
Frontiers in Artificial Intelligence 01 frontiersin.org

Large language models for
closed-library multi-document
query, test generation, and
evaluation
Claire Randolph 1, Adam Michaleas 2* and Darrell O. Ricke 2

1 Department of the Air Force, Artificial Intelligence Accelerator, Cambridge, MA, United States, 2 AI
Technology, MIT Lincoln Laboratory, Lexington, MA, United States

Introduction: Learning complex, detailed, and evolving knowledge is a challenge
in multiple technical professions. Relevant source knowledge is contained within
many large documents and information sources with frequent updates to these
documents. Knowledge tests need to be generated on new material and existing tests
revised, tracking knowledge base updates. Large Language Models (LLMs) provide a
framework for artificial intelligence-assisted knowledge acquisition and continued
learning. Retrieval-Augmented Generation (RAG) provides a framework to leverage
available, trained LLMs combined with technical area-specific knowledge bases.

Methods: Herein, two methods are introduced (DaaDy: document as a dictionary
and SQAD: structured question answer dictionary), which together enable effective
implementation of LLM-RAG question-answering on large documents. Additionally,
the AI for knowledge intensive tasks (AIKIT) solution is presented for working with
numerous documents for training and continuing education. AIKIT is provided as a
containerized open source solution that deploys on standalone, high performance,
and cloud systems. AIKIT includes LLM, RAG, vector stores, relational database, and
a Ruby on Rails web interface.

Results: Coverage of source documents by LLM-RAG generated questions decreases
as the length of documents increase. Segmenting source documents improve
coverage of generated questions. The AIKIT solution enabled easy use of multiple
LLM models with multimodal RAG source documents; AIKIT retains LLM-RAG
responses for queries against one or multiple LLM models.

Discussion: AIKIT provides an easy-to-use set of tools to enable users to work
with complex information using LLM-RAG capabilities. AIKIT enables easy use of
multiple LLM models with retention of LLM-RAG responses.

KEYWORDS

large language models, LLM, retrieval-augmented generation, RAG, LangChain

1 Introduction

Some highly technical professions require learning and retention of complex, detailed, and
evolving knowledge from multiple relevant documents and information sources. Adding more
complexity, these documents are updated with new and changing information on a frequent
basis, which makes keeping up-to-date on the most current information a challenging task for
these highly technical professionals. In professions with a specified instructor corps, generating
and maintaining instructional material on such a dynamic and vast corpus can
be overwhelming and time-consuming for instructors. Knowledge tests can assist learners in
encoding and retaining new knowledge, but can demand a considerable amount of time and
personnel to generate and maintain. Learners are repeatedly exposed to outdated or incorrect

OPEN ACCESS

EDITED BY

Gokhan Tur,
University of Illinois at Urbana-Champaign,
United States

REVIEWED BY

Voula (Paraskevi) Giouli,
Aristotle University of Thessaloniki, Greece
Sumuk Shashidhar,
University of Illinois at Urbana-Champaign,
United States
Purbesh Mitra,
University of Maryland, College Park,
United States

*CORRESPONDENCE

Adam Michaleas
 Adam.Michaleas@ll.mit.edu

RECEIVED 11 March 2025
ACCEPTED 21 July 2025
PUBLISHED 06 August 2025

CITATION

Randolph C, Michaleas A and Ricke DO (2025)
Large language models for closed-library
multi-document query, test generation, and
evaluation.
Front. Artif. Intell. 8:1592013.
doi: 10.3389/frai.2025.1592013

COPYRIGHT

© 2025 Randolph, Michaleas and Ricke. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 06 August 2025
DOI 10.3389/frai.2025.1592013

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1592013&domain=pdf&date_stamp=2025-08-06
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full
mailto:Adam.Michaleas@ll.mit.edu
https://doi.org/10.3389/frai.2025.1592013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1592013

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 02 frontiersin.org

information when existing knowledge tests become outdated as source
information is modified or removed. In high-risk professions, such as
medicine or aviation, it is imperative that learners have access to the
most up-to-date corpus of documents and study materials.

