in ACL injuries will result a financial burden in addition to a 
health risk because the standard treatment involves surgery and long 
rehabilitation periods often last more than a year. In fact, it is 
predicted that ACL injuries will cost around $236 million between 
2030 and 2031. Additionally, there is a concerning trend among 
young Australians, specifically females between the ages of 5 and 14 
where a sharp rise in the annual incidence of ACL injuries have 
been observed.

Poulsen et al. (2019) highlighted the critical role of early diagnosis 
in knee injuries, observing a significantly higher risk of knee 
osteoarthritis (OA) following ACL damage. Their study found that 
individuals with an ACL tear are nearly four times more likely to 
develop OA, and the risk increases to six times when both the ACL 
and meniscus are affected. Convolutional Neural Networks (CNNs) 
have proven effective in analyzing MRI scans for detecting such 
injuries by accurately identifying key anatomical features. However, 
CNNs require large annotated datasets and often fails to identify rare 
or unfamiliar cases.

Few-shot learning effectively addresses the limitations of traditional 
CNNs in medical imaging by demanding only a small number of labeled 
data, making it ideal for identifying rare knee injuries. The strength lies 
in the capability to identify classes with minimal data, which is very 
helpful for medical analysis. Rieke et al. (2020) detailed the need for large, 
diverse datasets for reliable deep learning models in healthcare, but data 
collection is often restricted by privacy concerns. Federated learning 
provides a better solution by enabling collaborative training across 
institutions without sharing raw patient data. This decentralized method 
enhances model performance while ensuring data privacy and 
compliance with ethical and legal standards.

The major contributions of this work are as follows:

 • A hybrid approach is proposed that integrates Few-Shot Learning 
with Federated Learning for knee injury diagnosis from MRI 
scans. This integration overcomes the challenges caused due to 
limited labeled data thus enhancing diagnostic capabilities across 
distributed data sources.

 • The proposed federated learning framework guarantees patient 
data privacy by maintaining a decentralized structure, while 
enabling efficient training across multiple institutions.

 • Validation on the MRNet dataset demonstrates that the 
proposed model surpasses existing state-of-the-art methods 
for knee injury diagnosis, highlighting its real-
world applicability.

 • The data structuring approach supports multi-label classification 
by covering diverse injury types, allowing the model to detect and 
predict multiple conditions simultaneously, thereby enhancing 
both diagnostic precision and flexibility.

The structure of this paper is organized as follows: Section 2 
details the related work proposed in Knee OA. Section 3 describes the 
proposed architecture of the Federated Few-Shot Knee Injury 

Diagnosis system. Section 4 outlines the implementation and presents 
the results for detailing the efficiency of the proposed model. Section 
5 concludes the summarizing the key findings.

2 Related works

Tsai et  al. (2020), presented a convolutional neural network 
architecture called the Efficiently-Layered Network (ELNet) for knee 
MRI diagnostic for triage. They found that ELNet can identify tears even 
in the absence of explicit localization information and also uses a single 
image stack (axial or coronal) as input. ELNet achieves an ROC-AUC 
score of 0.904 for Meniscus Tear, 0.96 for ACL Tear, and 0.941 for 
Abnormality detection when evaluated on the MRNet dataset. Azcona 
et al. (2020) utilized ResNet versions (18, 50, or 152) in place of the 
AlexNet model and transfer learning using ImageNet’s pre-trained 
weights resulting in better performance. Notably, the final layer is altered 
to predict results rather than using categorical vectors. Slices are fed one 
at a time during training, and the ultimate result is the maximum 
probability across all slices. The paper achieves a 0.934 combined AUC 
score on the validation data of the MRNet dataset. Dai et al. (2021) 
proposed a novel TransMed framework that combines self-attention 
mechanisms and transformer-based architecture for multi-modal 
medical image classification. It consists of two branches: a CNN branch 
for feature extraction and a transformer branch for capturing long-range 
dependencies within sequences. MRNet dataset the TransMed model 
obtained an ROC-AUC score as 0.952 for Meniscus Tear, 0.981 for ACL 
Tear, and 0.976 for Abnormality detection, respectively.

Joshi and Suganthi (2022) proposed a parallel deep convolutional 
neural network (CPDCNN) to improve feature distinctiveness in knee 
MRI images for the purpose of ACL tear detection. The CPDCNN 
attained an ROC-AUC of 0.952 for Meniscus Tear, 0.981 for ACL Tear, 
and 0.976 for Abnormality detection along with 96.60% accuracy for 
ACL tear diagnosis on the MRNet dataset. Yan et al. (2023) performed 
adversarial data augmentation for improving knee MRI classification. 
Through adversarial data augmentation techniques, this work achieved 
a combined AUC score of 0.8953% on the MRNet dataset. Hanin Al Al 
Ghothani and Zhang (2023) proposed a compact model for multi-label 
classification unlike traditional methods that uses multiple models for 
binary classification. To improve classification accuracy, the study uses 
data fusion, feature fusion that makes use of Convolution Block 
Attention Module (CBAM) attention, and decision fusion attaining a 
combined AUC score of 0.925% on the MRNet dataset.

Kara and Hardalaç (2021) proposed a CNN enhanced with auto 
encoder models to recognize anomalies or diagnoses of diseases attaining 
an ROC-AUC score of 74.5 for Meniscus Tear, 0.86 for ACL Tear, and 
0.86 for Abnormality detection on the MRNet dataset. Bien et al. (2018) 
developed a deep learning model called MRNet to automatically analyze 
knee MRI scans obtaining impressive AUC scores of 0.847 for Meniscus 
Tear, 0.965 for ACL, and 0.937 for Abnormality. Hung et al. (2023) 
proposed a deep learning model for the automatic detection of meniscus 
tears in knee magnetic resonance imaging (MRI) using an improved 
YOLOv4 model with a backbone as Darknet-53 architecture attaining an 
accuracy of 78.8% on the MRNet dataset.

Li et al. (2023) proposed a deep learning technique to identify 
tears in the Anterior Cruciate Ligament (ACL) in knee MRI scans. 
Using a 3D weighted multi-view convolutional neural network, the 
model analyzed T1-sagittal, T2-sagittal, T2-coronal, and T2- 
transverse views of the knee joint. The model achieved an AUC score 
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for ACL tear detection as 92.86% for, MRNet dataset. Belton et al. 
(2021) proposed the validation of localization and improvement of 
knee injury identification through spatial attention mechanisms 
integrated with CNN as MPFuseNet network. MPFuseNet analysed 
different fusion strategies for each of the network’s planes to identify 
the best one. The MPFuseNet achieved an AUC score of 0.957 for 
Abnormality, 0.977 for ACL, and 0.831 for Meniscus Tear on the 
MRNet dataset. Javed Awan et al. (2021) proposed modified 14-layer 
CNN architecture implemented with random splitting and validated 
using 3 and 5-fold cross-validation techniques. CNN-ResNet-14 
model improved image diversity by utilizing real-time data 
augmentation. Furthermore, in order to enhance the distribution of 
unbalanced classes and bolster the model’s dependability in ACL tear 
detection, hybrid class balancing technique was implemented. Real-
time data augmentation and hybrid class balancing was incorporated 
together to prevent overfitting and preserved model efficiency 
attaining an accuracy of 92% on the Knee MRI dataset.

