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for Alzheimer’s disease 
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in the ADNI dataset
Houmem Slimi *, Imen Cherif , Sabeur Abid  and Mounir Sayadi 

Research Laboratory SIME, ENSIT, University of Tunis, Tunis, Tunisia

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized 
by cognitive decline and structural brain alterations such as cortical atrophy 
and hippocampal degeneration. Early diagnosis remains challenging due to 
subtle neuroanatomical changes in early stages. This study proposes a hybrid 
convolutional neural network-spiking neural network (CNN-SNN) architecture to 
classify AD stages using structural MRI (sMRI) data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). The model synergizes CNNs for hierarchical 
spatial feature extraction and SNNs for biologically inspired temporal dynamics 
processing. The CNN component processes image slices through convolutional 
layers, batch normalization, and dropout, while the SNN employs leaky integrate-
and-fire (LIF) neurons across 25 time steps to simulate temporal progression of 
neurodegeneration—even with static sMRI inputs. Trained on a three-class task 
[AD, mild cognitive impairment (MCI), and cognitively normal (CN) subjects], the 
hybrid network optimizes mean squared error (MSE) loss with L2 regularization 
and Adam, incorporating early stopping to enhance generalization. Evaluation on 
ADNI data demonstrates robust performance, with training/validation accuracy 
and loss tracked over 30 epochs. Classification metrics (precision, recall, F1-score) 
highlight the model’s ability to disentangle complex spatiotemporal patterns in 
neurodegeneration. Visualization of learning curves further validates stability 
during training. An ablation study demonstrates the SNN’s critical role, with its 
removal reducing accuracy from 99.58 to 75.67%, underscoring the temporal 
module’s importance. The SNN introduces architectural sparsity via spike-based 
computation, reducing overfitting and enhancing generalization while aligning 
with neuromorphic principles for energy-efficient deployment. By bridging deep 
learning with neuromorphic principles, this work advances AD diagnostic frameworks, 
offering a computationally efficient and biologically plausible approach for clinical 
neuroimaging. The results underscore the potential of hybrid CNN-SNN architectures 
to improve early detection and stratification of neurodegenerative diseases, paving 
the way for future applications in neuromorphic healthcare systems.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most 
common cause of dementia, currently affecting over 55 million individuals globally—a 
figure projected to rise to 139 million by 2050. Its onset is insidious, characterized by 
gradual cognitive decline, memory impairment, and behavioral changes. 
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Neuropathologically, AD is defined by amyloid-beta plaques, 
neurofibrillary tangles, and widespread neuronal loss. These 
processes manifest structurally as cortical thinning, hippocampal 
atrophy, and ventricular enlargement, all of which can be detected 
via neuroimaging techniques such as structural magnetic resonance 
imaging (sMRI).

Despite the availability of imaging biomarkers, early and 
accurate diagnosis remains a clinical challenge, especially during 
prodromal stages like mild cognitive impairment (MCI). The 
subtlety of structural changes in early stages and the overlap in 
features across disease states necessitate computational models that 
can not only detect complex spatial patterns but also infer temporal 
progression. Conventional machine learning approaches, which 
typically rely on handcrafted features such as hippocampal volume 
or cortical thickness, often fall short due to limited generalizability 
and their inability to capture hierarchical spatial relationships.

Deep learning, particularly convolutional neural networks 
(CNNs), has revolutionized the analysis of medical images by 
automating hierarchical feature extraction. CNNs have demonstrated 
strong performance in AD classification by identifying spatial features 
such as hippocampal shrinkage or cortical thinning. However, these 
models operate on static snapshots of sMRI scans and inherently lack 
temporal context. This is a fundamental limitation, as AD is a dynamic 
process that unfolds over time. While recurrent neural networks 
(RNNs) and long short-term memory (LSTM) networks offer 
temporal modeling capabilities, they require true longitudinal 
datasets—multiple scans per patient over time—which are rarely 
available in real-world clinical settings.

To address this limitation, a novel hybrid architecture that 
integrates CNNs with spiking neural networks (SNNs) was proposed. 
SNNs are biologically inspired models that simulate the temporal 
dynamics of neural computation through discrete spike events. Unlike 
traditional neural networks, SNNs process information across 
multiple time steps using mechanisms such as membrane potential 
integration and spiking thresholds. In our architecture, spatial features 
extracted by the CNN from single time-point sMRI slices are passed 
into an SNN with leaky integrate-and-fire (LIF) neurons. These 
features are processed over a sequence of 25 time steps, allowing the 
model to simulate how neurodegenerative patterns evolve—even in 
the absence of true longitudinal data.

This hybrid CNN-SNN model offers several key advantages. First, 
it enables the modeling of temporal progression from static input, 
which is particularly valuable for identifying early-stage disease 
features. Second, the spike-based computation of the SNN introduces 
architectural sparsity, which reduces overfitting and enhances 
generalization. Third, the event-driven nature of SNNs aligns with 
neuromorphic hardware principles, offering future potential for real-
time, low-power clinical deployment.

The novelty of the proposed work lies in applying a hybrid 
CNN-SNN architecture to AD classification—a combination that, 
until now, has not been thoroughly explored in prior literature. 
We validate the model on the publicly available ADNI dataset and 
compare its performance against state-of-the-art deep learning 
architectures such as DenseNet121, ResNet50, and Vision 
Transformers, as well as biologically inspired models. Furthermore, 
an ablation study clearly demonstrates the impact of the SNN 
component: when removed, the model’s accuracy drops from 99.58 to 
75.67%, underscoring the temporal module’s critical role.

To improve model interpretability and facilitate clinical 
translation, we  employ attention map visualization to highlight 
influential brain regions, which consistently correspond to medically 
significant areas like the hippocampus and entorhinal cortex. A new 
clinical summary table has been added to make these visualizations 
accessible to healthcare professionals.