Recent development of Large Language Models (LLMs) combined
with Retrieval-Augmented Generation (RAG) of documents and
information not included in the LLM training data provides a framework
of technology solutions to address aspects of these education challenges.
Multiple documents can be embedded into one or more embedded
databases or vector stores. LLM RAG can be used to query the
knowledge base for specific questions; this enables rapid lookup of
information across multiple large documents (Figure 1). LLM RAG
implementation performs very well on question-answering (QA), fact
verification, and attribution tasks while hallucinating less than other
methods (Wu et al., 2024; Lewis et al., 2020). However, current LLM
RAG capabilities fall short of fully utilizing the context of a document;
LLM RAG is susceptible to what is known as the lost-in-the-middle
challenge, where the LLM struggles to fully utilize information hidden
within a long context (Liu et al., 2023; Xu et al., 2023). If implemented
for knowledge-intensive professions with current methods, critical
information may be lost or overlooked.

To evaluate LLM RAG for enhancing and facilitating education on
complex, jargon-dense, closed-library documents, the Artificial
Intelligence for Knowledge Intensive Tasks (AIKIT) system was
developed. To provide portability, AIKIT has been containerized in both
Singularity (Kurtzer et al., 2017) and Docker (Merkel, 2024) containers
and a Conda environment. AIKIT includes a Ruby on Rails web user
interface. AIKIT is being released as open source at https://github.com/
mit-ll/AIKIT.

2 Materials and methods

2.1 Document as a Dictionary—DaaDy

To solve the problem of incomplete text utilization for LLM RAG on
large documents, Document as a Dictionary—DaaDy was developed.

DaaDy is a framework in which LLM RAG can be systematically
completed on each section/subsection/sentence of a document. This
method takes structured documents (documents with headings,
sections, and/or subsections), parses them, and stores the entire
document as a series of nested dictionaries where the highest-level key
is a heading/section/subsection title, and the lowest-level value is an
individual sentence from the document. This is implemented with two
Python tools, one for parsing a document into a DaaDy (afman_parser.
py) and another to consolidate multiple dictionaries (daady_consolidator.
py). Storing metadata in this dictionary framework enables added
functionality for source attribution of LLM RAG responses. The DaaDy
framework allows the prompt to be queried against all sections of a
document by loading each section/subsection/sentence into the retriever,
individually; context length remains short enough to achieve full
utilization in LLM RAG. A dataset of regulatory and procedural
documents from the United States Air Force were utilized in this study,
including documents containing various types of flying rules and
regulations. In this dataset all documents have a standard format for the
title, header/footer, table of contents, and paragraph headings. All Air
Force Instructions (AFIs) and Manuals (AFMANs) use the same
numerical paragraph heading structure. Top-level headings begin at 1.1,
second-level headings at 1.1.1, and so on. The DaaDy tool cleans and
consolidates sentences from all paragraph levels and produces two
DaaDys, a Section DaaDy and a Sentence DaaDy. The Section DaaDy
cleaned and stored text into all applicable sections—for example, if a
sub-section started with the header “1.1.3,” the text within that subsection
would be cleaned and stored in both the “1.1” section and “1.1.3”
sentence DaaDy, effectively turning a structured document into groups
of contextually similar paragraphs of varying lengths. The Sentence
DaaDy stored each sentence individually in the lowest-level dictionary.
The parser used in this study uses regular expressions to recursively parse
the document. It was designed specifically for AFI and AFMAN formats
and is programmed to parse expected headings from the table of contents
and clean footers from the text. With small updates to the regular
expressions (for table of contents, footer, and paragraph header), afman_
parser.py could be easily tailored to any document with sequential
paragraph headers.

FIGURE 1

Large language models (LLM) and Retrieval-Augmented Generation (RAG) overview.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://github.com/mit-ll/AIKIT
https://github.com/mit-ll/AIKIT

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 03 frontiersin.org

2.2 Structured Question Answer
Dictionary—SQAD

To combine LLM RAG with DaaDy, the method called Structured
Question Answer Dictionary, or SQAD was developed. SQAD is able
to generate new material for knowledge tests, with each item made up
of a question (Q), an answer (A), and a section or paragraph reference
(R), henceforth referred to as QAR. SQAD can also be used to locate
context and assess the validity of existing QARs in knowledge tests
after document revisions in the knowledge base. The expedient LLM
RAG assessment of current QARs and generation of new QARs on
updates to the knowledge base can provide benefits to instructors and
learners in knowledge-intensive professions.