Li et al. (2022) analysed Mask R-CNN for detecting and classifying 
meniscus tears in knee MRI scans. This model accurately segmented 
meniscus and cartilage regions, achieving an accuracy of 87.5% for 
healthy, 86.96% for torn, and 84.78% for degenerated menisci using 
924 MRI images collected from eight hospitals. Dunnhofer et  al. 
(2022) introduced MRPyNet, a model integrating a Feature Pyramid 
Network into MRNet and ELNET architectures attaining 88.6% 
accuracy for ACL tear detection, and 88.1% with ELNET for MRNet 
dataset. For meniscus tear classification, the MRNet–MRPyNet and 
ELNET–MRPyNet combinations achieved 77.8 and 76.1% accuracy, 
respectively.

Chang et al. (2019) analysed complete anterior cruciate ligament 
(ACL) injuries by limiting the input field-of-view to the intercondylar 
region in order to maximize the performance. The study also detailed 
how adding contextual information from nearby image slices can 
improve the accuracy of networks. For training and testing, 260 
participants were evenly divided into total ACL tear and normal cases 
using coronal PD non-fat suppressed images. The proposed model 
detected ACL tears with 96.7% accuracy.

Yan et al. (2023) proposed a federated self-supervised learning 
framework that ensures privacy and employs masked image modeling 
to train models cooperatively using decentralized data as a self-
supervised task. This approach significantly outperforms the state-of-
the-art ImageNet supervised pretraining baseline model, particularly 
under conditions of significant data heterogeneity. Additionally, it 
demonstrates effective learning with limited labeled data and 
generalizes well to out-of-distribution data. They trained and tested 
their approach on the Retina Dataset, Dermatology Dataset, 
COVID-FL Dataset, and Skin-FL Dataset, achieving accuracies of 
81.94% on the Retina Dataset, 93.55% on the Dermatology Dataset, 
and 95.77% on the COVID-FL Dataset. In this research, Lei et al. 
(2023) introduced a framework called FedDAvT, which stands for 
multi-site federated domain adaptation via Transformer. This 
framework aims to protect data privacy and reduce data differences. 
They use a Transformer network as the main component to identify 
connections between different regions of interest in brain data, 
capturing detailed brain information. In order to adjust the model for 
both the source and target domains, they aligned the self-attention 
maps by utilizing the mean squared error. The analyzed datasets 
comprise the Australian Imaging, Biomarker and Lifestyle Flagship 
Study of Ageing (AIBL), Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), and AI4AD data. The results indicate that the proposed 

FedDAvT method is highly effective, with accuracy rates of 69.51, 
88.75, and 69.88% achieved in the AD vs. NC, MCI vs. NC, and AD 
vs. MCI two-way classification tasks, respectively. In this context, AD 
refers to Alzheimer’s Disease, NC refers to Normal Control, and MCI 
refers to Mild Cognitive Impairment.

Peta and Koppu (2023) implemented Extended ElGamal Image 
Encryption (E-EIE) to encrypt medical images using keys optimized 
through the Improved Sand Cat Swarm Optimization (I-SCSO) 
algorithm. These encrypted images are securely stored and transmitted 
using the Federated Learning Flower (FLF) framework, ensuring high 
levels of data security. For disease classification, the encrypted data is 
decrypted and processed using the Convolutional Capsule Twin 
Attention Tuna Optimal Network (C2T2Net), where further 
optimization is achieved by fine-tuning parameters using Chaotic 
Tuna Swarm Optimization (CTSO) technique. The model was 
evaluated using BreakHis dataset, attaining a classification accuracy 
of 95.68%.

Wu et al. (2022) proposed Training Efficient Federated Active 
Learning (TEFAL) and Labeling Efficient Federated Active Learning 
(LEFAL) where LEFAL utilized a hybrid sampling model for both 
diversity and uncertainty to enhance labeling efficiency in a task-
agnostic context. TEFAL improved client-side performance by 
employing a discriminator mechanism to evaluate the informativeness 
of clients. These techniques collectively enhanced the efficiency and 
performance of federated active learning. The model was tested on the 
Hyper-Kvasir and CC-CCII datasets, resulting an accuracy of 84 and 
97.6%, respectively.

Ouyang et al. (2022) present SSL-ALPNet, a novel self- supervised 
Few-Shot Segmentation (FSS) framework for medical images that 
does not require annotations during training. This technique generates 
supervision signals by utilizing pseudo-labels based on super pixels. 
To further improve segmentation accuracy, they suggest integrating 
an adaptive local prototype pooling module into prototype networks. 
Using the abdominal CT and abdominal T2-SPIR MRI datasets, they 
achieved dice scores of 75.91 and 80.16, respectively. Qiu et al. (2023) 
propose a novel approach for developing a Federated Semi-Supervised 
Learning (FSSL) model across distributed medical image domains. 
They introduce a federated pseudo-labeling strategy for unlabeled 
clients; leveraging embedded knowledge learned from labeled clients. 
This approach effectively addresses the issue of insufficient annotations 
in unlabelled clients, leading to a cost-efficient and streamlined 
solution for medical image analysis. The Dice scores obtained for the 
fundus imaging and prostate MRI segmentation tasks are 89.23 and 
91.95%, respectively.

Zeng et  al. (2022) introduced an approach called gradient 
matching federated domain adaptation (GM-FedDA) for classifying 
brain images. The goal of this strategy is to minimize differences 
between domains and train strong local federated models for specific 
target sites. The method comprises of two primary stages: the 
pretraining stage, which introduces a strategy called one-common-
source adversarial domain adaptation (OCS-ADA), and the fine-
tuning stage, which employs a method called gradient matching 
federated (GM-Fed) fine-tuning to update the local federated models 
pretrained with the OCS-ADA strategy. They achieved an AUC score 
of 90.93 on the SCZ dataset and 76.63 on the MDD dataset. Jiang et al. 
(2022) describe a novel multi-learner methodology for identifying 
various medical images. The proposed model integrated a task-learner, 
metric-learner, and autoencoder, trained using transfer and meta-
learning to enhance adaptability in few-shot scenarios. In a 3-way 
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5-shot classification setting, the model achieved accuracies of 72% on 
the Blood dataset, 75% on the Pathology dataset, and 48% on the 
Chest dataset.

Singh et al. (2021) proposed few-shot learning framework named 
MetaMed that used meta-learning techniques and integrated data 
augmentation strategies such as CutOut, MixUp, and CutMix to 
improve generalization and model robustness. Comparative analysis 
showed that meta-learning consistently outperformed traditional 
transfer learning across differents datasets evaluated. sMetaMed 
achieved test accuracies of 74% on BreakHis, 65.41% on ISIC 2018, 
and 80% on the Pap Smear dataset under a 3-way 5-shot configuration.

Chen et  al. (2023) proposed the Dynamic Federated Meta-
Learning (DFML) approach, aimed to enhance rare disease prediction. 
They developed Inaccuracy Focused Meta-Learning (IFML) 
technique, which adjusted attention across tasks based on the 
performance of local learners. To improve the federated learning 
process, a dynamic, accuracy-driven client selection and model fusion 
strategy was implemented resulting s91 and 95% accuracy in 5-shot 
classification tasks on the Arrhythmia and FECG datasets, respectively.

