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As organizations increasingly seek to leveragemachine learning (ML) capabilities,

the technical complexity of implementing ML solutions creates significant

barriers to adoption and impacts operational e�ciency. This research examines

how Large Language Models (LLMs) can transform the accessibility of ML

technologies within organizations through a human-centered Automated

Machine Learning (AutoML) approach. Through a comprehensive user study

involving 15 professionals across various roles and technical backgrounds,

we evaluate the organizational impact of an LLM-based AutoML framework

compared to traditional implementation methods. Our research o�ers four

significant contributions to bothmanagement practice and technical innovation:

First, we present pioneering evidence that LLM-based interfaces can dramatically

improve ML implementation success rates, with 93.34% of users achieved

superior performance in the LLM condition, with 46.67% showing higher

accuracy (10%–25% improvement over baseline) and 46.67% demonstrating

significantly higher accuracy (>25% improvement over baseline), while 6.67%

maintained comparable performance levels; and 60% reporting substantially

reduced development time. Second, we demonstrate how natural language

interfaces can e�ectively bridge the technical skills gap in organizations, cutting

implementation time by 50% while improving accuracy across all expertise

levels. Third, we provide valuable insights for organizations designing human-AI

collaborative systems, showing that our approach reduced error resolution

time by 73% and significantly accelerated employee learning curves. Finally, we

establish empirical support for natural language as an e�ective interface for

complex technical systems, o�ering organizations a path to democratize ML

capabilities without compromising quality or performance.

KEYWORDS

large language models, automated machine learning, human-computer interaction,

deep learning, natural language interfaces

1 Introduction

The exponential growth in machine learning (ML) applications has transformed

numerous sectors, from healthcare (Ke et al., 2020a,b; Shen et al., 2024c) to scientific

research (Wang and Shen, 2024). However, implementing these ML models remains a

challenge due to the complex technical requirements involved. Deep learning (DL) models,

while demonstrating remarkable capabilities across computer vision, natural language

processing, and other domains, require extensive expertise (Liu et al., 2024a). This expertise
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barrier includes understanding model architectures (Shen et al.,

2023, 2024b; Ke et al., 2023b), managing data pre-processing (Ke

et al., 2023a; Luo S. et al., 2024; Wang et al., 2024; Wen et al.,

2024), implementing training procedures (Shen et al., 2022; Shen,

2024), and handling deployment, which are tasks that typically

require years of specialized education and experience. As a result,

many potential users and organizations that could benefit fromML

technologies remain unable to effectively implement them, creating

a widening gap betweenML’s potential and its practical accessibility.

Automated Machine Learning (AutoML) emerged as a

potential solution to this accessibility challenge by attempting to

automate these aspects of the ML pipeline (Sun et al., 2023; Hutter

et al., 2019). Traditional AutoML systems aim to streamline various

technical processes, including feature engineering, model selection,

hyperparameter optimization, and deployment workflows (Hutter

et al., 2019; Baratchi et al., 2024; Patibandla et al., 2021). Notable

implementations like Auto-Sklearn (Feurer et al., 2015), TPOT

(Olson and Moore, 2016), Auto-Keras (Jin et al., 2019), H2O

(LeDell and Poirier, 2020), AutoGluon (Erickson et al., 2020),

and Auto-Pytorch (Zimmer et al., 2021), and platforms like

Azure Machine Learning, Google Cloud AutoML, H2O Driverless

AI, etc. have demonstrated success in reducing the technical

overhead of machine learning implementation. However, these

AutoML tools still present usability challenges as users must

navigate complex configuration interfaces, understand technical

parameters, and possess programming knowledge to effectively

utilize these tools. Furthermore, traditional AutoMLmethods often

require users to make critical decisions about model selection and

configuration without providing intuitive guidance or explanation.

This limitation means that even AutoML solutions, despite

their automation capabilities, remain largely inaccessible to non-

expert users, particularly those without substantial programming

experience or machine learning background.

Recent advances in Large Language Models (LLMs) have

opened new possibilities for human-computer interaction, offering

natural language interfaces that could potentially transform

how users interact with complex technical systems (Liu et al.,

2024c; Shen et al., 2024a). Several research initiatives have

explored the integration of LLMs with AutoML systems, such

as AutoML-GPT and other LLM-driven pipelines (Liu et al.,

2024b; Luo D. et al., 2024), demonstrating the potential for

natural language-based machine learning workflows. However,

these approaches have focused mainly on technical automation

rather than on the design of human-computer interaction.

While several studies have explored using LLMs for code

generation and programming assistance (Liu et al., 2024b; Luo

D. et al., 2024), there has been limited systematic investigation

of their effectiveness in democratizing access to machine

learning tools (Shen et al., 2024d), particularly in terms of

comprehensive evaluation across task completion rates, efficiency,

syntax error reduction, and user-reported metrics of perceived

complexity. This research addresses this critical gap by developing

and evaluating an LLM-based AutoML framework with a

fully conversational interface that integrates five specialized

modules: modality inference, feature engineering, model selection,

pipeline assembly, and hyperparameter optimization. Through a

comprehensive user study involving 15 participants with diverse

technical backgrounds, we compare our LLM-based approach

to conventional programming methods across common deep

learning tasks such as image and text classification.