2.3 Containerized AI for knowledge
intensive tasks (AIKIT)

To easily enable hosting on multiple platforms, AIKIT was
packaged into Singularity (Kurtzer et al., 2017) and Docker (Merkel,
2024) containers (Figure 2). AIKIT is also packaged in a Conda
environment (Figure 3).

2.4 Large language models and
retrieval-augmented generation

AIKIT is not dependent upon any specific LLM. The LLM models
Mistral-7B-instruct-v0.2 (2023) and Mixtral-8x7B-Instruct-v0.1
(2024) models from Mistral AI, and other models have been used with
AIKIT. LLM RAG was implemented in Python (Python programming
language, 1991) (v3) with LangChain (2022), vector stores (embedding

databases) FAISS (2017), and Chroma (2022), and HuggingFace
embeddings model sentence-transformers (all-mpnet-base-v2, 2021).
The LangChain PyPDFLoader (2021) was used for parsing Adobe
portable document format (PDF) documents. Paired Python tools
were developed to create vector stores (docs_to_vs.py) and LLM RAG
queries (llm_rag_query.py). These two Python tools accept JavaScript
Object Notation (JSON) parameter files for input.

2.5 Web interface

AIKIT user interface was developed in RubyOnRails (2004) (v7.0.1)
and Ruby (1995) (v3.0.3). The SQLite3 database was used for development,
but AIKIT will work with any Rails supported database. The AIKIT user
interface invokes the Python tools docs_to_vs.py and llm_rag_query.py
to create vector stores and query LLM RAG targets, respectively.

2.6 Multi-GPU enabled systems

Singularity container and nvccli options were utilized to parallelize
across all of the available GPUs on the hosting platform.

When running with --nvccli, by default SingularityCE will expose
all GPUs on the host inside the container. This mirrors the functionality
of the legacy GPU support for the most common use-case. Setting the
SINGULARITY_CUDA_VISIBLE_DEVICES environment variable
before running a container is still supported, to control which GPUs are
used by CUDA programs that honor CUDA_VISIBLE_DEVICES.

However, more powerful GPU isolation is possible using the
--contain flag and NVIDIA_VISIBLE_DEVICES environment
variable. This controls which GPU devices are bound into the /dev tree
in the container. For example, to pass only the first GPU into a
container running on a system with multiple GPUs, one would export
the following variable values as shown below to achieve this:

export NVIDIA_VISIBLE_DEVICES = 0.
export SINGULARITY_CUDA_VISIBLE_DEVICES = 0.

The Singularity contain and nvccli options were used with GNU
Parallel (GNU, 1983). A master shell script was created for each GPU
with a text file containing the commands to run.

2.7 Prototyping environment

AIKIT development and prototyping efforts were performed on
both x86 and ARM-based architectures. The x86 system had two Intel
Xeon Gold 6258R CPUs, 256GB RAM, and an NVIDIA RTX A6000
GPU. The ARM-based system had an Apple M2 known as a system on
a chip which serves as both a CPU and a GPU, 8GB RAM, and a
256GB solid state hard drive.

2.8 HPC system implementation
(2-NVIDIA-V100)

The MIT Lincoln Laboratory Tx-Green system (2-NVIDIA-V100)
(TX-Green, 2024) was used as the high performance computing system

FIGURE 2

Docker and singularity containerized AIKIT.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 04 frontiersin.org

for our pipeline prototype development. The GPU systems have Intel
Xeon PHI 7210 64C 2.5 GHz CPU with 40 cores, 377 GB RAM, Intel
Omni-Path with 2 NVIDIA Tesla V100 GPUs. LLMapReduce was used
to submit jobs to the SLURM queue (Reuther et al., 2018).

3 Results

3.1 Document as a Dictionary—DaaDy

Figure 4 shows that while the specific oscillations differ between
documents and individual runs, a strong trend of decreasing context
utilization is consistent across all cases during 300 attempts. In no case
did the LLM RAG utilize more than 25 percent of the context when
the document was longer than 18,000 characters. On average, across
all 6 context bases, less than 20 percent of the context was utilized
when documents were longer than 10,000 characters and less than 10
percent of the context was utilized when documents were longer than
20,000 characters; our data suggests a full-utilization maximum of
between 1,000 and 2,000 characters. While research seeking to
decrease the magnitude of this effect continues, instructors and
learners who intend to use LLM RAG to generate training material
currently lack the capability to do so effectively on long documents
without losing critical information. The DaaDy framework was
developed to enable QAR generation coverage of the document
sections individually and ensure all desired content is utilized.