Nurgazin and Tu (2023) analysed the application of Vision 
Transformers (ViTs) combining with few-shot learning algorithms 
such as ProtoNet, MatchingNet, and Reptile. In a 3-way 5-shot task, 
the models attained accuracies of 76% on BreakHis, 75% on ISIC 
2018, and 89% on Pap Smear datasets.

Khandelwal and Yushkevich (2020) proposed a model-agnostic 
meta-learning framework to enhance domain generalization for 
biomedical imaging. This approach was analysed using a sCT 
vertebrae segmentation experiments conducted across three datasets, 
which included samples from both healthy and infected cases. In 
addition, they utilized few-shot learning, which involves training the 
generalized model using only a few number of samples from an 
unseen domain. This allows the model to rapidly adapt to new and 
unforeseen data distributions. They achieved a dice score of 87.85 
when they trained the model on CSI challenge, xVertSeg 
segmentation challenge, VerSe MICCAI segmentation challenge 2020 
datasets and tested it on an unseen domain. Chen et  al. (2023), 
introduced MetaLR, an LR tuner that utilized meta-learning to 
enable the automatic co-adaptation of multiple layers in response to 
downstream tasks, taking into account their transferability across 
different domains. MetaLR dynamically adjusts the learning rates for 
different layers in an online fashion, ensuring that highly transferable 
layers retain their medical representation abilities and promoting 
active adaptation of less transferable layers to new domains. They 
achieved accuracies of 94, 87, and 96% on POCUS, BUSI, and Chest 
X-ray datasets, respectively, and a dice score of 94.2 on the LiTS 
dataset. Islam et  al. (2023) suggested Federated Learning (FL) to 
tackle the problem of centralized data collecting in the context of 
brain tumor diagnosis from MRI scans. At first, many CNN models 
were trained using the MRI data. The three most successful CNN 
models were then chosen to create various versions of ensemble 
classifiers. Following that, the FL model was built using the ensemble 
architecture and trained utilizing model weights from the local 
models without exchanging the customers’ data (MRI images) 
through the FL technique. The researchers obtained a precision rate 
of 91.05% by utilizing federated learning (FL) to detect brain tumors. 
Li et  al. (2022) proposed a novel Domain Generalization (DG) 
scheme using episodic training with task augmentation for medical 
imaging classification. Leveraging meta-learning, they develop a 

paradigm of episodic training to facilitate knowledge transfer from 
simulated training tasks to real testing tasks in DG. Task 
augmentation is introduced to increase training task variety. 
Additionally, they employ a new meta-objective to regularize the 
deep embedding of training domains within the established learning 
framework achieving a mean accuracy of 91.77%.

Several studies have investigated the mid- to long-term outcomes 
of tibial plateau fractures (TPFs) treated with open reduction and 
internal fixation (ORIF), emphasizing the importance of early 
radiographic parameters in predicting clinical prognosis. Biz et al. 
(2019) conducted a retrospective study analysing mid-term 
radiographic and functional outcomes in patients with AO 41-B and 
41-C TPFs treated with ORIF. Their findings showed that AO 41-C 
fractures were associated with worse clinical outcomes and a higher 
incidence of post-traumatic osteoarthritis (PTOA), particularly when 
postoperative malalignment or articular step-off was present. 
Functional recovery, assessed using KOOS, AKSS, and SF-36 scores, 
was significantly influenced by patient age and BMI. These results 
align with other studies that report early radiographic features, such 
as tibial alignment and joint surface congruity, as predictors of pain 
and long-term functional limitations. Belluzzi et al. (2019) explored 
the role of different joint tissues—cartilage, synovial membrane, 
meniscus, and infrapatellar fat pad (IFP)—in promoting synovitis, a 
key pathological feature of OA. Using conditioned media from these 
tissues to stimulate fibroblast-like synoviocytes (K4IM cells), they 
observed elevated levels of IL-6, IL-8, and CCL2 across all tissue types. 
However, only synovium-derived media induced significant 
upregulation of inflammatory genes such as IL-6, CXCL8, and 
MMP-10, highlighting the synovial membrane’s dominant role in 
driving synovial inflammation. These findings complement studies 
like Biz C et  al., which emphasized the impact of joint structural 
damage, such as articular step-off and malalignment, on long-term 
outcomes and inflammation in TPF cases. Together, these works 
reinforce the notion that both structural integrity and tissue-level 
inflammatory responses critically influence OA progression and post-
traumatic recovery (Table 1).

3 Proposed architecture

The proposed Federated Few Shot Knee Injury Diagnosis system 
comprises the following modules: Dataset Description, Data 
Preprocessing, Image Preprocessing, Data Augmentation, Few Shot 
Learning and Federated Learning and the flow is shown in Figure 1.

3.1 Dataset description

The Stanford University Medical Center’s MRNet dataset (Bien 
et al., 2018; MRNet dataset, 2019), was assembled from knee MRI 
images performed between January 2001 and December 2012. The 
dataset consists of 1,370 samples, with 1,104 abnormal cases out of 
which 508 are meniscus tears and 319 are ACL tears, which were 
acquired by manual extraction from clinical reports.

The dataset is splitted into three separate sets: 1,130 exams from 
1,088 patients comprise the training set; 120 exams from 111 patients 
make up the validation set; and 120 exams from 113 patients make up 
the hidden test set. With three different image views—Coronal T1 

https://doi.org/10.3389/frai.2025.1589358
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


G
o

el et al. 
10

.3
3

8
9

/frai.2
0

2
5.158

9
3

58

Fro
n

tie
rs in

 A
rtifi

cial In
te

llig
e

n
ce

0
5

fro
n

tie
rsin

.o
rg

TABLE 1 Summary of different studies on knee injury diagnosis.

Author Dataset Method Result

Tsai et al. (2020) MRNet, KneeMRI Efficiently-Layered Network (ELNet) ROC-AUC score for Meniscus Tear-0.904, ACL Tear-0.96 and Abnormality-0.941

Azcona et al. (2020) MRNet
MRNet design replaced with the AlexNet model with a Pretrained ResNet model 

(18, 50, 152).
Achieved combined AUC score of 0.934

Dai et al. (2021) MRNet, PGT
Incorporated the self-attention mechanism into the multi-modal fusion technique 

through the use of transformers.

ROC-AUC score for Meniscus Tear-0.952, ACL Tear-0.981 and 

Abnormality-0.976

Joshi and Suganthi (2022) MRNet
Three-layered compact parallel deep convolutional neural network (CPDCNN) 

for the detection of ACL tears.
Accuracy-96.6%

Yan et al. (2023) MRNet Adversarial data augmentation with MRNet Architecture Achieved combined AUC score of 0.8953%

Al Ghothani and Zhang (2023) MRNet
Decision fusion, feature fusion with Convolution Block Attention Module 

(CBAM) attention
combined AUCscore-0.925%

Kara and Hardalaç (2021) MRNet Adversarial data augmentation with MRNet Architecture ROC-AUC score for Meniscus Tear-74.5, ACL Tear-0.86 and Abnormality-0.86

Bien et al. (2018) MRNet MRNet, a deep learning model, to automatically analyze knee MRI tests.
ROC-AUC score for Meniscus Tear-0.847, ACL Tear-0.965 and 

Abnormality-0.937

Hung et al. (2023) MRNet Enhanced YOLOv4 model, which used Darknet-53 as its foundation Accuracy-78.8%

Li et al. (2023) MRNet, MRI-ACL

For detecting ACL tear in Knee

MRI they proposed using a 3D weighted multi-view convolutional neural 

network.