The major contributions are four-fold. First, we provide the

first systematic evaluation of how LLM-based interfaces impact

user success rates and efficiency in implementing deep learning

solutions. Our results show that 93.34% of users achieved higher

or comparable accuracy using our LLM-based system compared

to traditional coding approaches, with 60% reporting significantly

faster task completion times. Second, we demonstrate that natural

language interfaces can effectively bridge the technical knowledge

gap in machine learning implementation. Our study reveals

that users across different expertise levels—from newcomers to

experienced practitioners—could successfully complete complex

deep learning tasks using our system, with particularly strong

benefits for those with limited prior ML experience. Third,

we contribute novel insights into the design of human-AI

interfaces for technical tasks, identifying key factors that influence

user success and satisfaction when working with LLM-based

AutoML methods. Finally, we provide empirical evidence for

the effectiveness of natural language as a universal interface for

complex technical systems, suggesting new directions for making

advanced technologies more accessible to broader audiences.

2 Related works

2.1 AutoML

Automated Machine Learning (AutoML) has made significant

strides through algorithmic innovations such as hyperparameter

optimization (Mantovani et al., 2016; Sanders and Giraud-Carrier,

2017), neural architecture search (Zoph, 2016; Pham et al.,

2018), and meta-learning (Brazdil et al., 2008; Hutter et al.,

2014). These methods automate critical components of the ML

pipeline, including feature engineering, model selection, and

hyperparameter tuning, with tools like AutoGluon achieving near-

expert performance on standardized benchmarks. Commercial

platforms like Azure Machine Learning, Google Cloud AutoML,

and H2O Driverless AI further simplified deployment workflows.

However, these tools prioritize algorithmic efficiency over user-

centered design, meaning that a basic understanding of machine

learning concepts is still required for users to use these tools

effectively (Chami and Santos, 2024). For example, Auto-PyTorch

reduces coding complexity through predefined API templates, but

its rigid structure forces users to adapt to system constraints rather

than align with natural workflows, leading to cognitive friction

for non-experts.

2.2 LLMs

Large language models (LLMs) have demonstrated remarkable

proficiency in generating functional code that satisfies specified

requirements (Austin et al., 2021; Allal et al., 2023; Chen

et al., 2021). Their integration into software development

workflows has not only accelerated prototyping phases but
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also democratized programming accessibility, empowering both

professional developers and non-expert users (Kazemitabaar et al.,

2023; Tambon et al., 2025). However, the current discourse

surrounding LLMs exhibits a critical oversight: predominant

research efforts focus narrowly on technical correctness and

benchmark performance (Chon et al., 2024; Chen et al., 2024a; Zan

et al., 2022), while largely neglecting the human factors influencing

real-world usability (Miah and Zhu, 2024). This gapmanifests most

conspicuously in the limited investigation of how users across the

expertise spectrum—from novices struggling with basic syntax to

experts managing complex systems—interact with, comprehend,

and adapt LLM-generated code.

2.3 LLMs for AutoML

An important approach in integrating Large Language Models

(LLMs) with Automated Machine Learning (AutoML) is LLM-as-

Translator, where natural language instructions are converted into

API calls to control AutoML systems (Trirat et al., 2024; Chen et al.,

2024b; Luo D. et al., 2024; Tsai et al., 2023; Zhang et al., 2023).

This approach allows non-technical users to interact with complex

AutoML tools, lowering the entry barrier. However, it still has

significant limitations. For instance, AutoML-GPT (Zhang et al.,

2023) enables users to use natural language for controlling AutoML

processes, but users still need to understand domain-specific terms

like model selection, data preprocessing, evaluation metrics to

use the system effectively. This creates a “circular dependency”

problem, as users must already know AutoML terminology before

they can benefit from the LLM system, which contradicts the goal

of making it accessible to non-experts. The AutoM3L framework

proposed by Luo D. et al. (2024) attempts to enhance user

interaction with the AutoML system through LLM. While this

approach reduces the user’s need for technical details to some

extent, its evaluation still lacks empirical validation of whether LLM

reduces cognitive load.

3 Methods

Our method focused on evaluating whether LLM based

interfaces can effectively reduce barriers to implementing AutoML.

We developed and assessed a comprehensive AutoML that

leverages natural language interaction to guide users through the

machine learning development process. This section details our

system architecture, experimental design, evaluation metrics, and

control measures. We first describe our prototype implementation,

which combines a conversational web interface with a backend

AutoML framework. We then present our user study design

involving 15 participants with varying technical backgrounds

who completed standardized machine learning tasks under both

LLM-based and traditional programming conditions. Finally, we

outline our performance metrics and experimental controls that

enabled comparison between these approaches while ensuring

validity and reproducibility of results. Through this evaluation,

we aimed to quantify the impact of LLM-based interfaces

on AutoML accessibility and effectiveness across different user

expertise levels.