In summary, this study contributes a computationally efficient, 
biologically plausible, and highly accurate model for early-stage 
Alzheimer’s disease classification using static sMRI data. It bridges the 
gap between spatial feature learning and temporal reasoning, offering 
a practical and scalable approach to support early diagnosis and 
personalized care strategies in clinical settings.

The remainder of this paper is structured as follows: Section 2 
presents several studies in Alzheimer’s disease classification, the 
Section 3 details the ADNI dataset, preprocessing steps, necessary 
mathematical formulations needed in the actual study, and model 
architecture. Section 4 outlines the experimental setup, training 
protocols, and evaluation metrics. Section 5 discussed results, 
including classification performance and comparative analysis. It also 
discusses clinical implications, limitations, and future directions. 
Section 6 concludes the study.

2 Related work

The field of transfer learning (TL) in medical image analysis has 
garnered significant attention, particularly in the classification of 
images within Alzheimer’s disease datasets. Deep learning 
techniques, particularly convolutional neural networks (CNNs), 
have shown significant promise in the automated classification of 
Alzheimer’s disease (AD) using neuroimaging data (Zhao et al., 
2023). Early and accurate detection of AD is crucial for effective 
management and potential slowing down of the disease’s 
progression (Bhandarkar et al., 2024; Chamakuri and Janapana, 
2024; Bamini et al., 2024). Traditional methods for AD diagnosis 
often rely on expert knowledge and are time-consuming, 
highlighting the need for automated and efficient techniques 
(Jiahao, 2024).

CNNs excel at extracting intricate features from complex, high-
dimensional data, making them well-suited for analyzing MRI 
images of the brain (Saturi et  al., 2025; Naganandhini and 
Shanmugavadivu, 2024; Taghavizadeh et al., 2024). Several studies 
have explored different CNN architectures for AD classification 
(Singh et  al., 2024; Janghel, 2020; Ouchicha et  al., 2022). The 
application of deep learning to AD classification extends beyond 
basic CNNs. More advanced techniques, such as incorporating 
attention mechanisms (Illakiya et al., 2023) and ensembling multiple 
deep learning models (Chen et al., 2024; An et al., 2020; Ismail et al., 
2023; El-Den et al., 2024), have been explored to improve accuracy 
and robustness. Illakiya et al. (2023) proposed an adaptive hybrid 
attention network (AHANet) that uses enhanced non-local attention 
and coordinate attention modules to improve AD detection using 
brain MRI. Chen et al. (2024) introduced an ensemble deep learning 
model with soft-NMS and improved ResNet50 integration for AD 
classification, showing the benefits of combining different deep 
learning techniques. An et  al. (2020) presented a deep ensemble 
learning framework to harness deep learning algorithms for 
improved AD classification performance.
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Transfer learning, where models pre-trained on large datasets are 
fine-tuned for AD classification, has also gained traction (Ferrante 
et al., 2024; Priyatama et al., 2023; Lin et al., 2023). Ferrante et al. 
(2024) used transfer learning with CNNs and weighted loss to 
classify Alzheimer’s disease, while Lin et al. (2023) developed a deep 
learning system for cytopathology interpretation using transfer 
learning. Additionally, the use of explainable AI (XAI) techniques is 
becoming increasingly important to understand and interpret the 
decisions made by deep learning models in AD classification 
(Oktavian et al., 2022; Turkson et al., 2021). Turkson et al. (2021) 
developed a genetic algorithm-based hybrid deep learning model for 
explainable AD prediction using temporal multimodal cognitive 
data. Oktavian et al. (2022) provided a systematic review of XAI in 
Alzheimer’s disease classification, highlighting the need for 
transparency and interpretability in AI-driven medical diagnosis. 
Viswan et al. (2023) proposed a method to convert a standard neural 
network into a Bayesian neural network and estimate the variability 
of predictions by sampling different networks similar to the original 
one at each forward pass, enabling uncertainty estimation in 
neural networks.

However, it is important to acknowledge the challenges and 
limitations in this field. Issues such as the relatively small size of 
available datasets, the heterogeneity of AD, and the need for robust 
validation across diverse populations remain (Bhandarkar et al., 
2024). Future research should focus on developing more 
sophisticated deep learning architectures, incorporating 
multimodal data, and improving the interpretability and 
trustworthiness of these models for clinical use. For instance, You 
et al. (2020) developed a cascading neural network for Alzheimer’s 
classification, utilizing both gait and EEG data, achieving a 
three-way classification accuracy of 91.07%, surpassing earlier 
methods. In 2021, Mohammed et al. (2021) introduced various 
machine learning techniques and deep learning models to classify 
OASIS and Alzheimer’s disease images, achieving an average 
accuracy of 94%. Furthermore, Al Shehri (2022) proposed a deep 
learning approach for identifying and classifying Alzheimer’s 
disease using DenseNet-169 and ResNet-50 CNN architectures, 
with ResNet-50 achieving accuracies of 0.8870 and 0.8192, while 
DenseNet-169 achieved training and testing accuracies of 0.977 
and 0.8382, respectively. Naz et  al. (2022) evaluated several 
transfer learning architectures to differentiate Alzheimer’s disease 
from mild cognitive impairment, with VGG reaching a mean 
accuracy of 98%. In a recent study by Bamber and Vishvakarma 
(2023), a shallow convolution layer in a convolutional neural 
network was employed to diagnose Alzheimer’s from image 
patches, achieving a high accuracy of 98%. Mahmud et al. (2023) 
used MRI scans from Alzheimer’s patients and healthy controls to 
test mixed ensemble models, obtaining 95% accuracy. Raza et al. 
(2023) focused on segmenting and classifying Alzheimer’s disease-
related MRI data using a custom CNN and transfer learning, 
achieving an accuracy of 97.84%. In the same year, Balaji et al. 
(2023) developed a hybrid deep learning model combining CNN 
and LSTM architectures, using segmentation to improve results 
and achieving 98.5% accuracy in classifying images from two 
datasets. Ching et al. (2024) utilized EfficientNet-B0 to classify 
Alzheimer’s disease images, achieving an accuracy of 87.17%. Ali 
et  al. (2024) used the fuzzy C-means technique for image 
segmentation and combined LSTM with CNN architectures to 