AUC score achieved was 92.86% for

ACL Tear

Belton et al. (2021) MRNet

MPFuseNet

network, in which it makes use of a multi-view, pre-trained CNN with a spatial 

attention block.

Achieved AUC score of 0.957

for Abnormality, 0.977 for ACL, and 0.831 for Meniscus Tear

Javed Awan et al. (2021) KneeMRI

Modified 14-layer

CNN architecture, to prevent over- fitting and maintain efficiency while detecting 

ACL tears.

Achieved Accuracy of 92%

Li et al. (2022) Private dataset
Meniscus tears on MRI images were

identified and predicted using a Mask R–CNN model in this work.

Accuracy for healthy, torn and degenerated menisci was 87.50, 86.96, and 84.78%, 

respectively.

Dunnhofer et al. (2022) MRNet, FastMRI+ MRPynet architecture aimed at improving small object identification.
Achieved an accuracy of 88.6% on ACL tear. On Meniscus tear achieved an 

accuracy of 77.8%.

Chang et al. (2019) Private Dataset
CNN

with dynamically sampled randomly cropped patches to identify ACL Tear
Accuracy of 96.7% for ACL Tear

Yan et al. (2023)
Retina, Dermatology, COVID-FL,

Skin-FL

Federated self-

supervised learning framework that ensures privacy

Achieved an accuracy of 81.94% on Retina, 93.55% on Derm, 95.77% on COVID-

FL.

Lei et al. (2023)
ADNI, AIBL,

AI4AD
FedDAvT to protect data privacy and re duce data differences.

Achieved accuracy rates of 88.75, 69.51, and 69.88% on the AD vs. NC, MCI vs. 

NC, and AD vs. MCI classification tasks

(Continued)
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TABLE 1 (Continued)

Author Dataset Method Result

Peta and Koppu (2023) BreakHis Dataset
Federated

learning flower and C2T2Net model for disease classification

Achieved an accuracy of

95.68%.

Wu et al. (2022)

Hyper-Kvasir

dataset,

CC-CCII dataset

LEFAL with the goal of improving data efficiency. TEFELto improve client 

efficiency

Achieved an accuracy of 97.6% on CC-CCII dataset and 84% accu racy on Hyper-

Kvasir dataset

Ouyang et al. (2022)

abdominal CT,

abdominal T2- SPIR MRI, cardiac 

bSSFP MRI

SSL-ALPNet, a novel FSS framework for medical images
Achieved a dice score of

75.91, 80.16% for abdominal CT, abdominal T2-SPIR MRI respectively

Qiu et al. (2023)

RIMONE-r3,

Drishti-GS, NCI- ISBI, I2CVB, 

PROMISE12

FSSL model across distributed medical image do mains.
Achieved Dice scores of 89.23 and 91.95% on fundus image and prostate MRI 

segmentation tasks, respectively.

Zeng et al. (2022)
SCZ Dataset, MDD

Dataset

GM-FedDA method for brain image classification. The method consists of two 

main stages: the pretraining stage, and the fine- tuning stage.

Achieved an AUC Score of

90.93% on SCZ dataset and AUC Score of 76.63% on MDD Dataset.

Jiang et al. (2022)

BLOOD, PATHOLOGY,

CHEST

datasets

Combined meta-learning, transfer learning, and metric learning
Achieved an accuracy of 72, 75, 48% in 3 way 5 shot Classification task on Blood, 

Pathology and chest datasets, respectively.

Singh et al. (2021)
BreakHis, ISIC

2018, pap Smear

MetaMed approach that uses meta- learning to handle medical image 

classification.
Achieved an accuracy of 74, 65.41, 80% in 3 way 5 shot classi fiication task

Chen et al. (2023)
Arrhythmia

dataset, FECG dataset

To improve the prediction of rare

diseases, they present a Dynamic Federated Meta-Learning (DFML) approach in 

this study.

Achieved an accuracy of 91, 95%, in 5 shot classification task.

Nurgazin and Tu (2023)
BreakHis, ISIC

2018, pap Smear

This study explores the application

of ViT in few-shot learning scenarios for medical image analysis.
Achieved an accuracy of 76, 75 and 89%, in 3 way 5 shot classification task.

Khandelwal and Yushkevich 

(2020)

CSI, xVertSeg,

VerSe MICCAI

This work adapts a domain generalization method based on a model- agnostic 

meta-learning framework to biomedical imaging.
Achieved a dice score of 87.85%

Chen et al. (2023)
POCUS, BUSI,

Chest X-ray, LiTS

meta- learning-based LR tuner, named MetaLR that learns appropriate LRs for 

different layers, preventing highly transferable layers from forgetting their medical 

representation.

Achieved an accuracy of 94, 87, 96% on POCUS, BUSI, Chest X-ray, respectively, 

and also an achieved a dice score of 94.2% on LiTS dataset.

Islam et al. (2023) UK Data Service
This paper, proposes addressing the centralized data collection issue by applying 

FL to brain tumor identification from MRI images.
Achieved an accuracy of 91.05% using FL for detecting brain tumors

Li et al. (2022)
VGH, NKI, IHC and

NCH, LiTS

DG scheme using episodic training with task augmentation for medical imaging 

classification.
Achieved a mean accuracy of 91.77%
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weighed 3D MRI, Sagittal T2 weighted 3D MRI, and Axial PD 
weighted 3D MRI—each case. Figure 2 depicts a slice of a patient’s 
knee MRI, exhibiting three distinct image views: axial, coronal, 
and sagittal.

3.2 Data preprocessing

The MRNet dataset also contains three CSV files, each dedicated 
to abnormality, ACL tear, and meniscus tear, respectively. Within each 
file, entries are labeled with a ‘1’ to indicate the presence of the 
corresponding condition and ‘0’ to signify its absence. During 
pre-processing these labels were combined, resulting in combinations 
like (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1).

 1 (0, 0, 0): This combination indicates the absence of all three 
conditions - abnormalities, ACL tears, and meniscus tears. This 
class is denoted by label ‘0’.

 2 (1, 0, 0): This combination signifies the presence of an 
abnormality but no ACL tear or meniscus tear. This class is 
denoted by label ‘1’.

 3 (1, 0, 1): Here, the presence of an abnormality and a meniscus 
tear is indicated, but there is no ACL tear. This class is denoted 
by label ‘2’.

 4 (1, 1, 0): This combination denotes the presence of an 
abnormality and an ACL tear, but no meniscus tear. This class 
is denoted by label ‘3’.