3.2 Test questions generation

Question, Answer, Reference (QAR) groups were generated on
selected documents with LLM RAG. The goal was to comprehensively
utilize the material in the selected documents from which a subset of
useful, accurate, and well-phrased questions could be selected. A

prompt was given for the LLM to generate a QAR for each sentence in
the document which was longer than five words (see Appendix A for
final prompts used in this research). Initially, this prompt was
implemented on the document in its entirety, and a significant amount
of context was unrepresented in the questions generated. Very high
content coverage was observed for documents less than 1,000 characters
in length, measured by assessing the number of QARs output divided
by the number of sentences in the document which were greater than
five words long (a result of 1.0 was assessed as full context utilization).
To study this effect further, the prompt was tested on documents of
varying lengths in order to assess where information was being utilized
and lost; six documents were used in total (Figure 4). The prompt was
implemented and from the output, the location of each reference was
derived as a percentage of the full document length. A noticeable bias
of content from beginning of the document was noted (Figure 5) with
5 of 6 documents showing between 17 and 26 percent of the questions
generated originating from the first 10 percent of the document (a single

FIGURE 3

AIKIT command line and web interfaces.

FIGURE 4

Document coverage by LLM RAG generated questions.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 05 frontiersin.org

outlier at 9% was observed). In the 6 documents examined,
underrepresented QAR coverage of documents was observed for
locations at 30, 90, and 100% (Figure 5).

To mitigate the lost-in-the-middle effect, DaaDy was created.
DaaDy takes a document as the input and separates the document into
a series of nested dictionaries containing sections, subsections, and
sentences. While future users could customize the base-level of DaaDy
to their needs, our testing used the sentence as the lowest level value in
the dictionary. SQAD calls the prompt separately on each desired section
of the dictionary, creating a QAR for each sentence in the document.
This also permits the storage of metadata about each sentence in the
document, which by alleviating the LLM from the responsibility of
correctly interpreting and storing data from the text, allows the user to
store and retrieve sentence-level metadata with perfect recall.

Unsurprisingly, implementation of the prompt on sentence-level
DaaDy data resulted in a perfect score for context utilization: for a
105,000 character-long document, 910 QARs were produced in
approximately 24 min and 30 s, resulting in a per-question QAR time
of 1.62 s on an ARM-based system. The Chief Instructor Pilot from a
USAF Fighter Squadron was asked to review the QARs and check
them against the source document. This expert was asked to grade the
utility, accuracy, and phrasing for each QAR. If the QAR needed no
amendment to be useful, accurate, or well-phrased, the expert was
instructed to provide no remarks for that attribute. For anything less
than this criterion, the expert was asked to write a statement
explaining what exactly was suboptimal for each attribute. Most
questions (354 out of 477) received no remarks for utility, accuracy,
and phrasing. The remaining 123 QARs were considered anomalous
for one or more of the attributes. The expert’s notes were analyzed to
understand, categorize, and describe these issues. There were seven
main categories of anomalous QARs which emerged from the data
(see Appendix B for definitions and examples): unable to answer,
repetitive QA, unnecessary justification, missing context (lists),
non-sequitur, misleading QA, and acronym hallucination. For both
SQAD question generation and evaluation, significant degradation in
LLM RAG performance was observed when niche acronyms were
used or phrases were used outside of their normal context.

3.3 Test questions evaluation

Outdated test questions based on updated publications were evaluated
with LLM RAG on documents via SQAD to identify whether the question
was (1) still supported by the knowledge base, (2) in need of revision, or
(3) if relevant content had been removed. Two question-evaluation trials
were run. First, each question in the test was posed using the entire source
publication as the context. Second, the same queries were made using only
the localized context from the DaaDy as search context. The results of
these methods were compared against an expert’s assessment of the test
questions. The expert compared each QAR against the current source
publication and given paragraph reference from the source document.
The answer was categorized into one of three bins: (1) correct answer
contained in specified reference context, (2) correct answer not contained
in specified reference context, (3) question verbiage so vague that a
specific, correct answer could not be reasonably determined. Once this
gold standard was established, the expert graded the answers generated in
each of the two trial methods and was again asked to create and categorize
each response. If the answer was contained in the specific reference
context and the LLM RAG query produced the correct answer, that was
categorized as a correct response; the opposite would be a false response.
If the correct answer was not contained in the specific reference context,
the LLM RAG query could produce either a correct absence or an
incorrect absence. Five other distinct categories emerged from the data
(see Appendix C for definitions): vague response, irrelevant response,
incomplete response, RAG error, and context regurgitation responses. The
results of these two trials are summarized in Figure 6.