classify brain images, reaching an accuracy of 98.13%. The model 
proposed by Liu et  al. (2024) employs a lightweight 3D 
convolutional neural network to track brain disease progression 
across sequential scans by extracting and emphasizing the most 
informative lesion characteristics. First, a longitudinal lesion 
feature selection module identifies subtle structural changes 
between time points, sensitively detecting early Alzheimer’s 
markers. Next, a disease trend attention mechanism learns how 
these core lesion features relate to overall disease trajectories, 
sharpening the network’s focus on diagnostically critical regions. 
Finally, integrated visualization tools translate the model’s 
predictions into interpretable maps, enabling clinicians to see 
which areas influenced its assessment and seamlessly incorporate 
its insights into their diagnostic workflow. Our proposed model 
achieves a very high accuracy of 99.58%.

In addition to deep learning models, several studies have 
proposed bio-inspired techniques for medical image classification. 
For instance, a fuzzy inference system utilizing statistical features 
from MRI data demonstrated high efficacy in classifying AD 
stages. Another approach combined fuzzy logic, genetic 
algorithms, and possibility clustering to enhance tissue 
quantification in multimodal imaging, improving early AD 
diagnosis. Additionally, an adaptive neuro-fuzzy inference system 
(ANFIS) has been employed to classify different stages of AD 
using structural MRI images, adapting to nonlinear patterns in 
the data.

3 Dataset and mathematical 
formulations

3.1 ADNI dataset

ADNI (Alzheimer’s Disease Neuroimaging Initiative, n.d.) 
provides Alzheimer’s data in Nifti or DICOM format which is 3D 
volumetric data. It becomes slightly difficult to work directly on the 
3D data, hence the given dataset was created for easy implementation 
of the image processing algorithms. This dataset consists of 2D axial 
images extracted from the ADNI baseline dataset which consisted of 
Nifti images. It consists of 3 classes, i.e., AD (Alzheimer’s disease), 
MCI (mild cognitive impaired) and CN (common normal) subjects. 
The images have been extracted from the ADNI baseline dataset 
(NIFTI format) which consisted of 199 instances. The 
original images can be  downloaded from https://ida.loni.usc.edu/
login.jsp?project=ADNI.

3.2 Preprocessing

Preprocessing was applied to each dataset image as follows:

 • Images were resized to expedite application execution and reduce 
processing power consumption.

 • Data augmentation was employed to generate new training image 
datasets related to the source image. Techniques such as rotation, 
horizontal and vertical flipping, and adjusting width and height can 
enhance image recognition and accuracy. In this study, zoom, 
brightness adjustment, and horizontal flip methods were used as 
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part of the used data augmentation strategies during the experiments. 
The goal was to increase the number of images as much as possible.

 • Oversampling was performed to address the issue of unbalanced 
classes using the SMOTE approach (Chawla et al., 2002).

3.3 Mathematical formulations

3.3.1 Convolutional neural network

3.3.1.1 Convolution operation
The convolution operation extracts spatial features from the input 

by applying a filter (kernel) to the input feature map. It involves sliding 
the kernel over the input and computing the dot product at 
each position.

 

( ) ( )
( )

= =
= + − + − ⋅

+
∑ ∑1 1Output , Input 1, 1
Kernel , Bias

k k
m ni j i m j n

m n  (1)

 • ( )Output ,i j : Output feature map at position (i, j).
 • Input: Input feature map.
 • s: Stride of the pooling operation.
 • k: Kernel size of the pooling operation.

3.3.2 Spiking neural network

3.3.2.1 LIF neuron dynamics
The spiking neural network (SNN) in the proposed hybrid model 

employs leaky integrate-and-fire (LIF) neurons to simulate temporal 
dynamics from static sMRI inputs. The membrane potential V(t) of 
each neuron is governed by the differential equation:

 

( ) ( ) ( ) ( )τ = − +m
d
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d
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Discretized using Euler’s method:
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Parameters:

 • Membrane time constant τm: Derived from α = 0.95.
 • Firing threshold Vth: Set to 1.0.
 • Reset potential Vreset: 0.0 after spike generation.

Spike generation:
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3.3.2.2 Temporal encoding and processing

 • Input injection: Spatial features from the CNN (128D vector) are 
injected identically at each time step t ∈ [1, T], where T = 25.

 • LIF layers: Features are processed through two fully connected 
layers and two LIF layers:
 o Hidden layer:

 
( ) ( )= ⋅ +1

1 1 synapticprojectiontI W x b  (5)

 
( ) ( ) ( ) ( ) ( )α α+ = + −1 1 1
1 1 membraneupdatet ttV V I  (6)

Spikes St
(1) are generated if Vt

(1) ≥ Vth.

 o Output layer:

 
( ) ( ) ( )= ⋅ +2 1

2 2 secondprojectiont tI W S b  (7)
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1 1 finalmembraneupdatet ttV V I  (8)

Final spikes St
(2) are generated similarly.

 • Surrogate gradients: Non-differentiable spike functions use fast 
sigmoid gradients for backpropagation (Wu et al., 2022).

3.3.2.3 Spike aggregation
Binary spike outputs from the final layer are averaged over T = 25 

time steps:

 

( ) ( )
=

= ∑ 2

1

1Output time-averagedspikecount
T

t
t

S
T

 
(9)

 ( ) ( ) ( )= Softmax Output final classificationP y  (10)

3.3.2.4 Reproducibility

 • Equations and parameters: All equations (above) and parameters 
(e.g., τm, Vth, T) are explicitly described.

 • Implementation notes:

 o Euler’s method for integration (Δt = 1).
 o The next sub-section (3.4. The novel planned strategy) clarify 

temporal processing.