 5 (1, 1, 1): Finally, this combination indicates the presence of all 
three abnormalities  - an abnormality, an ACL tear, and a 
meniscus tear. This class is denoted by label ‘4’.

Each combination represents various scenarios of injuries in 
patients. This data organization facilitates multi-label classification, 
allowing a model to simultaneously learn and predict multiple 
conditions. Figure 3 illustrates the class distribution imbalance within 
the dataset. The figure shows the varying quantities of images among 
different classes, with Class 1 exhibiting the highest count and Class 3 
the lowest.

3.3 Image preprocessing

The number of slices in the Knee MRI of a patient in the MRNet 
dataset ranges from 17 to 61. To overcome this issue, a linear 
interpolation procedure is employed to produce a constant number 
of slices for examination. By calculating the weighted average of 
adjacent slices, new slices are created between the original ones 
through the process of linear interpolation. This method assigns 80% 
of the weight to the subsequent slice and the remaining 20% to the 
preceding slice, which results in the creation of 15 new slices. This 
method effectively standardizes the number of slices across the 
dataset. To ensure compatibility with the expected input format of 
the model, a grayscale channel is repeated and the image pixel values 
are normalized.

FIGURE 1

Proposed architecture for federated knee injury diagnosis using few shot learning.

FIGURE 2

Multi-view knee MRI slice of MRNet dataset.
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3.4 Data augmentation

Data augmentation is a technique of using various modifications 
on data samples to artificially enlarge a dataset. Data augmentation 
helps avoid over-fitting and increases the model’s resilience to 
unknown data by adding variations to the input data while 
maintaining the ground truth labels. In this study, data augmentation 
is utilized not to generate entirely new images or slices but to augment 
the existing training data, enabling the model to learn more robust 
features and patterns. For every training image slice, the following 
data augmentation methods were applied.

 1. Resizing: Image slice sized 256 × 256 pixel resized to 224 × 224 
pixel size uniformly to each image slice.

 2. Horizontal flip: This technique involves mirroring the image 
along its horizontal axis to produce a new version in which 
the object is perceived to be  facing the other way. 50% 
random flip strategy is implemented; therefore there is a 50% 
chance that each image slice will be  flipped horizontally 
during training.

 3. Vertical Flip: A vertical flip mirrors the image along the vertical 
axis. This can be achieved mathematically by transforming the 
image matrix using a vertical reflection transformation. For 
vertical flips, 50% random flip is applied, just like in the 
horizontal flip.

 4. Random Rotation: Rotations cause variations in object 
orientation within the plane. The rotations between −45 and 
45 degrees are used in this paper. By transforming the image 
coordinates using a random rotation matrix, this is 
accomplished. Rotations introduce variations in the possible 

positions of objects within the image slice which aids in the 
model’s ability to recognize image in any pose.

 5. Affine Transformations: This paper utilizes random affine 
transformations for scale, rotation, and translation. Scale 
variations train the model to recognize objects regardless of 
size within the image. Rotation within the affine transformation 
results non-uniform angles and potential shearing. Translation 
results random shifts in all directions to generate svariations in 
object position.

To enhance the diversity of image slices in the training dataset and 
strengthen the model’s generalization ability, the above mentioned 
data augmentation techniques have been utilized.

3.5 Few shot learning

Few-shot learning is a deep learning approach designed to enable 
models to make accurate predictions or classifications using only a 
small number of samples per class. Unlike traditional deep learning 
methods that rely on large-scale labeled datasets, few-shot learning is 
effective with minimal annotated data, making it particularly useful 
in scenarios where data collection and labeling are challenging or 
costly. In this framework, the “support set” refers to a limited set of 
labeled examples used during training, while “support labels” denote 
their corresponding class labels. The “query set” consists of unlabelled 
samples for which the model must generate predictions. The 
terminology “n-way k-shot” is commonly used in few-shot learning, 
where “n” indicates the number of distinct classes and “k” represents 
the number of samples per class in the support set. A 3-way 5-shot 

FIGURE 3

Distribution of the classes.
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classification includes five training examples for each three classes, 
and the model is tasked with identifying the correct class for each 
query. Few-shot learning has the ability to quickly adjust to new tasks 
or domains with little labeled data, which makes it extremely effective 
in situations where data is lesss.

Metric learning learns similarity measure between data points and 
extracts a distance metric directly from the data, by comparing the 
similarity between samples. Metric learning can also handle high-
dimensional data efficiently, making it suitable for tasks involving 
complex feature spaces. Prototypical Network (Snell et al., 2017) is a 
few shot learning model based on metric learning. The Prototypical 
Network aims to learn a metric space where data points belonging to 
the same class are separated from points belonging to other classes. 
Prototypes are built initially by calculating the mean of the embedding 
of the instances that make up each class. The model then uses a 
distance metric, such as the Euclidean distance, to determine how far 
a given query instance is from each class prototype as shown in 
Figure  4. It then allocates the query image to the class in the 
embedding space that has the closest prototype. This procedure is 
carried out once more for every query instance, enabling effective 
classification. Prototypical Network has the capacity to learn a metric 
space that enables effective classification even with a small amount of 
training data, because of which it can generalize well to previously 
undiscovered classes.

Given:
( ) ( ){ }= ……1 1, , ., ,N NS x y x y , where N is the number of labeled 

examples in the support set.
∈ D

iX R  is the D-dimensional feature vector of example i.
{ }∈ …1, ..,iY K , is the corresponding label of example i, where K is 

the total number of classes.
kS  denotes the set of examples labeled with class k.

The prototypical network formula for calculating the prototype of 
class k, denoted as kC , as mentioned in Equation 1:

 ( )
( )ϕ

∈
= ∑

,

1

i i k

k i
k x y S

C f x
S

 
(1)

where kC  represents the prototype of class k, which is the mean 
feature vector of all the support examples belonging to class k, kS
denotes the number of examples in the support set labeled with class 
k. 
( )

( )ϕ
∈

∑
,i i k

i
x y S

f x signifies summation over all examples ( ),i ix y  in the 

support set kS , i.e., all examples belonging to class k and ( )ϕ if x  is the 
feature representation of example ix .

3.6 Federated learning

Federated learning is a cooperative machine learning technique 
in which clients train a model with a decentralized data. This allows 
hospitals or research centres, to work together to improve the 
precision of deep learning models for medical diagnosis without 
exchanging patient information. Each client can train its local model 
and periodically updates the central system with the weights. The 
central system aggregates these weights and refines the global model, 
integrating the results from all the clients. Federated Learning enables 
collaborative training across institutions while preserving data privacy. 

FL is categorized into horizontal, vertical, and federated transfer 
learning. Horizontal FL applies when datasets have similar features 
but different samples, such as MRI scans from various hospitals, and 
allows secure model training without sharing raw data. Vertical FL is 
used when datasets involve the same individuals but different features, 
enabling collaboration between institutions like hospitals and 
genomics labs. Federated Transfer Learning is suitable for institutions 
with differing samples and features, using transfer learning to combine 
domain knowledge. In the proposed work horizontal FL is adopted to 
aggregate knee MRI data from multiple sources with a shared feature 
space. This approach improves diagnostic accuracy while maintaining 
data confidentiality and supporting scalability across medical centers 
(Figure 5).

