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Introduction: Learning complex, detailed, and evolving knowledge is a challenge 
in multiple technical professions. Relevant source knowledge is contained within 
many large documents and information sources with frequent updates to these 
documents. Knowledge tests need to be generated on new material and existing tests 
revised, tracking knowledge base updates. Large Language Models (LLMs) provide a 
framework for artificial intelligence-assisted knowledge acquisition and continued 
learning. Retrieval-Augmented Generation (RAG) provides a framework to leverage 
available, trained LLMs combined with technical area-specific knowledge bases.

Methods: Herein, two methods are introduced (DaaDy: document as a dictionary 
and SQAD: structured question answer dictionary), which together enable effective 
implementation of LLM-RAG question-answering on large documents. Additionally, 
the AI for knowledge intensive tasks (AIKIT) solution is presented for working with 
numerous documents for training and continuing education. AIKIT is provided as a 
containerized open source solution that deploys on standalone, high performance, 
and cloud systems. AIKIT includes LLM, RAG, vector stores, relational database, and 
a Ruby on Rails web interface.

Results: Coverage of source documents by LLM-RAG generated questions decreases 
as the length of documents increase. Segmenting source documents improve 
coverage of generated questions. The AIKIT solution enabled easy use of multiple 
LLM models with multimodal RAG source documents; AIKIT retains LLM-RAG 
responses for queries against one or multiple LLM models.

Discussion: AIKIT provides an easy-to-use set of tools to enable users to work 
with complex information using LLM-RAG capabilities. AIKIT enables easy use of 
multiple LLM models with retention of LLM-RAG responses.
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1 Introduction

Some highly technical professions require learning and retention of complex, detailed, and 
evolving knowledge from multiple relevant documents and information sources. Adding more 
complexity, these documents are updated with new and changing information on a frequent 
basis, which makes keeping up-to-date on the most current information a challenging task for 
these highly technical professionals. In professions with a specified instructor corps, generating 
and maintaining instructional material on such a dynamic and vast corpus can 
be overwhelming and time-consuming for instructors. Knowledge tests can assist learners in 
encoding and retaining new knowledge, but can demand a considerable amount of time and 
personnel to generate and maintain. Learners are repeatedly exposed to outdated or incorrect 
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information when existing knowledge tests become outdated as source 
information is modified or removed. In high-risk professions, such as 
medicine or aviation, it is imperative that learners have access to the 
most up-to-date corpus of documents and study materials.

Recent development of Large Language Models (LLMs) combined 
with Retrieval-Augmented Generation (RAG) of documents and 
information not included in the LLM training data provides a framework 
of technology solutions to address aspects of these education challenges. 
Multiple documents can be embedded into one or more embedded 
databases or vector stores. LLM RAG can be  used to query the 
knowledge base for specific questions; this enables rapid lookup of 
information across multiple large documents (Figure 1). LLM RAG 
implementation performs very well on question-answering (QA), fact 
verification, and attribution tasks while hallucinating less than other 
methods (Wu et al., 2024; Lewis et al., 2020). However, current LLM 
RAG capabilities fall short of fully utilizing the context of a document; 
LLM RAG is susceptible to what is known as the lost-in-the-middle 
challenge, where the LLM struggles to fully utilize information hidden 
within a long context (Liu et al., 2023; Xu et al., 2023). If implemented 
for knowledge-intensive professions with current methods, critical 
information may be lost or overlooked.

To evaluate LLM RAG for enhancing and facilitating education on 
complex, jargon-dense, closed-library documents, the Artificial 
Intelligence for Knowledge Intensive Tasks (AIKIT) system was 
developed. To provide portability, AIKIT has been containerized in both 
Singularity (Kurtzer et al., 2017) and Docker (Merkel, 2024) containers 
and a Conda environment. AIKIT includes a Ruby on Rails web user 
interface. AIKIT is being released as open source at https://github.com/
mit-ll/AIKIT.

2 Materials and methods

2.1 Document as a Dictionary—DaaDy

To solve the problem of incomplete text utilization for LLM RAG on 
large documents, Document as a Dictionary—DaaDy was developed. 

DaaDy is a framework in which LLM RAG can be  systematically 
completed on each section/subsection/sentence of a document. This 
method takes structured documents (documents with headings, 
sections, and/or subsections), parses them, and stores the entire 
document as a series of nested dictionaries where the highest-level key 
is a heading/section/subsection title, and the lowest-level value is an 
individual sentence from the document. This is implemented with two 
Python tools, one for parsing a document into a DaaDy (afman_parser.
py) and another to consolidate multiple dictionaries (daady_consolidator.
py). Storing metadata in this dictionary framework enables added 
functionality for source attribution of LLM RAG responses. The DaaDy 
framework allows the prompt to be queried against all sections of a 
document by loading each section/subsection/sentence into the retriever, 
individually; context length remains short enough to achieve full 
utilization in LLM RAG. A dataset of regulatory and procedural 
documents from the United States Air Force were utilized in this study, 
including documents containing various types of flying rules and 
regulations. In this dataset all documents have a standard format for the 
title, header/footer, table of contents, and paragraph headings. All Air 
Force Instructions (AFIs) and Manuals (AFMANs) use the same 
numerical paragraph heading structure. Top-level headings begin at 1.1, 
second-level headings at 1.1.1, and so on. The DaaDy tool cleans and 
consolidates sentences from all paragraph levels and produces two 
DaaDys, a Section DaaDy and a Sentence DaaDy. The Section DaaDy 
cleaned and stored text into all applicable sections—for example, if a 
sub-section started with the header “1.1.3,” the text within that subsection 
would be  cleaned and stored in both the “1.1” section and “1.1.3” 
sentence DaaDy, effectively turning a structured document into groups 
of contextually similar paragraphs of varying lengths. The Sentence 
DaaDy stored each sentence individually in the lowest-level dictionary. 
The parser used in this study uses regular expressions to recursively parse 
the document. It was designed specifically for AFI and AFMAN formats 
and is programmed to parse expected headings from the table of contents 
and clean footers from the text. With small updates to the regular 
expressions (for table of contents, footer, and paragraph header), afman_
parser.py could be  easily tailored to any document with sequential 
paragraph headers.