3.4 The novel planned strategy

The hybrid model proposed in the code combines the strengths of 
convolutional neural networks (CNNs) and spiking neural networks 
(SNNs) to create a novel architecture that leverages the spatial feature 
extraction capabilities of CNNs and the temporal dynamics of SNNs. 
Below is a detailed explanation of the novel planned strategy:
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 • CNN module for spatial feature extraction.
 o Input layer: The model takes an input image with 3 channels 

(e.g., RGB image).
 o Convolutional layers: The CNN module consists of two 

convolutional layers (Conv1 and Conv2), each followed by 
batch normalization (BatchNorm1 and BatchNorm2), ReLU 
activation (ReLU1 and ReLU2), and max-pooling (MaxPool1 
and MaxPool2). These layers are responsible for extracting 
hierarchical features from the input image.

 o Dropout layer: A dropout layer is introduced after the second 
pooling layer to prevent overfitting by randomly dropping 50% 
of the neurons during training.

 o Fully connected layer: The final layer of the CNN module is a 
fully connected layer (FC1) that maps the flattened feature 
maps to a 128-dimensional output. This output serves as the 
input to the SNN module.

 • SNN module for temporal dynamics.
 o Fully connected layers: The SNN module begins with two fully 

connected layers. The first layer (FC2) maps the 
128-dimensional feature vector from the CNN to a 
64-dimensional hidden layer. The second layer (FC3) maps the 
64-dimensional output to 3 neurons corresponding to the AD, 
CI, and CN classes.

 o Leaky integrate-and-fire (LIF) neurons: Each fully connected 
layer is followed by a leaky integrate-and-fire (LIF) neuron 
layer (LIF1 and LIF2). These neurons simulate biological 
behavior by integrating input current over time. A spike is 
generated when the membrane potential exceeds a defined 
threshold, and the potential is then reset to simulate 
neuronal firing.

 o Temporal processing: The SNN processes the CNN feature 
vector over 25 discrete time steps. At each time step, the same 
input current is passed through the LIF layers. The membrane 
potential of each neuron is updated at each step using a decay 
constant, allowing the network to capture temporal 
information from otherwise static input.

 o Spike aggregation: The binary spike outputs from the final LIF 
layer are averaged across all time steps to form a continuous-
valued output. This output is used to represent the final 
prediction and is passed through a softmax layer to produce 
class probabilities for AD, CI, or CN.

 o Biological relevance and efficiency: The SNN introduces event-
driven temporal dynamics inspired by real neural behavior. 
This design not only improves the network’s ability to model 
progressive neurodegeneration but also enhances 
computational efficiency by relying on sparse spiking activity, 
making it suitable for neuromorphic hardware deployment.

 • Hybrid model integration.
 o Feature extraction and temporal processing: The CNN module 

extracts spatial features from the input image, while the SNN 
module processes these features over time. This combination 
allows the model to capture both spatial and temporal 
information, making it suitable for tasks that require 
understanding both the structure and dynamics of the 
input data.

 o Gradient and activation hooks: The CNN module includes hooks 
to store feature maps and gradients during the forward pass. 
These hooks can be used for visualization, analysis, or further 
processing, such as gradient-based explainability techniques.

4 Results

4.1 Ablation study

To evaluate the contribution of the spiking neural network (SNN) 
module to overall performance, an ablation study was conducted 
comparing the complete hybrid CNN-SNN model with a baseline 
CNN-only version. Both models were trained and evaluated under 
identical conditions to ensure fair comparison.

4.2 Experimental setup

The experiments were conducted using 5-fold cross-validation on 
the ADNI dataset, with each fold including 80% training and 20% 
validation data. Data augmentation (zoom, brightness, horizontal flip) 
and SMOTE oversampling were applied only to the training subset in 
each fold to avoid data leakage. Both models were trained for 30 
epochs using the Adam optimizer (learning rate = 1 × 10−4), with 
categorical cross-entropy as the loss function. Early stopping 
(patience = 5) and L2 regularization (weight decay = 1× 10−5) were 
applied to prevent overfitting.

4.3 Hardware used

Training was conducted on an NVIDIA Tesla P100 GPU with 
16 GB VRAM and 24 GB system RAM.

4.4 Results

The model without SNN, which used only the CNN component, 
showed a significant drop in classification metrics:

 • Accuracy: 75.67%.
 • Precision: 75.22%.
 • Recall: 75.20%.
 • F1-score: 75.54%.
 • AUC-ROC: 0.80.

When the SNN module was reintroduced, the hybrid model’s 
performance increased dramatically:

 • Accuracy: 99.58%.
 • Precision: 99.18%.
 • Recall: 99.18%.
 • F1-score: 99.43%.
 • AUC-ROC: 0.995.

4.5 Interpretation

The ablation study clearly demonstrates the substantial impact 
of integrating the spiking neural network (SNN) module into the 
classification pipeline. When the model operates without the SNN 
component—relying solely on convolutional neural networks 
(CNNs)—its ability to differentiate between Alzheimer’s disease 
stages is significantly reduced. The CNN-only model achieves just 
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75.67% accuracy, with similarly modest precision, recall, and F1-
score values. These results suggest that while CNNs are effective in 
extracting spatial features from brain MRI images, they fall short in 
capturing the subtle temporal progression characteristics 
of neurodegeneration.

In contrast, the reintroduction of the SNN component results 
in a dramatic improvement across all evaluation metrics, with 
accuracy rising to 99.58% and F1-score exceeding 99%. This 
enhancement is attributed to the SNN’s capacity to process the 
extracted spatial features over 25 discrete time steps using 
biologically inspired leaky integrate-and-fire (LIF) neurons. 
Although the input is static (single time-point MRI), the temporal 
encoding simulated by the SNN allows the model to accumulate 
evidence over time, mimicking how progressive atrophy patterns 
may manifest in the brain.