4 Experimental results

4.1 Implementation details

This section outlines the proposed system, detailing the network 
architecture, training process, fine-tuning, and evaluation. Each stage 
is designed to enhance the model’s performance and adaptability for 
few-shot knee injury diagnosis. The experimentation of the proposed 
model was analysed on a 64-bit Windows 10 operating system, 
implementation were carried out using Python notebook. The 
hardware configuration used included an Intel® Xeon® Gold 6,230 
CPU @ 2.10GHz processor, 64 GB of RAM, an NVIDIA Quadro RTX 
5000 GPU with 16 GB of memory, and a 2 TB hard disk.

4.1.1 Network architecture
The proposed work used pre-trained 3D ResNet-50 model integrated 

as the CNN backbone to extract image features. MedicalNet (Chen et al., 
2019) was pre-trained on 23 diverse medical datasets utilizes extensive 
knowledge from various medical images, improving the model’s ability 
to generalize to new data, and it reduces training time and computational 
requirements compared to training from scratch especially beneficial for 
small medical imaging datasets (Figure 6).

4.1.2 Training stage
The training stage of Centralized and Federated Few Shot System 

makes use of the episodic few-shot learning method using Prototypical 
Network. In this phase there are 500 tasks in every epoch and each 
task is a 3-way 5-shot classification scenario. A 2-way 8-shot setup 
across 100 tasks per epoch is used for validation. The training protocol 
consists of an initial learning rate of 0.01 enabled by the Stochastic 
Gradient Descent (SGD) optimizer with weight decay set to 5e-4 and 
momentum set to 0.9, among other parameters. The Cross Entropy 
Loss function is used to measure performance. Furthermore, a 
MultiStep LR scheduler is used to adaptively modify the learning rate 
during training. This scheduler has milestones set at tasks 120 and 160 
and a gamma value of 0.1. The task sampler used in this study is 
available in the open source EasyFSL library (Bennequin, 2023).

During the implementation of FL, the training data was divided 
between two clients. Each client completed the training phase of the 
model locally and sent the weights of the model with best validation 
accuracy to the global model for weighted averaging. After averaging 
the updated weights were sent back to the clients to continue with the 
fine-tuning process locally. During the implementation of the 
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Centralized Few shot system, the model with the highest validation 
accuracy is chosen. In the training phase, the idea of few-shot learning 
is applied to acquire initial knowledge with a small amount of data.

4.1.3 Fine-tuning stage
Stage using an episodic few shot approach, the Prototypical 

Network is fine-tuned in this phase locally by the model in both 
Centralized and Federated Few Shot System. During this stage, new 
classes different from the ones used in the training phase are used. The 
weights from the training phase are employed in this phase. A 2-way 
5-shot setup with 100 tasks per epoch for validation and a 3-way 
5-shot setup with 500 tasks per epoch for training are used in this 
fine-tuning process. It is validated using the same loss function, 
optimizer, and other parameters as the training phase. Through this 
process of fine-tuning, the model is able to better adapt to completely 
new tasks and classes by making use of its initial learning experience, 
which was obtained from a small number of examples in the 
training phase.

4.1.4 Evaluation
The model with the best validation accuracy at the end of the fine-

tuning phase is chosen for final testing. This model is evaluated using 
performance metrics which include Accuracy Score, F1 score, 
Precision, and Recall, in a 2-way 8-shot setting. These metrics offer a 

comprehensive comprehension of the model’s efficacy in classification 
tasks, guaranteeing a comprehensive evaluation of its performance 
concerning multiple dimensions such as total accuracy, equilibrium 
between precision and recall, and its ability to generalize to novel data.

4.2 Result analysis

From Table 2 it can be  inferred that in a centralized few shot 
system, the model performed particularly well in the axial plane, then 
in the sagittal plane, and lastly in the coronal plane. This suggests a 
general difficulty in identifying knee injuries using coronal plane data.

Moreover, the highest accuracy was consistently achieved when 
testing class was class 0 with a combination between classes 2, 3, or 
4. This shows how well the model can distinguish between classes 
that represent no abnormality, meniscus tears, ACL tears, and the 
classes containing combinations of injuries. When testing between 
Classes (2, 3), (2, 4), or (3, 4), however, performance declines, 
indicating that it may be difficult to differentiate between classes 
containing combinations of injuries. Because these classes are 
similar, the testing class with the lowest accuracy across all planes 
was (3, 4).

With training classes (1, 2, 4) and testing classes (0, 3), the model 
performed best when trained and tested on the axial plane. This 

FIGURE 4

Prototypical model.
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resulted in an accuracy of 85.3% and an F1 Score of 0.852. Similarly, 
with an accuracy of 82.1% and an F1 Score of 0.819 on the sagittal 
plane, the model performed best when trained and tested using the 
training classes (1, 2, 3) and testing classes (0, 4). With an accuracy of 
82% and an F1 Score of 0.819, it also performed well when trained and 
tested using the training classes (1, 3, 4) and testing classes (0, 2). 
Despite the overall superior performance of the axial plane, the sagittal 
plane showed greater consistency in distinguishing Class 0 from 
higher-numbered injury classes, indicating that sagittal features may 
capture more distinguishable cues for detecting the absence of 
pathology across diverse training configurations.

With training and testing classes (0, 1, 4) and testing classes (2, 3), 
the model performed best on the coronal plane, obtaining an accuracy 
of 71% and an F1 Score of 0.709. This implies that when attempting to 
distinguish between an ACL tear and a meniscus tear, the coronal 
plane is more useful.

The training and testing classes in the centralized few-shot system 
that showed the best accuracy in each plane was then used in a 
federated few-shot system with two clients. Table 3 demonstrates that 
accuracy of classes in axial plane decreased just 2 to 83%, while in 

sagittal plane it increased to 83.9%. While in coronal plane it only 
slightly decreased 5 to 65.1%.

It is significant that the model’s overall performance stayed similar 
across the plane and that using a federated system in place of a 
centralized one does not notably affect the model’s performance. 
Therefore, through Federated few shot system we can ensure that 
sensitive Knee MRI data is protected because it maintains data privacy 
by storing information locally on devices.

A comparison of several backbone architectures performances in 
a centralized few-shot learning system is shown in Table 4, with an 
emphasis on the axial, sagittal, and coronal planes. Pre-trained 
3DResNet10, 3DResNet18, 3DResNet34, and 3DResNet50 are among 
the backbone architectures that were taken into consideration for 
evaluation; they were all derived from MedicalNet (Chen et al., 2019). 
While ResNet50 achieved the highest accuracy in the axial plane, its 
performance did not generalize across all views, suggesting that 
deeper architectures may be  more plane-sensitive and potentially 
overfit to axial-specific spatial features.

A complex backbone such as ResNet50 appears to be most 
beneficial for the axial plane, which achieves the highest accuracy 

FIGURE 6

ResNet50 backbone architecture.

FIGURE 5

Federated learning system.
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(85.3%) and F1 score (0.852). This implies that more detailed 
structural information may be  present in the axial 
plane, necessitating a complex network for efficient 
feature extraction.