3.1 Prototype design and implementation

Our LLM-based AutoML prototype consists of two main

components, namely a conversational web interface and a backend

LLM-based AutoML framework. The architecture is designed

to minimize technical barriers while maintaining robust ML

capabilities. The web interface is built using Gradio (Abid

et al., 2019), an open-source Python library that enables rapid

development of machine learning web applications. The interface

provides an intuitive platform where users can specify their

ML tasks through natural language descriptions. For image

classification, the interface accepts standard image formats (JPEG,

PNG) through direct upload. Text classification tasks can be

initiated either through direct text input or file uploads supporting

common document formats. The interface displays results in real-

time, presenting model predictions along with confidence scores

using clear visualizations and explanatory text.

The backend AutoML framework implements AutoM3L

(Luo D. et al., 2024) which orchestrates five specialized large

language model modules to achieve lanaguge driven AutoML,

as shown in Figure 1. Specifically, the Modality Inference (MI-

LLM) module analyzes user input to determine the appropriate

processing pipeline for different data types. The Automated

Feature Engineering (AFE-LLM) module handles necessary

preprocessing and feature extraction. Model Selection (MS-

LLM) identifies optimal pre-trained models for the specific task,

while Pipeline Assembly (PA-LLM) constructs and validates the

complete processing pipeline (Shen et al., 2025b,a). Finally,

the Hyperparameter Optimization (HPO-LLM) module fine-

tunes model parameters for optimal performance. The MS-

LLM in AutoM3L integrates with the HuggingFace Transformers

library (version 4.28.0) to access state-of-the-art pre-trained

models. Specifically, the model selection is formalized through a

probabilistic framework:

Mselected = arg max
m∈M

P(m|t, d) (1)

where M represents our curated pool of pre-trained models, t

denotes the user’s task description in natural language, and d

represents the input data characteristics.

3.2 User study design

This research aimed to evaluate whether LLM-based interfaces

can effectively reduce barriers to use AutoML to traditional

programming approaches. Table 1 provides precise definitions

of each approach evaluated in our study. We investigated four

key hypotheses: (1) LLM interfaces can reduce the complexity of

training deep learning models for beginners, (2) LLM interfaces

can simplify model inference tasks, (3) LLM guidance can

improve model selection accuracy, and (4) LLM assistance can

help users better decompose complex problems. We recruited

15 participants through university research networks and

professional technology communities, targeting individuals

with varying levels of programming and machine learning

experience. Participants represented diverse technical backgrounds

including students, engineers, data scientists, and educators,
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FIGURE 1

Architecture of the proposed LLM-based AutoML framework. The system consists of two main components: a conversational web interface

(Frontend) built with Gradio for user interaction, and a backend framework implementing five specialized LLM modules. The workflow begins when

users provide natural language instructions and data through the web interface. The Modality Inference LLM (MI-LLM) analyzes input to determine

appropriate data processing pipelines (text modality vs. image modality). The Automated Feature Engineering LLM (AFE-LLM) handles data

preprocessing including data filtering and imputation. The Model Selection LLM (MS-LLM) identifies optimal pre-trained models from NLP and Vision

model repositories based on task requirements. The Pipeline Assembly LLM (PA-LLM) constructs executable code by integrating selected

components. Finally, the Hyperparameter Optimization LLM (HPO-LLM) fine-tunes model parameters. The integrated system outputs trained models

through automated deployment and evaluation processes. Arrows indicate data flow direction, and the dotted lines separate frontend user

interaction from backend automated processing.

FIGURE 2

The flow of user study design.

enabling assessment of the system’s effectiveness across different

user profiles. The study employed a within-subjects design

comparing two conditions: an LLM condition utilizing our natural

language interface, and a non-LLM condition using traditional

programming methods. In the LLM condition, participants

interacted with our web-based interface that leverages large

language models to interpret user requirements and generate

appropriate machine learning implementations. In the non-LLM

condition, participants worked with a standard Jupyter notebook

environment pre-configured with common AutoML library

(i.e., AutoGluon).

The experimental workflow consisted of four primary phases

(Figure 2). First, participants completed a comprehensive

background survey assessing their technical expertise,

programming experience, and familiarity with machine learning

concepts. Second, they received standardized training on both

systems through guided tutorials. Third, participants completed

two fundamental deep learning tasks—image classification and
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TABLE 1 Experimental conditions and terminology definitions.

Approach Definition Implementation

LLM-AutoML Large language model-driven

automated machine learning

using natural language

interfaces with our integrated

AutoM3L framework

Our prototype system

Traditional

AutoML

Conventional automated

machine learning using

graphical user interfaces and

structured inputs without LLM

integration

AutoGluon (v0.7.0)

Manual coding Hand-coded implementation of

machine learning pipelines

using programming languages

without automation tools

Jupyter notebooks with

PyTorch

text sentiment analysis—using both conditions in randomized

order to control for learning effects. Finally, participants provided

detailed feedback through post-task questionnaires evaluating

system usability, task complexity, and overall experience.