3.4 AIKIT user interface

A Ruby on Rails web interface was developed for AIKIT. The
AIKIT UI includes a user interface enabling access to documents,
document queries (LLM RAG), tests, and test results. LLM model
queries and LangChain (2022) chaining of questions is also included.
The instructor interface is also included with access to test questions
and answers, and evaluation of test questions.

FIGURE 5

Context utilization in varying document lengths.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 06 frontiersin.org

3.5 Documents query

Querying knowledge base documents is implemented in AIKIT
as standard RAG embedding of documents with a LLM. Queries can
be run via command line, Jupyter notebook, or AIKIT web interface
(Figure 3). The AIKIT web interface database retains query results.

4 Discussion

4.1 SQAD

The DaaDy framework combined with SQAD for QAR generation
resulted in 100% content utilization in large documents, a significant
improvement over current methods. As the quality of a question stems
directly from the utility of the source context and the studied documents
lack an accepted metric for relative or absolute sentence utility, no
quantitative data was generated from this study to determine whether
the question quality using DaaDy/SQAD was superior or inferior than
single-prompt LLM RAG. While quantitative observations were not
produced, there were a number of relevant qualitative assessments made
based on the observation of SQAD QAR-generation. By using a single
sentence as the context provided to the LLM RAG, a significant portion
of context/background knowledge was removed from the LLM RAG,
which may have caused at least four of the seven categories of anomalous
QAR generation (unable to answer, repetitive QA, missing context-lists,
non-sequitur, and possibly, misleading). Rudimentary trials (data not
shown) showed that, generally, when context length was kept to less
than 1,000 characters, the full context was utilized for QAR generation.
Thus, we hypothesize that if the SQAD method instead of passing a

sentence, passed 1,000 or less characters that group together coherent
sentences, paragraphs, or sections within the DaaDy, the generation of
anomalous QARs would decrease while maximizing context utilization.

In the area of SQAD QAR evaluation, three scenarios were studied.
When the answer was contained in the provided context, LLM RAG of
the full document performed better at QA than the localized context
(72.7% vs. 64%), see Figure 6. Additionally, QA on the localized context
reported incorrect absences significantly more than when queried
against the full document (24% vs. 6.1%) (Figure 6). When the answer
was not contained in the provided context, RAG of the full document
produced significantly more false (33.3% vs. 11.8%) and irrelevant
(11.1% vs. 0%) responses than querying only the localized context
(Figure 6). We also observe that the full-document LLM RAG
malfunctioned more than the localized-context LLM RAG, producing
RAG errors (11.1%) whereas the localized-context RAG produced none
(Figure 6). While the study of answering poorly-phrased questions lacks
significant benefit, it is interesting to note that the full-document query
produced irrelevant responses (50%), RAG errors (25%), and context
regurgitation (25%) responses, while the localized-context query either
accurately recognized the vagueness and reported that insufficient
context was provided to answer the question (50%), provided a correct
but incomplete response (25%), or stated that the answer was not
contained in the context (25%) (Figure 6). From this data, we draw the
conclusion that an increased quantity of background information
permits higher certainty on QA when the answer is contained explicitly
in the context. However, when the answer is not contained in the
provided context, the presence of extraneous material produces
undesirable (irrelevant and false) responses as well as text-generation
malfunctions (RAG errors and context regurgitation). Using localized
context in these cases produce a more desirable and transparent result.