On the other hand, ResNet10 outperformed the other backbones 
in the sagittal plane, with an F1 score of 0.904 and an accuracy of 

90.4%. This could be because a smaller, less complex network like 
ResNet10 is better at handling specific information, which the sagittal 
plane may prioritize capturing.

ResNet34 outperformed the other backbones under consideration 
in the coronal plane, achieving 74.3% accuracy with an F1 score of 
0.742. This suggests that, in contrast to the extremes of ResNet 10 and 

TABLE 2 Results obtained using centralized few shot system.

Plane Training Class Testing Class Accuracy (%) F1 Score Precision Recall

Axial (1, 2, 4) (0, 3) 85.3 0.852 0.853 0.852

Axial (1, 3, 4) (0, 2) 74.9 0.749 0.749 0.749

Axial (1, 2, 3) (0, 4) 79.4 0.790 0.808 0.794

Axial (0, 1, 4) (2, 3) 69.1 0.691 0.691 0.691

Axial (0, 1, 3) (2, 4) 69.9 0.698 0.699 0.698

Axial (0, 1, 2) (3, 4) 60.1 0.600 0.601 0.600

Sagittal (1, 2, 4) (0, 3) 74.0 0.740 0.741 0.740

Sagittal (1, 3, 4) (0, 2) 82.0 0.819 0.820 0.820

Sagittal (1, 2, 3) (0, 4) 82.1 0.819 0.830 0.820

Sagittal (0, 1, 4) (2, 3) 66.7 0.663 0.676 0.667

Sagittal (0, 1, 3) (2, 4) 56.9 0.559 0.576 0.569

Sagittal (0, 1, 2) (3, 4) 55.0 0.549 0.551 0.55

Coronal (1, 2, 4) (0, 3) 53.8 0.536 0.539 0.538

Coronal (1, 3, 4) (0, 2) 61.9 0.618 0.619 0.618

Coronal (1, 2, 3) (0, 4) 65.1 0.651 0.652 0.651

Coronal (0, 1, 4) (2, 3) 71.0 0.709 0.712 0.710

Coronal (0, 1, 3) (2, 4) 58.2 0.580 0.583 0.582

Coronal (0, 1, 2) (3, 4) 51.5 0.515 0.516 0.516

TABLE 3 Results obtained using federated few shot system.

Plane Training class Testing class Accuracy (%) F1 Score Precision Recall

Axial (1, 2, 4) (0, 3) 83.0 0.828 0.842 0.83

Sagittal (1, 2, 3) (0, 4) 83.9 0.839 0.84 0.839

Coronal (0, 1, 4) (2, 3) 65.1 0.649 0.655 0.651

TABLE 4 Performance comparison of different backbone in centralized system.

Plane Backbone Training 
class

Testing 
class

Accuracy (%) F1 Score Precision Recall

Axial Resnet 10 (1, 2, 4) (0, 3) 74.1 0.738 0.75 0.74

Axial Resnet 18 (1, 2, 4) (0, 3) 80.4 0.804 0.806 0.804

Axial Resnet 34 (1, 2, 4) (0, 3) 0.767 0.767 0.767 0.767

Axial Resnet 50 (1, 2, 4) (0, 3) 85.3 0.852 0.853 0.852

Sagittal Resnet 10 (1, 2, 3) (0, 4) 90.4 0.904 0.905 0.904

Sagittal Resnet 18 (1, 2, 3) (0, 4) 82.1 0.82 0.821 0.82

Sagittal Resnet 34 (1, 2, 3) (0, 4) 85.2 0.851 0.857 0.852

Sagittal Resnet 50 (1, 2, 3) (0, 4) 82.1 0.819 0.83 0.82

Coronal Resnet 10 (0, 1, 4) (2, 3) 70.4 0.703 0.708 0.704

Coronal Resnet 18 (0, 1, 4) (2, 3) 66.1 0.661 0.662 0.661

Coronal Resnet 34 (0, 1, 4) (2, 3) 74.3 0.742 0.745 0.743

Coronal Resnet 50 (0, 1, 4) (2, 3) 71 0.709 0.712 0.71
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ResNet50, the coronal plane might need a balance between complexity 
and information retention, which ResNet34 provides.

Table 5 demonstrates the significant improvements achieved by 
our approach in knee injury detection compared to prior methods. 
Our approach shows a notable increase in accuracy across all imaging 
planes. Specifically, our system attains 85.3% accuracy in the axial 
plane, nearly double the highest accuracy (45%) obtained by the 
ELNET model. In the sagittal and coronal planes, our model achieves 
82.1 and 71.0% accuracy, respectively, greatly exceeding the best 
accuracies of 41.66 and 46.66% from previous methods. These results 
highlight our approach’s enhanced capability in accurately detecting 
knee injuries. Furthermore, the F1 Score, precision, and recall metrics 
further confirm our approach’s effectiveness. The proposed approach 
achieves F1 Scores of 0.852, 0.819, and 0.709 in the axial, sagittal, and 
coronal planes, respectively. These scores are substantially higher than 
those reported for other models, with the best F1 Scores from baseline 
models being 0.438 (ELNET, axial), 0.459 (MRNET- MRPyrNet, 
sagittal), and 0.452 (ELNET, coronal).

Additionally, the proposed method consistently surpasses others 
in precision and recall, indicating not only higher accuracy but also 
balanced performance in identifying true positive cases and 
minimizing false positives. For instance, both precision and recall for 
the axial plane are 0.852, significantly higher than the previous best 
precision of 0.590 (ELNET) and recall of 0.466 (ELNET) in the 
coronal plane. These baseline models were re-implemented and 
evaluated using multiclass classification across all five classes 
previously discussed in the paper. The results showed that the 
implementation of the Prototypical Network outperformed many 
baseline models. These metrics collectively shows that the proposed 
approach is more reliable and accurate for knee injury detection across 
various imaging planes.

Figure 7 shows ROC curve for the axial view, with an area under 
the curve (AUC) of 0.89 where the model effectively differentiates 
between positive and negative cases in the axial view. The curve 
maintains a high true positive rate (sensitivity) across various 
thresholds while keeping a low false positive rate (specificity). Figure 8 
shows the ROC curve for the sagittal view with an AUC of 0.84. 
Although this AUC is slightly lower than the axial view, the model still 
demonstrates a reliable balance of sensitivity and specificity, accurately 

identifying true positive cases while minimizing false positives in the 
sagittal view.

Figure 9 details the ROC curve for the coronal view, with an 
AUC of 0.71 where the model’s performance is moderate compared 
to the axial and sagittal views. The ROC curve for the coronal view 
shows that the model’s ability to differentiate between positive and 
negative cases is less effective, indicating a potential area for 
improvement. The model’s sensitivity and specificity are less balanced 
in this view, suggesting a need for optimization to enhance 
diagnostic accuracy.

Figures  10–12 show the model’s performance across different 
testing classes and planes. In Figure 10 details high accuracy with a 
True Positive (TP) rate of 826 out of 1,000 for classes 0 and 3, a low 
False Positive (FP) rate of 121, and a False Negative (FN) count of 174, 
indicating actual class recognition and precision. Figure 11 shows the 
model’s exceptional accuracy for sagittal plane images with classes 0 
and 4, achieving a TP count of 905, an FP count of 264, and an FN 
count of 95, alongside a high True Negative (TN) count of 736. 
Figure 12 highlights the model’s performance for coronal plane images 
with classes 2 and 3, achieving a TP count of 658, an FP count of 238, 
and an FN count of 342, with a high TN count of 762, showcasing its 
proficiency and resilience in classification.