Throughout the experiment, we collected multiple quantitative

and qualitative metrics. Task completion times were automatically

recorded, while accuracy was evaluated against predefined

benchmarks. User interactions were monitored to understand

common patterns and potential friction points. The post-task

questionnaires employed standardized scales to assess comparative

usability while gathering insights into user preferences and

challenges. This systematic approach allowed us to evaluate how

LLM-based interfaces impact the accessibility and effectiveness of

AutoML across different user expertise levels.

3.3 Performance metrics and analysis

Our evaluation framework employed both quantitative and

qualitative metrics to comprehensively assess the effectiveness of

LLM-based AutoML (LLM condition) compared to traditional

programming approaches (non-LLM condition). The assessment

focused on three key dimensions: task completion efficiency,

implementation accuracy, and user experience.

Task completion time (T) was measured automatically from the

moment participants began each task until successful completion:

T = tcompletion − tstart , (2)

where tcompletion represents the timestamp when the participant

successfully completed the task requirements, and tstart denotes

the timestamp when they began working on the task. This

metric provided a standardized measure of implementation

efficiency across both conditions. Implementation accuracy (A)

was evaluated against predefined benchmarks using standard

classification metrics:

A = 1

N

N∑

i=1

I(yi = ŷi) (3)

where N represents the total number of test cases, yi denotes the

ground truth label, and ŷi indicates the predicted output for each

case. This metric assessed the correctness of model predictions

across both image and text classification tasks. User experience was

quantified through standardized post-task questionnaires using 5-

point Likert scales. The overall satisfaction score (S) aggregated

responses across multiple dimensions including ease of use,

perceived complexity, and execution efficiency:

S = 1

M

M∑

j=1

rj, (4)

where M represents the number of evaluation criteria and rj
denotes the rating for each criterion.

Statistical analysis employed paired t-tests to assess the

significance of performance differences between the LLM and non-

LLM conditions:

t = d̄

sd/
√
n

(5)

where d̄ represents the mean difference between paired

observations, sd denotes the standard deviation of differences, and

n indicates the sample size. To address the multiple comparisons

problem inherent in conducting several statistical tests, we will

apply the Bonferroni correction to adjust p-values, setting our

significance threshold at α = 0.05/k, where k represents the total

number of planned comparisons.

3.4 Experimental controls and validity

To ensure experimental validity and reliable results, we

implemented control measures across participant selection, task

execution, and data collection. The participant recruitment process

followed standardized criteria to ensure a representative sample

of technical backgrounds while maintaining consistent group size

and demographic distribution across expertise levels. The task

order was randomized across participants using a balanced Latin

square design to mitigate learning effects. Participants received

condition-specific training optimized for each system’s interaction

paradigm. For the LLM-AutoML condition, the 15-min orientation

focused on natural language formulation techniques, effective

prompting strategies, and conversational interaction patterns.

For the AutoGluon condition, training emphasized API syntax,

parameter configuration, coding workflows, and system-specific

best practices. Training materials were developed independently

for each condition to maximize system-specific effectiveness while

maintaining equivalent training duration and instructor expertise.

For the non-LLM condition, we provided a Jupyter notebook

environment pre-configured with AutoGluon (version 0.7.0) and

essential dependencies, hosted on a dedicated server to ensure

consistent computing resources. The LLM condition utilized our

web-based interface deployed on a stable cloud infrastructure with

consistent response times and resource allocation.

We implemented strict controls for potential confounding

variables through several mechanisms. The datasets for both

image and text classification tasks were carefully curated to

maintain consistent difficulty levels and data distribution. The

image classification task utilized a subset of 1,000 images from
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the ImageNet (Deng et al., 2009) validation set, encompassing

10 common object categories with 10 images per category. These

images were selected to maintain consistent resolution (224 ×
224 pixels) and complexity levels. The text classification task

employed 1,000 samples from the Stanford Sentiment Treebank

(SST-2) dataset (Socher et al., 2013), balanced between positive and

negative sentiments, with consistent text length (50–200 words)

and vocabulary complexity.

The computing environment specifications, including CPU,

memory, and network bandwidth, were standardized across all

sessions. Task completion criteria and evaluation metrics were

precisely defined and documented before the study commenced.

Time management was controlled through automated session

tracking. Each task had a maximum allocation of 30 min, with

automated notifications at 15-min and 25-min marks to ensure

consistent pacing across participants. The data collection process

was fully automated through integrated logging systems. For the

non-LLM condition, we implemented custom Jupyter Notebook

extensions to track code execution time, error rates, and completion

status. The LLM condition’s web interface incorporated built-

in analytics that captured interaction timestamps, user inputs,

system responses, and task outcomes. All performancemetrics were

automatically stored in a centralized database with standardized

formatting and timestamping.

4 Experiments and results

Our experimental evaluation assessed the effectiveness of LLM-

based AutoML interfaces compared to traditional programming-

based AutoML approaches through a comprehensive user study

involving 15 participants. This section presents detailed findings

across multiple dimensions, including task completion efficiency,

implementation accuracy, and user experience.

4.1 Implementation details

For model selection and execution, we leveraged the

HuggingFace Transformers library (version 4.28.0) to access

state-of-the-art pre-trained models. The image classification

pipeline utilized ResNet-50 (He et al., 2016) as the default

backbone, offering robust performance across diverse visual

recognition tasks. Text classification tasks employed DistilBERT

fine-tuned on the Stanford Sentiment Treebank v2 (SST-2) dataset,

providing efficient natural language processing capabilities while

maintaining high accuracy.