FIGURE 6

Context-based question evaluation versus expert assessment.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 07 frontiersin.org

For the purpose of SQAD QAR evaluation, there is a key difference
between the definitions of responses which were deemed “false” or
“hallucinated.” Answers were categorized as “hallucinated” when the
answer included information which was not found in the source
document. In this study, this was almost always the result of the LLM
attempting to spell out an acronym which was not defined in the source
document. This could be ameliorated in the future by including an
acronym list or adding instructions to the prompt to avoid spelling out
acronyms. Answers were categorized as “false” when the answer only
included information which was found in the source document but the
answer to the question was incorrect. This usually occurred when the
answer to a question required synthesizing information found in
multiple, separated sentences in a document or multiple documents.

The use of DaaDy and SQAD creates a framework where LLM RAG
behavior is more predictable and the context utilized can be known with
high fidelity. Due to this increase in both transparency and predictability,
we assert that LLM RAG can be implemented as a tool to improve
human efficiency in knowledge-intensive professions. The importance
of expert supervision and quality assurance cannot be understated. LLM
RAG enhanced with SQAD and DaaDy can increase efficiency and
comprehensiveness are still susceptible to the aforementioned anomalies
observed in text generation. Thus, it is absolutely critical that these
methods be utilized with appropriate levels of supervision and a
framework for quality assurance, else the enormous increase inefficiency
could turn into a rapid spread of false information (Fernando, 2023).

4.2 AIKIT user interface

Access to LLMs currently is via graphical user interfaces or
frequently by developing small Python programs. New interfaces
providing LLM RAG capabilities are being rapidly developed. Getting
the technical details connected properly is a barrier for many projects
to easily access LLM RAG capabilities. The two Python tools docs_to_
vs.py and llm_rag_query.py provide configurable access to creating
LLM RAG embedded documents and querying them. The Ruby on
Rails AIKIT web interface profiles configurable creation and querying
of documents in LLM RAG knowledge bases. AIKIT provides web
viewing and downloading of knowledge base documents. AIKIT also
includes support of test-taking with feedback on test questions to
instructors. LLM RAG queries and responses and test question
responses for learners are retained in the AIKIT database.

AIKIT tools can be by command line interfaces, via Jupyter
notebook, or Rails interface. The utility of AIKIT has been increased
to include multiple document types including Microsoft Word, Excel,
PowerPoint, text, voice, text within images, and automatically
generated description of content within images for LLM RAG queries.
To increase user friendliness, multiple different levels of user interface
capabilities were developed to enable alignment of user needs with
desired AIKIT capabilities. Multiple unrelated research efforts are
currently ongoing applying AIKIT to multimodal LLM RAG
applications highly leveraging the multiple document types supported.

4.3 Recommendations for knowledge base
management

This study focused on a document corpus which had an
associated framework for QA. Fields which lack this formal

infrastructure but require professionals to learn and commit vast
amounts of information to memory may want to consider creating
this QA framework. SQAD will help accelerate the process of
turning documents into QARs and can minimize time required
for manual updates. Both should be supervised by an expert
before QARs are put into use. Finally, this study focused only on
documents that were highly structured. While parsing structured
documents is very simple, this structure is not required to use
these methods; the parser’s code could be updated easily to assign
an index number to each sentence and use that index number as
a reference in absence of a paragraph header. Creating sections
which provide logical context, such as the “Section DaaDy” does
for structured documents, will be a challenge for managing
knowledge stored in less structured documents, as the user’s
available chunking mechanisms are punctuation and white
space characters.

Throughout this research there were numerous roadblocks
that, if avoided, will significantly improve or simplify the process
by which LLM RAG can be wielded to assist in knowledge-
intensive professions. Well-structured documents can make the
parsing from text to DaaDy expedient and easy. First,
maintaining the master copy of each document in the corpus in
a purely text form (void of headers, footers, page numbers, and
other formatting characters) will significantly ease the burden
on coding and debugging automatic parsers. Using word-
processing software that encodes the document structure in text
form that can be parsed using regular expressions (Rossum,
1999) will simplify the process by which the knowledge can
be accessed using LLM RAG. Finally, for professions that
generate and maintain QARs, avoiding the following will allow
straightforward usage of LLM RAGs for test evaluation: (1) avoid
asking vague or open-ended questions, (2) avoid using different
verbiage in the question than in the context (e.g., “night” versus
“between sunset and sunrise”), (3) avoid referencing the
publication title in the question unless that data is included in
the prompt.