5 Discussion

The proposed method’s accuracy in the axial plane, is 85.3%, and 
its F1 score is 0.852, significantly outperforming existing state of the 
art methods. The model’s performance is enhanced by combining a 
Prototypical Network with a ResNet-50 backbone, enabling effective 
few-shot learning for better results with limited training data.

The federated learning feature enhances robustness and 
generalizability by allowing decentralized training across institutions 
without sharing sensitive patient data, ensuring privacy and security. 
The model achieves 83.9% accuracy in the sagittal plane, 85.3% in the 
axial plane, and 82.1% in the sagittal plane, showing its versatility for 
knee injury diagnosis across imaging planes.

The proposed method exhibits a distinguished capability in 
generalizing more complex cases to simpler, healthier ones. For 

TABLE 5 Performance comparison of proposed system with previous knee injury detection approaches.

Author Method Plane Accuracy (%) F1 Score Precision Recall

Bien et al. (2018) MRNET Axial 42.5 0.387 0.554 0.425

Sagittal 40.83 0.383 0.445 0.408

Coronal 44.16 0.421 0.456 0.441

Tsai et al. (2020) ELNET Axial 45 0.438 0.590 0.45

Sagittal 40 0.396 0.489 0.4

Coronal 46.66 0.452 0.529 0.466

Dunnhofer et al. 

(2022)

MRNET-MRPyrNet Axial 37.5 0.420 0.498 0.463

Sagittal 41.66 0.459 0.515 0.508

Coronal 30.83 0.348 0.435 0.381

Proposed Proposed Axial 85.3 0.852 0.853 0.852

Sagittal 82.1 0.819 0.830 0.820

Coronal 71.0 0.709 0.712 0.710
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example, it attains 85.3% accuracy in the axial plane with training 
classes (1, 2, 4) and testing classes (0, 3), demonstrating its ability 
to handle less common scenarios. In the sagittal plane, it achieves 

82.1% accuracy with training classes (1, 2, 3) and 
testing classes (0, 4), leveraging the absence of abnormalities for 
better outcomes.

FIGURE 7

ROC curve for axial view.

FIGURE 8

ROC curve for sagittal view.
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However, the model struggles in the coronal view, with only 71.0% 
accuracy, indicating a need for improvement. The integration of the 
Prototypical Network, ResNet-50, and federated learning increases 
computational demands, posing challenges for training and 
deployment in resource-limited settings. Performance also varies with 
training and testing class combinations, which represent different 
knee injury conditions (from no abnormalities to ACL and meniscus 
tears). For instance, axial view accuracy drops to 60.1% when trained 
on classes (0, 1, 2) and tested on (3, 4), highlighting the need for 
careful class selection to optimize results.

The similarity between labels 3 and 4 both involving ACL tears but 
differing by meniscus tears generates challenges for the proposed 
model. Their overlapping features cause ambiguity during training 
and testing, reducing accuracy and precision. When trained on both 
labels, the model struggles to differentiate ACL-only injuries from 
those with meniscus damage, increasing misclassification risk. For 
example, in the axial view, accuracy drops to 60.1% when trained on 
labels (0, 1, 2) and tested on (3, 4), highlighting the difficulty in 
distinguishing similar injury types. In a centralized learning setup, 
different backbone architectures were compared. ResNet-50 

FIGURE 9

ROC curve for coronal view.

FIGURE 10

Confusion matrix for axial view.

https://doi.org/10.3389/frai.2025.1589358
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Goel et al. 10.3389/frai.2025.1589358

Frontiers in Artificial Intelligence 16 frontiersin.org

outperformed others, achieving 85.3% accuracy in the axial view 
compared to ResNet-10 (74.1%), ResNet-18 (80.4%), and ResNet-34 
(76.7%). Similar leanings held in sagittal and coronal views, confirms 
ResNet-50’s superiority for diagnostic performance. The proposed 
method outperforms in diagnostic accuracy, generalization across 
MRI planes, and patient privacy via federated learning. However, it 
faces limitations, including lower coronal view performance and high 
computational demands due to its complex architecture.

6 Limitations and future work

6.1 Dataset dependence and bias

The model was trained and evaluated on the MRNet dataset, 
which is collected from a single clinical source. This limits the model’s 
generalizability to diverse populations, imaging equipment, and 
clinical protocols. The homogeneity of the dataset also makes the 

model’s ability to handle real-world inconsistency in MRI quality and 
acquisition settings.

6.2 Generalizability and validation

Future work should incorporate cross-validation strategies and 
include different datasets from multiple institutions. This would also 
help assess the model’s ability for domain adaptation and reduce the 
risk of overfitting to a single source.

6.3 Overfitting and domain shift

Although the model shows better performance on MRNet validation 
data, the risk of overfitting is possible due to the limited variability in 
imaging. Techniques such as domain generalization, adversarial learning, 
or contrastive regularization can be explored to address this issue.

FIGURE 12

Confusion matrix for coronal view.

FIGURE 11

Confusion matrix for sagittal view.
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6.4 Comparison with broader ligament 
injury detection

While the proposed model analyzed ACL injuries, its applicability 
to other ligament injuries such as PCL or MCL remains untested. 
According to Biz et  al. (2022) different ligaments exhibit distinct 
imaging signatures and biomechanical stress profiles, this may require 
personalized feature extraction strategies. Extending the proposed 
method to multi-ligament classification and evaluating performance 
differences is an important task for future research.

6.5 Data heterogeneity and real-world 
utility

MRI data can vary considerably across institutions in terms of 
resolution, orientation, and scanner hardware. These heterogeneities 
pose challenges for deployment and require robust domain adaptation 
techniques. Additionally, clinician-in-the-loop testing and usability 
assessments will be necessary to validate the model’s practical utility.

7 Conclusion

The proposed work investigated the use of our hybrid federated 
few-shot system for multi-label classification of knee injuries, such as 
ACL tear and meniscus tear, using MRI images. Prototypical Network 
was employed with a pre trained 3DResNet50 backbone on the MRNet 
dataset. This study proposed a novel hybrid approach integrating 
few-shot learning and federated learning for knee injury diagnosis from 
MRI scans. Utilizing a 3D ResNet-50 backbone, the model enhances 
feature extraction and embedding quality. The Centralized and Federated 
Few-Shot System adopts an episodic-intermittent learning strategy with 
a Prototypical Network, employing a structured training protocol with 
SGD optimization, Cross Entropy Loss, and a MultiStep LR scheduler to 
ensure effective few-shot classification. The proposed approach achieved 
an accuracy of 85.3% in the axial plane, 82.1% in the sagittal plane, and 
70.1% in the coronal plane in the centralized few-shot system. In the 
federated few- shot system, it achieved 83% in the axial plane, 83.9% in 
the sagittal plane, and 65.1% in the coronal plane.
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