From a clinical perspective, this temporal modeling capability is 
crucial. Early-stage Alzheimer’s disease, especially in MCI subjects, is 
characterized by gradual and subtle structural changes that may not 
be fully captured in a single spatial snapshot. By simulating temporal 
dynamics, the SNN enables the model to detect these early indicators 
more reliably, leading to higher diagnostic sensitivity—particularly for 
MCI classification, which is the most clinically challenging category.

Furthermore, the spike-based computations in the SNN 
contribute to better generalization by introducing sparsity and 
regularization at the architectural level. This helps reduce 
overfitting, as evidenced by the close alignment between training 
and validation performance curves. The hybrid model’s performance 
suggests that the spatiotemporal synergy between CNN and SNN 
components is not merely additive but complementary, with each 
module addressing a different aspect of the data: structure 
and progression.

In summary, the ablation results validate that the inclusion of 
SNN significantly enhances model robustness, sensitivity, and 
biological plausibility—key properties for clinical translation in early 
Alzheimer’s disease diagnosis.

In Figure 1, we can see different images of classes from ADNI 
dataset and take an idea on each class. Figures  2–4 illustrates, 
respectively, the CNN block, the SNN block and the hole proposed 
model architectures.

The performance of deep learning architectures is evaluated 
using a number of parameters, such as accuracy, precision, recall, 
F1-score, and AUC. Where the accuracy metric calculates the 
proportion of correct predictions to all events examined. The 
precision metric measures the number of correctly predicted 
positive patterns among all projected patterns in a positive class. 
The fraction of positive patterns that are correctly categorized is 
measured by recall, and the harmonic mean of recall and accuracy 
values is represented by the F1-score metric (Hossin and 
Sulaiman, 2015).

 
=

+
TPRecall

TP FN  
(11)

 
=

+
TPPrecision

TP FP  
(12)

 
×

= ⋅
+1

Precision Recallscore 2
Precision Recall

F乚
 

(13)

 
+

=
+ + +
TN TPAccuracy

TN TP FN FP  
(14)

where TN is true negative, TP is true positive, FN is false negative, 
and FP is false positive. A useful statistic within the range [0, 1] is the 
area under the curve (AUC). The AUC is equal to 1 when there is 
perfect discrimination between instances of the two classes. 
Conversely, the AUC equals 0 when all benign instances are 
categorized as malignant, and vice versa.

Figure  5 shows two confusion matrices comparing the 
performance of two models: the hybrid SNN-CNN model (left) and 
the standalone CNN model (right). The hybrid SNN-CNN model 
achieves near-perfect classification, with all predictions aligning 
correctly with true labels across three classes: AD, CI, and CN, resulting 
in almost diagonal dominance in the matrix. In contrast, the standalone 
CNN model exhibits some misclassifications, particularly evident in 
the AD and CI classes, with notable confusion between these 
categories. The performance gap highlights the enhanced precision of 
the hybrid model, likely due to the integration of the SNN block.

In Figure 6, we test the robustness of our picture classification 
model for the Alzheimer’s dataset in Figure 6 by injecting different 
kinds of noise. The objective is to comprehend how various noise levels 
and kinds impact the model’s performance in various classes. For the 
original images, three different types of noise was applied: Speckle 
Noise with standard deviations (σ) of 0.1, 0.2, and 0.3 to simulate 
multiplicative noise; Salt-and-Pepper Noise with probabilities (p) of 
0.05, 0.1, and 0.15 to simulate pixel corruption; and Gaussian Blur with 
standard deviations (σ) of 0.2, 0.4, and 0.6 to simulate various levels of 
blurring. The objective was to see how different parameter values 
affected the suggested model’s classification performance, so different 
values was experimented for each category of noise. Results emphasize 
how crucial it is to assess the model’s resilience to different kinds and 
intensities of noise. It is essential to comprehend how noise affects 
classification accuracy in order to create deep learning models for 
Alzheimer’s disease diagnosis that are more resilient and trustworthy.

4.6 Experimental setup

This study introduces a hybrid spiking neural network-
convolutional neural network (SNN-CNN) architecture to classify 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset images 
with dimensions of 128 × 128 × 3. The proposed model synergizes the 
temporal dynamics of SNNs with the spatial feature extraction 
capabilities of CNNs, achieving robust performance in distinguishing 
neurodegenerative stages. The architecture begins with a CNN 
backbone that processes non-overlapping 10 × 10 image patches, 
extracting hierarchical spatial features through convolutional layers 
with ReLU activation. These features are then transformed into 
spiking signals using leaky integrate-and-fire (LIF) neurons, enabling 
event-driven, energy-efficient processing of temporal patterns 
inherent in longitudinal neuroimaging data. To enhance feature 
integration, a spike-based self-attention mechanism is incorporated, 
dynamically weighting salient regions such as hippocampal atrophy 
or cortical thinning. The learning rate parameter is set to 0.0001 when 
using the “Adam” (Kingma and Ba, 2014) optimization. “Categorical_
crossentropy” is the loss function. To prevent the overfitting issue, 
EarlyStopping was employed (with “patience” parameter equal to 5) 
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and L2 regularization (with wait decay = 0.00001) techniques. We note 
that the train had a set 30 epoch count. A comparison was performed 
in Table  1, between the proposed model and other bio-inspired 
models to demonstrate the superiority of the suggested architecture. 
The performance of the suggested model in comparison to the normal 
pretrained models is displayed in Table 2. In Table 3, an additional 
comparison between state of the art models and our suggested model 
was offered. A 5-fold cross-validation approach was used to assess the 
suggested model’s generalizability and robustness, as shown in Table 4. 
Five random subsets were created from the dataset. Four subsets were 
used for training and one subset served as the test set for each cycle. 
This procedure was carried out five times, using a fixed seed to 
preserve repeatability and shuffling to guarantee randomness. 
Following each fold, the accuracy was noted, and the mean and 
standard deviation of the accuracy over all folds were calculated to 
establish the overall performance. The model’s consistency and 
dependability were highlighted by the cross-validation results, which 

showed a mean accuracy of 99.58%. Table 5 gives all parameters used 
in this study.