5 Future work

The results of this research showed that while there is
currently an upper limit to the length of context that can be fully
utilized effectively by LLM RAG, there is also a minimum length
at which the context is so isolated that its utility decreases to the
point of difficulty and inconvenience for the user. In future
iterations of SQAD, research should be pursued to determine the
optimal context length and chunk size to maximize effective
context utilization. Further inquiry into whether there is any
relationship between chunk size and presence (and type) of
anomalous response would be a worthwhile contribution. Once
these parameters are defined, LLM RAG can be optimized for
question generation and evaluation. Improvements to LLM RAG
should provide sentence context metadata aligned with the
document’s structure.

The AIKIT UI, due to its fully offline implementation, has the
potential to transition to secure systems. The ability to use AI in
querying and updating a vast knowledge base while keeping one’s
data and documents secure has enormous potential in many fields
with highly-restrictive security requirements.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 08 frontiersin.org

6 Conclusion

While the capability of LLMs to produce human-like, accurate,
and attributable responses has improved significantly in recent years,
LLM RAG utilization of text in long documents is an area in need of
improvements; these deficiencies render LLM RAG unsuitable as a
tool for professions which require accountable and full utilization of
the profession’s knowledge base. The document organization
framework, DaaDy, and the querying method, SQAD, presented in
this paper significantly improve the utilization rate of LLM RAG over
long documents and provide transparency for QA tasks. By utilizing
SQAD and DaaDy, human expertise and intuition can be enhanced
by expedient context-querying and content generation.

Additionally, the AIKIT prototype is a fully-containerized, offline
solution which can be easily deployed on laptops, workstations, high-
performance computing (HPC) clusters, and cloud solutions. AIKIT
can thus provide easy-to-use LLM RAG to a wide audience. AIKIT
runs on any platform—from a system on a chip (SOC) to HPC or
cloud infrastructure. AIKIT is being released as open source at https://
github.com/mit-ll/AIKIT. Please contact the authors with questions,
requests, or feedback.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

CR: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Software, Writing – original draft, Writing – review &
editing. AM: Methodology, Writing – review & editing. DR:
Conceptualization, Formal analysis, Investigation, Methodology,
Software, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This material is based upon
work supported by the Department of the Air Force under Air Force
Contract (No. FA8702-15-D-0001). Any opinions, findings,

conclusions, or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the
Department of the Air Force.

Acknowledgments

This research was facilitated by the Department of the Air Force
Artificial Intelligence Accelerator at Massachusetts Institute of
Technology (MIT) and MIT/Lincoln Laboratory. The authors
acknowledge the MIT SuperCloud and Lincoln Laboratory
Supercomputing Center teams for providing the HPC resources that
were utilized to generate the research results reported within this
paper. The authors would also like to acknowledge Jason Williams
from MIT Lincoln Laboratory for providing graphic artist support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/
full#supplementary-material

References
all-mpnet-base-v2. (2021). Hugging face sentence transformers all-mpnet-base-v2.

Available online at: https://huggingface.co/sentence-transformers/all-mpnet-base-v2
[Accessed July 14, 2024].

Chroma. (2022). LangChain Chroma vector store database. Available online at: https://
python.langchain.com/docs/integrations/vectorstores/chroma/ [Accessed July 14, 2024].

FAISS. (2017). LangChain Facebook AI similarity search (FAISS). Available online at:
https://python.langchain.com/docs/integrations/vectorstores/faiss/ [Accessed July 14, 2024].

Fernando, R. (2023). Module 1: setting the stage. Available online at: https://www.
humanetech.com/course [Accessed July 14, 2024].

GNU. (1983). GNU Parallel. Available online at: https://www.gnu.org/software/
parallel/ [Accessed July 14, 2024].

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: scientific containers
for mobility of compute. PLoS One 12:e0177459. doi: 10.1371/journal.pone.0177459

LangChain. (2022). LangChainAvailable online at: https://pypi.org/project/langchain/
[Accessed July 14, 2024].

LangChain. (2022). LangChain framework for developing large language models
(LLMs) applications. Available online at: https://python.langchain.com/docs/
introduction/ [Accessed July 14, 2024].