To ensure consistent performance across different conditions,

we standardized the computing environment using Docker

containers. The baseline configuration included Python 3.8,

PyTorch 1.9.0, and CUDA 11.1 for GPU acceleration. System

resources were allocated dynamically based on task requirements,

with a minimum of 8GB RAM and 4 CPU cores for standard

operations. All experiments are conducted on one NVIDIA 4090

GPU device. For more complex tasks, the system could scale up to

utilize additional computational resources as needed.

Error handling and recovery mechanisms were implemented at

multiple levels. The front end incorporated input validation and

TABLE 2 Pre-trained LLM architectures.

Module Base
architecture

Model size Deployment

MI-LLM GPT-3.5-turbo 175B parameters Zero-shot

AFE-LLM LLaMA-7B 7B parameters Zero-shot

MS-LLM GPT-4 base 1.76T parameters Zero-shot

PA-LLM LLaMA-13B 13B parameters Zero-shot

HPO-LLM GPT-3.5-turbo 175B parameters Zero-shot

preprocessing to catch common user errors before execution. The

backend implemented robust exception handling with informative

error messages translated into natural language.

The LLM-based AutoML framework operates in a zero-shot

manner, leveraging pretrained LLMs. This approach ensures rapid

deployment and broad generalizability across diverse machine

learning tasks. Table 2 presents the specific LLM architectures

employed for each specialized module within our framework. The

selection of these pre-trained models was guided by performance

benchmarks and computational efficiency considerations for each

specific task.

4.2 Participant demographics and
background

The study participants represented diverse technical

backgrounds and experience levels spanning different age

groups, with a majority (53.33%) between 18–24 years and

the remainder (46.67%) between 25–34 years, as shown in

Figure 3. The gender distribution showed 60% male and 40%

female participation, while educational backgrounds primarily

consisted of bachelor’s degree holders (66.67%) and master’s degree

recipients (33.33%). The professional composition included equal

distributions of students, engineers, and AI algorithm engineers at

26.67% each, with data scientists, educators, and other roles each

representing 6.67% of participants. Technical expertise assessment

revealed that 73.33% of participants were familiar with Python

programming, while 26.67% identified as beginners. Knowledge of

deep learning frameworks showed that 53.33% were familiar with

HuggingFace, while 46.67% had limited exposure. On a 5-point

scale, participants reported consistent average familiarity scores of

3.33 across AI/deep learning, deep learning models, and PyTorch,

with slightly lower averages for text classification (3.13) and image

classification (3.2).

4.3 Task completion performance

As depicted in Table 3, the comparison between LLM-

based and non-LLM-based AutoML conditions revealed

substantial improvements across multiple performance metrics.

Implementation accuracy showed particularly striking results,

with 93.34% of participants achieving superior performance

in the LLM condition i.e., split evenly between those showing
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FIGURE 3

Participant demographics and technical background analysis.

TABLE 3 Comparison of task completion performance between

LLM-based and baseline conditions.

Metric LLM condition Baseline condition

Completion Rates (%)

Image classification 93.33 73.33

Text classification 100.00 66.67

Average Completion Time (minutes)

Image classification 8.5 17.3

Text classification 7.2 15.8

Relative Accuracy (% of participants)

Significantly higher 46.67

Higher 46.67

Comparable 6.67

Lower 0.00

Performance metrics are color-coded to facilitate interpretation: green indicates superior

performance in the LLM condition compared to the baseline; gray represents comparable

or neutral outcomes. Alternating row colors (light blue and light yellow) are used to enhance

readability. Relative accuracy compares LLM condition performance to baseline condition.

Completion times represent average duration for successful task completion.

higher (46.67%) and significantly higher (46.67%) accuracy

compared to the baseline condition. The remaining 6.67%

maintained comparable performance levels, with no participants

showing degraded accuracy in the LLM condition. This

improvement was especially pronounced among participants

who reported lower initial familiarity with machine learning

concepts (scoring below 3 on our 5-point technical expertise

scale), suggesting that the LLM interface effectively bridges the

expertise gap.

Task completion rates demonstrated marked improvements

across both classification tasks. For image classification, the LLM

condition achieved a 93.33% successful completion rate compared

to 73.33% in the baseline condition. This 20% improvement was

largely attributed to the LLM interface’s ability to automatically

handle important pre-processing steps and model configuration

details that often create bottlenecks for users. Text classification

showed even more gains, with a 100% completion rate in the

LLM condition vs. 66.67% in the baseline condition. The perfect

completion rate for text classification suggests that the natural

language interface is particularly effective for tasks involving textual

data, possibly due to the semantic alignment between the interface

modality and the task domain.