Figure  7 presents three rows of brain MRI scans, each row 
corresponding to a different classification category: Alzheimer’s 
disease (AD), cognitive impairment (CI), and cognitively normal 
(CN). Each row contains three images: the original MRI scan with the 
ground truth and predicted labels, an attention heatmap highlighting 
the most relevant regions for classification, and an attention overlay 
where the heatmap is superimposed on the original scan. The color 
bars on the heatmaps indicate the intensity of attention, with yellow 
representing the highest focus areas. The attention maps suggest that 
different regions of the brain are emphasized depending on the 
classification category, indicating the model’s focus during decision-
making (see Table 6).

Figure 8 consists of two UMAP scatter plots comparing feature 
representations from two models: hybrid CNN-SNN (left) and 
DenseNet121 (right). Each plot displays data points in a two-dimensional 

FIGURE 1

Different classes in ADNI dataset.
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space, with different colors representing different classes. Both plots 
include a color bar ranging from 0.00 to 2.00, indicating class labels or 
feature intensities. The left plot shows a more compact distribution of 
points, while the right plot has a more scattered arrangement. Each 
point is circular and colored according to the provided scale.

5 Discussion

5.1 Benefits of data augmentation

Data augmentation plays a pivotal role in optimizing the hybrid 
SNN-CNN model’s performance on the ADNI dataset by addressing 
challenges like limited sample size and class imbalance. By applying 
geometric transformations such as random rotations (±30°), 
horizontal/vertical flips, and slight scaling variations, the training set 
is artificially diversified while preserving critical neurodegenerative 
biomarkers. These operations simulate natural anatomical variability 
and orientation differences in MRI scans, enabling the CNN block to 
learn rotation-invariant spatial features (e.g., hippocampal atrophy or 
ventricular enlargement) and the SNN to adapt to temporal shifts in 
augmented sequences. This strategy not only reduces overfitting but 
also enhances the model’s robustness to real-world imaging artifacts 
and scanner heterogeneity.

5.2 Integration of SNN

The integration of spiking neural networks (SNNs) into the hybrid 
architecture uniquely enhances the model’s ability to process temporal 
and event-driven patterns inherent in longitudinal neuroimaging data 
from the ADNI dataset. Unlike traditional CNNs, which focus solely 
on spatial features, SNNs leverage biologically inspired leaky integrate-
and-fire (LIF) neurons to encode temporal dynamics, such as gradual 

atrophy progression or biomarker fluctuations over time. This 
spatiotemporal synergy allows the model to better capture disease 
evolution, mimicking the brain’s own time-dependent processing 
mechanisms. Additionally, SNNs operate via energy-efficient spike-
based computations, reducing computational overhead during 
inference—a critical advantage for scaling to large longitudinal 
datasets. By combining the CNN’s robust spatial feature extraction 
(e.g., hippocampal morphology) with the SNN’s sensitivity to 
temporal shifts, the hybrid model achieves superior generalization, 
particularly in distinguishing early-stage Alzheimer’s biomarkers.

5.3 Computational efficiency

The hybrid SNN-CNN architecture achieves notable computational 
efficiency by leveraging the event-driven nature of spiking neural 
networks (SNNs). Unlike traditional artificial neural networks (ANNs), 
SNNs process information only when spikes occur, drastically reducing 
redundant computations—particularly beneficial for longitudinal ADNI 
data with temporal dependencies. The CNN backbone pre-processes 

FIGURE 2

Architecture of the CNN module.

FIGURE 3

Architecture of the SNN module.
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spatial features (e.g., 10 × 10 patches) in a single forward pass, while the 
SNN component operates on sparse, time-encoded representations, 
minimizing memory and energy costs during inference. By employing 
adaptive thresholding in leaky integrate-and-fire (LIF) neurons and 
spike-timing-dependent plasticity (STDP), the model dynamically 
prunes non-informative spikes, further optimizing resource usage. This 
efficiency is amplified by the hybrid design: the CNN handles static 
spatial patterns, while the SNN processes temporal dynamics without 
requiring costly recurrent connections or 3D convolutions.

5.4 Interpreting results

According to the confusion matrix of the hybrid model in left part 
in Figure  5, the model achieves near-perfect accuracy, correctly 
predicting 552 instances of AD, 497 instances of CI, and 504 instances 

of CN, with only one misclassification where a CI instance was labeled 
as CN. The heatmap highlights the high prediction accuracy, with 
darker cells showing correct classifications and lighter cells showing 
errors. This suggests the model is highly effective in distinguishing 
between the three classes. According to Figure 9, the loss function for 
both training and test data starts high and decreases rapidly within the 
first 10 epochs, stabilizing near zero after approximately 15 epochs, 
indicating effective convergence. The right plot shows the accuracy 
trends, where both training and test accuracy increase steeply in the 
initial epochs, reaching near 100% around epoch 10 and maintaining 
stability thereafter. The close alignment of training and test curves in 
both plots suggests minimal overfitting and strong generalization 
performance of the proposed model. When the model’s resilience to 
various noise types was tested in Figure 6, the selected architecture 
was incredibly resilient since, with the parameters selected for each 
form of noise, the expected and actual outputs are equal across all 

FIGURE 4

Architecture of the proposed model.

FIGURE 5

Comparison of confusion matrices: hybrid SNN-CNN model vs. standalone CNN model.
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FIGURE 6

Exploring the impact of noises on ADNI image classification for AD, CN, and CI classes.

TABLE 1 Comparative analysis of bio-inspired models for Alzheimer’s disease classification.