Lewis, P, Perez, E, Piktus, A, Petroni, F, Karpukhin, V, Goyal, N, et al. (2020). Retrieval-
augmented generation for knowledge-intensive NLP tasks. presented at: NeurIPS. doi:
10.48550/arXiv.2005.11401

Liu, NF, Lin, K, Hewitt, J, Paranjape, A, Bevilacqua, M, Petroni, F, et al. (2023). Lost
in the middle: How language models use long contexts. arXiv. doi: 10.48550/
arXiv.2307.03172

Merkel, D. (2024). Docker: lightweight Linux containers for consistent development
and deployment. Linux J. Available online at: https://www.linuxjournal.com/content/

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://github.com/mit-ll/AIKIT
https://github.com/mit-ll/AIKIT
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full#supplementary-material
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://python.langchain.com/docs/integrations/vectorstores/chroma/
https://python.langchain.com/docs/integrations/vectorstores/chroma/
https://python.langchain.com/docs/integrations/vectorstores/faiss/
https://www.humanetech.com/course
https://www.humanetech.com/course
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://doi.org/10.1371/journal.pone.0177459
https://pypi.org/project/langchain/
https://python.langchain.com/docs/introduction/
https://python.langchain.com/docs/introduction/
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2307.03172
https://doi.org/10.48550/arXiv.2307.03172
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment

Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 09 frontiersin.org

docker-lightweight-linux-containers-consistent-development-and-deployment
[Accessed July 14, 2024].

Mistral-7B-instruct-v0.2. (2023). Available online at: https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1 [Accessed July 14, 2024].

Mixtral-8x7B-Instruct-v0.1. (2024). [Accessed July 14, 2024].

PyPDFLoader. (2021). LangChain PyPDFLoader. Available online at: https://python.
langchain.com/docs/integrations/document_loaders/pypdfloader/ [Accessed July 14, 2024].

Python programming language. (1991). Available online at: https://www.python.org
[Accessed July 14, 2024].

Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., et al. (2018).
Scalable system scheduling for HPC and big data. J. Parallel Distrib. Comput. 111, 76–92.
doi: 10.1016/j.jpdc.2017.06.009

Rossum, G. V. (1999). Python library reference: To Excel Inc. Available online at:
https://www.amazon.com/Python-Library-Reference-Open-Source/dp/158348373X

Ruby. (1995). Ruby Programming Language. Available online at: https://www.ruby-
lang.org/en/ [Accessed July 14, 2024].

RubyOnRails. (2004). Ruby on rails. Available online at: https://rubyonrails.org
[Accessed July 14, 2024].

TX-Green. (2024). MIT Lincoln Laboratory TX-green supercomputer. Available
online at: https://www.top500.org/system/178939/ [Accessed July 14, 2024].

Wu, K, Wu, E, Cassasola, A, Zhang, A, Wei, K, Nguyen, T, et al. (2024). How well do
LLMs cite relevant medical references? An evaluation framework and analyses. arXiv.
doi: 10.48550/arXiv.2402.02008

Xu, P, Ping, W, Wu, X, McAfee, L, Zhu, C, Liu, Z, et al (2023). Retrieval meets Long Context
Large Language Models. presented at: ICLR 2024. doi: 10.48550/arXiv.2310.03025

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/
https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/
https://www.python.org
https://doi.org/10.1016/j.jpdc.2017.06.009
https://www.amazon.com/Python-Library-Reference-Open-Source/dp/158348373X
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://rubyonrails.org
https://www.top500.org/system/178939/
https://doi.org/10.48550/arXiv.2402.02008
https://doi.org/10.48550/arXiv.2310.03025

	Large language models for closed-library multi-document query, test generation, and evaluation
	1 Introduction
	2 Materials and methods
	2.1 Document as a Dictionary—DaaDy
	2.2 Structured Question Answer Dictionary—SQAD
	2.3 Containerized AI for knowledge intensive tasks (AIKIT)
	2.4 Large language models and retrieval-augmented generation
	2.5 Web interface
	2.6 Multi-GPU enabled systems
	2.7 Prototyping environment
	2.8 HPC system implementation (2-NVIDIA-V100)

	3 Results
	3.1 Document as a Dictionary—DaaDy
	3.2 Test questions generation
	3.3 Test questions evaluation
	3.4 AIKIT user interface
	3.5 Documents query

	4 Discussion
	4.1 SQAD
	4.2 AIKIT user interface
	4.3 Recommendations for knowledge base management

	5 Future work
	6 Conclusion

	References