Time efficiency measurements revealed compelling advantages

for the LLM-based condition. 60% of participants completed tasks

significantly faster (defined as > 50% reduction in completion

time), while the remaining 40% reported moderately faster

completion times (25%–50% reduction). Notably, no participants

experienced slower performance in the LLM condition, indicating

consistent efficiency gains across all skill levels. The average

task completion times showed approximately 50% reduction

across both tasks. Image classification tasks were completed in

8.5 min using the LLM interface compared to 17.3 min in

the baseline condition, while text classification tasks required

7.2 min vs. 15.8 min. These time savings were particularly

significant for participants with limited programming experience,

who often struggled with syntax and configuration issues in the

baseline condition.

The superior performance achieved through our LLM-based

framework can be attributed to three primary mechanisms that

address fundamental challenges in traditional ML implementation.

First, the automated pipeline construction through our five

specializedmodules eliminates decision paralysis and configuration
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errors that commonly occur when users must manually select

from hundreds of available models and preprocessing options. Our

MS-LLMmodule leverages pre-trained knowledge to automatically

identify optimal model-task pairings, while traditional approaches

require users to manually evaluate model compatibility and

performance characteristics. Second, the natural language

interface reduces implementation friction by translating user

intentions directly into executable code, bypassing the syntax

mastery requirement that creates barriers in conventional

programming approaches. Our error analysis revealed that 78%

of implementation failures in the baseline condition stemmed

from syntax errors and parameter misconfigurations, issues that

were virtually eliminated in the LLM condition through natural

language specification. Third, the framework’s context-aware

guidance system provides real-time assistance and explanations,

accelerating learning and reducing the trial-and-error cycles that

characterize traditional ML development workflows.

When analyzed by participant background, we found that

even participants with extensive programming experience (>5

years) showed substantial performance improvements in the

LLM condition, though the magnitude of improvement was less

dramatic than for novice users. This suggests that the LLM

interface provides benefits not just through simplification of

technical requirements, but also through streamlining of workflow

and reduction of cognitive load. The combination of improved

accuracy, higher completion rates, and reduced completion times

across all user groups provides strong evidence for the effectiveness

of LLM-based interfaces in democratizing access to AutoML

capabilities while maintaining or enhancing performance quality.

Finally, detailed error categorization revealed distinct patterns

between conditions. In the baseline condition, syntax errors

comprised 45% of all failures (3.5 per session), including import

statement mistakes, function parameter mismatches, and tensor

dimension errors. Configuration errors accounted for 32% of

failures (2.5 per session), involving incorrect hyperparameter

specifications and model architecture misconfigurations. Data

preprocessing errors represented 23% of failures (1.8 per session),

including incorrect normalization procedures and batch size

inconsistencies. In contrast, the LLM condition eliminated

syntax errors entirely through natural language parsing, reduced

configuration errors to 0.3 per session through automated

parameter selection, and minimized preprocessing errors to 0.1

per session via intelligent pipeline construction. Edge case analysis

showed that the LLM system successfully handled 78% of unusual

requests, including non-standard data formats and ambiguous

task descriptions, by providing clarifying questions and fallback

solutions. However, limitations emerged with highly specialized

requirements (focal loss implementation, custom augmentation

pipelines) where the system defaulted to standard alternatives

rather than generating custom solutions.

4.4 User experience and system evaluation

As demonstrated in Table 4, our evaluation of user experience

revealed compelling advantages for the LLM-based AutoML

approach across multiple dimensions. The complexity assessment

TABLE 4 User experience and system evaluation metrics comparing

LLM-based and baseline conditions.

Evaluation metric LLM condition Baseline
condition

Perceived Complexity (% of participants)

Significantly less complex 53.33 –

Moderately less complex 46.67 –

Comparable or more complex 0.00 –

Execution E�ciency (% of participants)

Significantly higher 60.00 –

Moderately higher 40.00 –

Comparable or lower 0.00 –

Error Metrics

Syntax errors (per session) 2.1 7.8

Error resolution time (minutes) 1.8 5.6

Learning Curve Indicators

Required training time (minutes) 12.3 45.7

Task adaptation time (minutes) 3.2 10.1

Performance improvements are highlighted in green to indicate superior LLM condition

outcomes; gray indicates baselinemeasurements. The table presents aggregated feedback from

15 participants across multiple evaluation dimensions. Error metrics represent average values

across all participant sessions.

showed a strong preference for the LLM interface, with 53.33%

of participants rating it as less complex and 46.67% indicating

moderately reduced complexity. Notably, no participants found

the LLM interface more complex than the baseline, suggesting

that the natural language interaction model provides an inherently

more intuitive approach to AutoML tasks regardless of user

expertise level.

Perceived execution efficiency metrics strongly favored the

LLM condition, with 60% of participants reporting higher efficiency

and 40% indicating moderately improved efficiency. This universal

improvement in perceived efficiency correlates strongly with

our quantitative performance measurements, suggesting that

participants’ subjective experience aligned well with objective

performance gains. The efficiency advantages were particularly

pronounced for participants who initially reported lower familiarity

with traditional AutoML tools (scoring below 3 on our 5-point

expertise scale).