Model name 
& year

Bio-inspired technique Accuracy 
(%)

Interpretability Biological 
plausibility

Reference

The proposed study 

(2025)
Spiking neural network (SNN) 99.6 High (attention maps) High (neuron dynamics) This work

BI-SSA (2023) Salp Swarm Algorithm 99.9 Moderate None Awotunde et al. (2023)

MGTO-CapsNet 

(2024)
Gorilla troops optimizer 99.94 Moderate (capsule routing) Partial Ganesan et al. (2024)

GA-PSO-WOA 

(2023)

Genetic algorithm

Particle Swarm optimization and 

Whale optimization algorithm

Not specified Low None Dyoub and Letteri (2023)
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classes. The middle column presents attention heatmaps, where dark 
purple indicates low importance, blue to green represents moderate 
attention, and yellow highlights the most critical areas. For AD, the 
model focuses on central brain regions, particularly the hippocampus 
and cortical structures, which are known to undergo 
neurodegeneration. In CI, attention is more dispersed, potentially 
capturing early-stage cortical changes, while in CN, the model 
concentrates on the brain’s periphery, likely validating normal 
structures. The right column overlays attention on the MRI scans, 
where bright yellow-green areas indicate strong model focus on 
clinically significant biomarkers, while subtle blue-green regions show 
moderately relevant areas. This visualization confirms that the model’s 
decision-making aligns with established pathological markers, 
effectively distinguishing different categories based on meaningful 
anatomical differences, particularly brain atrophy and structural 
degeneration. The figure underscores the model’s interpretability, 
demonstrating that it relies on clinically relevant features rather than 
random patterns for classification. Figure 8 illustrates how the Hybrid 
CNN-SNN and DenseNet121 models represent features in a lower-
dimensional space using UMAP. The hybrid CNN-SNN (left) shows 
a more compact and structured distribution of features, suggesting 
that it captures more discriminative and well-clustered feature 
representations. In contrast, the DenseNet121 (right) exhibits a more 
scattered and loosely grouped distribution, indicating that its feature 
representations may be less separable. The tighter clustering in the 
hybrid model suggests better feature extraction capabilities, potentially 
leading to improved classification performance compared 
to DenseNet121.

5.5 Interpretability and clinical translation

To address model interpretability, we  analyzed the gradient-
weighted attention maps extracted from the CNN branch (see 
Figure  7). These maps consistently highlight medial temporal 
structures, including the hippocampus and entorhinal cortex—regions 
known to undergo early atrophy in Alzheimer’s disease. For instance, 
in cognitively impaired (CI) subjects, the model focuses strongly on 
the CA1 subfield, which aligns with established neuropathological 
findings such as hippocampal neuronal loss by Braak stage III (Braak 
and Braak, 1991).

In cognitively normal (CN) subjects, attention maps shift toward 
the intact cortical ribbon, suggesting the model also verifies cortical 
preservation to rule out pathology. These visual patterns confirm that 
the model’s decisions are biologically plausible and grounded in 
clinical imaging markers.

For clinical integration, three steps are proposed for further research 
work: (1) validation on multi-center cohorts (with different MRI 
scanners and acquisition settings), (2) exporting attention overlays as 
DICOM-SEG files compatible with radiology PACS, and (3) prospective 
clinical studies to correlate attention heatmaps with cognitive scores 
(MMSE, CDR) and predict progression from MCI to AD.

For patients in the AD category, the attention maps show broader 
and more intense focus across the entire medial temporal lobe, 
including both the hippocampus and the entorhinal cortex, as well as 
extension toward posterior cingulate and inferior parietal regions in 
some cases. This pattern corresponds to later Braak stages (IV–V), 
where neurofibrillary degeneration extends beyond CA1 into 

TABLE 2 Comparison between the proposed model and basic transfer learning models for the ADNI dataset.

Accuracy (%) F1-score (%) AUC (%) Precision (%) Recall (%)

Xception 92.5 92.33 97 92.6 92.6

InceptionV3 90.1 90.36 95.67 90.46 90.46

DenseNet121 93.95 93.2 97.5 93.3 93.3

ResNet50 87.28 87.51 92 87.16 87.16

VGG16 72.27 72.89 88.11 71.85 71.83

The proposed model 99.58 99.43 99.5 99.18 99.18

TABLE 3 Comparison between the proposed model and state of the art models.

Study and year Model name/type Dataset used Accuracy (%)

Odusami et al. (2023) VGG16 + DWT ADNI 89.58

Lubis et al. (2023) Naïve Bayes + Invariant moment AD MRI 94

Hussain and Shiren (2023) SVM + Watershed segmentation ADNI 96.25

Shobha and Karthikeyan (2024) Deep Q-network (DQN) ADNI 83.33

Zhang et al. (2024) Attention mechanism + GAN MRI—PET 89.9

The proposed model (2025) SNN + CNN ADNI 99.58

TABLE 4 Cross-validation technique (ADNI dataset).

Fold1 Fold2 Fold3 Fold4 Fold5 Mean

Cross-validation 

accuracies

99.28 99.52 99.68 99.68 99.76 99.58
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widespread cortical association areas. This confirms that the model 
not only distinguishes AD from CI and CN, but does so by recognizing 
advanced atrophy patterns documented in clinical staging protocols.

The evaluation metrics of the proposed model outperformed the 
pretrained and state-of-the-art models, as shown in Tables 1, 2. Table 3 
demonstrates that performs well never mind which test part was 
chosen, the k-fold results validate the model’s reliability and precision, 
reinforcing its potential as a tool for early and accurate Alzheimer’s 
disease diagnosis.

5.6 Limitations and future work

Despite achieving exceptional accuracy (mean 99.58%) on the 
ADNI dataset, the hybrid SNN-CNN model has several limitations. 
First, its reliance on the ADNI dataset, which may lack demographic 
diversity (e.g., age, ethnicity) and multi-scanner variability, raises 
concerns about generalizability to broader populations. Second, while 
the SNN’s event-driven processing enhances computational efficiency, 
training SNNs remains challenging due to non-differentiable spike 
functions, requiring surrogate gradients that may introduce 
approximation errors. Third, the model’s interpretability is limited; 
while it excels at classification, it does not explicitly highlight which 
spatiotemporal features (e.g., hippocampal atrophy) drive its decisions, 
which is critical for clinical trust.