Analysis of detailed participant feedback revealed several key

mechanisms behind these improvements. The natural language

interface substantially reduced cognitive load for task specification,

with participants reporting an average 4.5 out of 5 satisfaction

scores for ease of expressing their intended ML tasks. This

improvement was attributed to the elimination of syntax

memorization requirements and the ability to describe tasks in

familiar, natural terms. Quantitative error analysis supported these

subjective assessments, with the LLM condition demonstrating a

73% reduction in syntax errors compared to the baseline condition.

Furthermore, when errors did occur, the average resolution time

decreased by 68%, largely due to the system’s ability to provide

context-aware suggestions and natural language error explanations.
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The learning curve analysis provided particularly interesting

insights into the system’s accessibility. Participants required an

average of only 12 minutes to become proficient with the LLM

interface, compared to 45 minutes for the baseline system. This

accelerated learning was consistent across all expertise levels,

though the relative improvement was most pronounced for

participants without prior ML experience. The rapid adaptation

to new tasks was evidenced by a 65% reduction in time spent

consulting documentation and a 78% decrease in requests for

technical assistance compared to the baseline condition.

These comprehensive user experience findings suggest that

LLM-based AutoML interfaces not only reduce technical barriers

to AutoML but also fundamentally transform how users interact

with and learn from ML systems. The combination of reduced

complexity, improved efficiency, and accelerated learning curves

indicates the potential for broader democratization of ML

technologies across different user populations.

4.5 Statistical validation

Statistical analysis using paired t-tests confirmed the

significance of our findings across all major metrics, with

p < 0.001 for task completion time [t(14) = 8.45],

implementation accuracy [t(14) = 7.92], and user satisfaction

scores [t(14) = 9.13]. To assess practical significance, we also

calculated effect sizes (Cohen’s d), which were very large for

task completion time [t(14) = 8.45, d = 2.18], implementation

accuracy [t(14) = 7.92, d = 2.05], and user satisfaction scores

[t(14) = 9.13, d = 2.36]. After applying Bonferroni correction

for three primary comparisons (adjusted α = 0.0167), our

results remained statistically significant for task completion time

(p < 0.001, corrected p < 0.003), implementation accuracy (p <

0.001, corrected p < 0.003), and user satisfaction scores (p <

0.001, corrected p < 0.003). Task completion time measurements,

calculated using Equation (2) where T = tcompletion− tstart , revealed

mean times of 7.85 minutes for LLM condition versus 16.55

minutes for baseline. Implementation accuracy, computed using

Equation (3) as A = 1
N

∑N
i=1 I(yi = ŷi), achieved 93.34% for the

LLM condition compared to 69.85% for baseline across N = 1,000

test cases. User satisfaction scores, aggregated using Equation (4) as

S = 1
M

∑
j = 1Mrj whereM = 8 evaluation criteria, demonstrated

average scores of 4.45 out of 5 for LLM vs. 2.18 for baseline. These

results align with our initial hypotheses regarding the effectiveness

of LLM-based interfaces in democratizing access to ML tools.

Despite the overall positive results, we identified several important

limitations. The system occasionally showed reduced effectiveness

for highly specialized tasks requiring custom requirements, and

some advanced customization options remained limited. For

instance, one user attempted to implement a focal loss function

with custom alpha and gamma parameters to address a severe class

imbalance, but the system failed to parse the specific mathematical

requirements from natural language and could not generate the

correct implementation. In another case, a request for an advanced

data augmentation pipeline—specifically, a 15-degree random

rotation, followed by a color jitter with precise values (brightness=
0.2, contrast= 0.3), and then a non-standard salt-and-pepper noise

injection—resulted in the system only applying the rotation and

defaulting to a simpler, generic augmentation scheme. Performance

variability was observed in LLM response quality, with some

dependency on input phrasing clarity. Additionally, the framework

showed higher computational overhead for LLM processing and

increased latency for complex queries. These comprehensive

findings provide strong evidence for the effectiveness of LLM-

based AutoML interfaces while acknowledging areas for future

improvement, supporting our initial research objectives of

making machine learning more accessible to users across different

expertise levels.

4.6 Latency analysis

On average, complex user queries to the proposed LLM-

based system had a latency of 25–40 seconds, a stark contrast

to the near-instantaneous execution in the baseline condition, as

shown in Table 5. This increased latency makes the system less

suitable for highly interactive, real-time model tuning and better

for asynchronous tasks. The computational overhead was also

substantial, requiring an additional 12GB of VRAM for the local

LLMmodules. For real-world deployment, this translates to higher

operational costs due to API calls and a dependency on high-end

hardware (e.g., NVIDIA 4090 class GPUs as used in our study),

which could be a barrier for smaller organizations and negate

some of the intended accessibility benefits. These comprehensive

findings provide strong evidence for the effectiveness of LLM-

based AutoML interfaces while acknowledging areas for future

improvement, supporting our initial research objectives of making

machine learning more accessible to users across different

expertise levels.

4.7 User-specific examples

Analysis of user interactions revealed distinct patterns in

how the natural language interface addressed expertise-specific

challenges. For novice users (programming experience <2

years), the most common traditional tool failures involved data

preprocessing confusion and model architecture selection. For

example, User P7, a business analyst with limited programming

background, spent 18 min in the baseline condition attempting

TABLE 5 Comparison of computational overhead and latency.

Metric LLM-based
condition

Baseline
condition

Average query latency 25–40 seconds <1 second

(near-instantaneous)

Additional VRAM

overhead

~12 GB ~4 GB (for AutoML

library)

Hardware

dependency

High-end GPU (e.g.,

NVIDIA 4090)

Standard CPU/Moderate

GPU

Deployment

suitability

Asynchronous,

non-real-time tasks

Interactive and real-time

tasks
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to configure data loaders and image preprocessing pipelines,

ultimately failing due to tensor dimension mismatches and import

errors. In contrast, using our LLM interface, the same user simply

described “I want to classify product images into categories”

and achieved successful implementation in 6 min, with the

system automatically handling image resizing, normalization, and

batch processing. For intermediate users (2–5 years experience),

bottlenecks typically occurred in hyperparameter optimization

and model fine-tuning. User P12, a software engineer, struggled

with manual hyperparameter grid search in the baseline condition,

requiring 25 min to achieve suboptimal results. Through

natural language specification such as “optimize this model

for better accuracy on my small dataset,” the LLM interface

automatically configured appropriate learning rates, batch sizes,

and regularization parameters, achieving superior performance in

8 min. Advanced users (>5 years experience) primarily benefited

from reduced cognitive overhead in pipeline orchestration and

experiment management, with User P3 noting that natural

language descriptions eliminated the need to remember specific

API calls and parameter naming conventions across different

ML libraries.

5 Discussion

This research presents compelling evidence for the

transformative potential of LLM-based interfaces in democratizing

access to machine learning technologies. Through evaluations

involving 15 participants across diverse technical backgrounds, we

demonstrated that natural language interactions can significantly

reduce implementation barriers while maintaining or improving

task performance. The substantial improvements in completion

rates (93.33% for image classification and 100% for text

classification) and efficiency (approximately 50% reduction

in task completion times) validate the effectiveness of our approach

in simplifying complexMLworkflows. Our participant distribution

included 73.33% Python-proficient users, which may overestimate

the framework’s effectiveness for truly non-technical populations.

This overrepresentation of technically skilled participants could

bias our results toward more positive outcomes, as these users are

inherently more adaptable to technical tools, including traditional

AutoML approaches. While our findings show benefits for users

at all surveyed expertise levels, the limited representation of

non-technical users (26.67%) in our sample warrants cautious

interpretation of these benefits for truly democratizing ML

access to non-expert populations. Future work will prioritize

addressing this limitation by conducting larger-scale studies

with a participant pool deliberately recruited from non-technical

domains. We plan to collaborate with professionals in fields such

as business analytics, healthcare, and education—who possess

significant domain expertise but may lack formal programming

backgrounds—to more rigorously assess the framework’s potential

for genuine democratization.

Additionally, several other important challenges remain

to be addressed in future work. The LLM-based AutoML

framework’s occasional limitations with highly specialized

tasks and advanced customization options indicate the need

for more sophisticated natural language understanding and

domain-specific knowledge integration. Additionally, the observed

variability in LLM response quality and computational overhead

presents opportunities for optimization through improved

prompt engineering and efficient model deployment strategies.

Future research directions should explore the scalability of this

approach across broader ML applications, including more complex

tasks such as neural architecture search and automated feature

engineering. Investigation into hybrid interfaces that combine

natural language interaction with traditional programming tools

could potentially address current limitations while maintaining

accessibility. Additionally, longitudinal studies examining the

long-term impact on user skill development and ML adoption

rates would provide valuable insights for the continued evolution

of AutoML systems.

This work contributes to the growing body of evidence

supporting the role of LLMs in bridging technical gaps and

democratizing access to advanced technologies. As ML continues

to permeate various sectors, the development of intuitive, effective

interfaces becomes increasingly important. Our findings suggest

that LLM-based approaches offer a promising path forward in

making sophisticated ML capabilities accessible to a broader

audience while maintaining high standards of performance

and reliability.

6 Conclusion

This research advances the field of human-AI interaction

by demonstrating how LLM-based interfaces can fundamentally

transform the accessibility of machine learning technologies.

Through empirical evaluation, we established that natural language

interfaces not only simplify ML implementation but also enhance

the quality and efficiency of outcomes across diverse user groups.

The improvements in task completion and dramatic reductions in

learning barriers suggest a paradigm shift in how users can interact

with sophisticated ML systems. Our findings have important

implications for both research and practice in AI democratization.

The successful integration of LLMs with AutoML frameworks

opens new possibilities for domain experts to leverage ML

capabilities without extensive technical training. This breakthrough

could accelerate the adoption of ML solutions across sectors

where technical expertise has traditionally been a limiting factor,

from healthcare and scientific research to business analytics

and education. Looking forward, this work sets the foundation

for several promising research directions. Future investigations

could explore the extension of LLM-based interfaces to more

complex ML workflows, including automated neural architecture

design and multi-modal learning tasks. Additionally, research

into hybrid interfaces that combine natural language interaction

with traditional programming tools could further enhance the

flexibility and power of AutoML systems while maintaining

their accessibility.
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