Future work should focus on: (1) validating the model on external, 
multi-scanner datasets to ensure robustness across diverse imaging 
protocols and populations; (2) improving interpretability through 
techniques like saliency maps or attention visualization to identify key 
biomarkers; (3) optimizing SNN training with advanced surrogate 
gradient methods or neuromorphic hardware for real-time deployment; 
and (4) extending the model to multi-modal data (e.g., combining MRI 
with PET or CSF biomarkers) to capture complementary disease 
signatures. Addressing these limitations will enhance the model’s clinical 
applicability and reliability for Alzheimer’s disease diagnosis.

6 Conclusion

This study presents a hybrid spiking neural network-convolutional 
neural network (SNN-CNN) model for classifying Alzheimer’s disease 
stages using the ADNI dataset, achieving a remarkable mean accuracy 
of 99.58% across five-fold cross-validation. The model’s success lies in 
its ability to synergize the spatial feature extraction capabilities of 
CNNs with the temporal processing strengths of SNNs, enabling 
robust identification of subtle neurodegenerative biomarkers such as 
hippocampal atrophy and cortical thinning. By leveraging geometric 
data augmentation techniques (e.g., rotations, flips), the model 
demonstrates strong generalizability and resistance to overfitting, even 
with limited training samples. Furthermore, the SNN’s event-driven 

TABLE 5 All parameters of the proposed approach.

Parameter Value Description

Input image size 128 × 128 × 3 MRI slices resized for processing

Patch size 10 × 10 Non-overlapping patches extracted by CNN backbone

Data augmentation Zoom, brightness adjustment, horizontal flip Applied during training to increase dataset variability

Oversampling SMOTE Synthetic minority over-sampling to address class imbalance

CNN conv layers 2 layers + BatchNorm + ReLU + MaxPool Hierarchical spatial feature extraction

Dropout rate 50% Applied after second pooling to mitigate overfitting

CNN FC output dim 128 Dimension of feature vector fed into SNN

SNN time steps (T) 25 discrete steps Temporal processing window for leaky integrate-and-fire neurons

SNN hidden neurons (FC2) 64 Size of first fully connected layer in SNN

SNN output neurons (FC3) 3 Final layer size corresponding to AD/MCI/CN classes

Membrane integration Euler’s method Numerical integration for LIF dynamics

Surrogate gradients Fast sigmoid approximation Enable backprop through spike function

Spike aggregation Average over T steps Time-averaged spike count yields class scores

Learning rate 1 × 10−4 Used with Adam optimizer

Optimizer Adam Stochastic optimization method

Loss function Categorical cross-entropy Multi-class classification loss

Early stopping (patience) 5 epochs Halt training if no improvement

L2 regularization (weight decay) 1 × 10−5 Prevent overfitting

Number of epochs 30 Maximum training iterations

Cross-validation folds 5 5-fold CV for robustness

GPU NVIDIA Tesla P100 (16 GB VRAM) Training and inference acceleration

CPU Intel Core i7-8750H, 2.20 GHz Host processing

System RAM 24 GB Memory for data loading/preprocessing

Total training time 20 min Needed time for training
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architecture enhances computational efficiency, making the model 
scalable for large-scale longitudinal studies and potential deployment 
on neuromorphic hardware.

However, the study is not without limitations. The reliance 
on the ADNI dataset, which may lack demographic diversity and 
multi-scanner variability, raises questions about the model’s 
applicability to broader populations. Additionally, while the 
hybrid architecture excels in classification, its interpretability 
remains limited, as it does not explicitly highlight the 
spatiotemporal features driving its decisions—a critical factor for 
clinical adoption. Future work should focus on validating the 
model on external, multi-modal datasets (e.g., combining MRI 
with PET or CSF biomarkers) to ensure robustness across diverse 

imaging protocols and patient populations. Advanced 
interpretability techniques, such as saliency maps or attention 
visualization, could further enhance clinical trust by identifying 
key biomarkers. Additionally, optimizing SNN training with 
improved surrogate gradient methods or neuromorphic hardware 
could unlock real-time, energy-efficient deployment in 
clinical settings.

In conclusion, this study underscores the potential of hybrid 
SNN-CNN architectures in advancing Alzheimer’s disease 
diagnosis, offering a computationally efficient and highly accurate 
alternative to traditional deep learning frameworks. By addressing 
its limitations and expanding its scope, this model could become a 
valuable tool for early and precise detection of neurodegenerative 

FIGURE 7 (Continued)
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FIGURE 7

(A–C) Visualization of three-class attention maps from ADNI image classification.

TABLE 6 Top three brain regions by average attention weight, with clinical description.

Class Highlighted region Clinical significance

AD Hippocampus Severe atrophy linked to memory loss

Lateral ventricles Enlargement due to adjacent brain tissue loss

Entorhinal cortex Early site of neurofibrillary degeneration

MCI Entorhinal cortex Mild degeneration, early marker of progression

Hippocampus Subtle volume reduction indicating early disease

Posterior cingulate cortex Functional disruption associated with memory decline

CN Cortical ribbon Preservation of cortical structure (normal aging)

Lateral ventricles Normal size indicating no pathological atrophy

Parietal lobes Intact structure, no visible signs of degeneration
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diseases, ultimately improving patient outcomes and supporting 
clinical decision-making.
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FIGURE 8

Comparison of feature representations using UMAP: hybrid CNN-SNN vs. DenseNet121.

FIGURE 9

Accuracy and loss curves of the proposed model. This figure presents the training and test loss (left) and accuracy (right) over epochs during the 
training of a classification model.
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