FIGURE 1

Large language models (LLM) and Retrieval-Augmented Generation (RAG) overview.

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://github.com/mit-ll/AIKIT
https://github.com/mit-ll/AIKIT


Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 03 frontiersin.org

2.2 Structured Question Answer 
Dictionary—SQAD

To combine LLM RAG with DaaDy, the method called Structured 
Question Answer Dictionary, or SQAD was developed. SQAD is able 
to generate new material for knowledge tests, with each item made up 
of a question (Q), an answer (A), and a section or paragraph reference 
(R), henceforth referred to as QAR. SQAD can also be used to locate 
context and assess the validity of existing QARs in knowledge tests 
after document revisions in the knowledge base. The expedient LLM 
RAG assessment of current QARs and generation of new QARs on 
updates to the knowledge base can provide benefits to instructors and 
learners in knowledge-intensive professions.

2.3 Containerized AI for knowledge 
intensive tasks (AIKIT)

To easily enable hosting on multiple platforms, AIKIT was 
packaged into Singularity (Kurtzer et al., 2017) and Docker (Merkel, 
2024) containers (Figure  2). AIKIT is also packaged in a Conda 
environment (Figure 3).

2.4 Large language models and 
retrieval-augmented generation

AIKIT is not dependent upon any specific LLM. The LLM models 
Mistral-7B-instruct-v0.2 (2023) and Mixtral-8x7B-Instruct-v0.1 
(2024) models from Mistral AI, and other models have been used with 
AIKIT. LLM RAG was implemented in Python (Python programming 
language, 1991) (v3) with LangChain (2022), vector stores (embedding 

databases) FAISS (2017), and Chroma (2022), and HuggingFace 
embeddings model sentence-transformers (all-mpnet-base-v2, 2021). 
The LangChain PyPDFLoader (2021) was used for parsing Adobe 
portable document format (PDF) documents. Paired Python tools 
were developed to create vector stores (docs_to_vs.py) and LLM RAG 
queries (llm_rag_query.py). These two Python tools accept JavaScript 
Object Notation (JSON) parameter files for input.

2.5 Web interface

AIKIT user interface was developed in RubyOnRails (2004) (v7.0.1) 
and Ruby (1995) (v3.0.3). The SQLite3 database was used for development, 
but AIKIT will work with any Rails supported database. The AIKIT user 
interface invokes the Python tools docs_to_vs.py and llm_rag_query.py 
to create vector stores and query LLM RAG targets, respectively.

2.6 Multi-GPU enabled systems

Singularity container and nvccli options were utilized to parallelize 
across all of the available GPUs on the hosting platform.

When running with --nvccli, by default SingularityCE will expose 
all GPUs on the host inside the container. This mirrors the functionality 
of the legacy GPU support for the most common use-case. Setting the 
SINGULARITY_CUDA_VISIBLE_DEVICES environment variable 
before running a container is still supported, to control which GPUs are 
used by CUDA programs that honor CUDA_VISIBLE_DEVICES.

However, more powerful GPU isolation is possible using the 
--contain flag and NVIDIA_VISIBLE_DEVICES environment 
variable. This controls which GPU devices are bound into the /dev tree 
in the container. For example, to pass only the first GPU into a 
container running on a system with multiple GPUs, one would export 
the following variable values as shown below to achieve this:

export NVIDIA_VISIBLE_DEVICES = 0.
export SINGULARITY_CUDA_VISIBLE_DEVICES = 0.

The Singularity contain and nvccli options were used with GNU 
Parallel (GNU, 1983). A master shell script was created for each GPU 
with a text file containing the commands to run.

2.7 Prototyping environment

AIKIT development and prototyping efforts were performed on 
both x86 and ARM-based architectures. The x86 system had two Intel 
Xeon Gold 6258R CPUs, 256GB RAM, and an NVIDIA RTX A6000 
GPU. The ARM-based system had an Apple M2 known as a system on 
a chip which serves as both a CPU and a GPU, 8GB RAM, and a 
256GB solid state hard drive.

2.8 HPC system implementation 
(2-NVIDIA-V100)

The MIT Lincoln Laboratory Tx-Green system (2-NVIDIA-V100) 
(TX-Green, 2024) was used as the high performance computing system 

FIGURE 2

Docker and singularity containerized AIKIT.
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for our pipeline prototype development. The GPU systems have Intel 
Xeon PHI 7210 64C 2.5 GHz CPU with 40 cores, 377 GB RAM, Intel 
Omni-Path with 2 NVIDIA Tesla V100 GPUs. LLMapReduce was used 
to submit jobs to the SLURM queue (Reuther et al., 2018).

3 Results

3.1 Document as a Dictionary—DaaDy

Figure 4 shows that while the specific oscillations differ between 
documents and individual runs, a strong trend of decreasing context 
utilization is consistent across all cases during 300 attempts. In no case 
did the LLM RAG utilize more than 25 percent of the context when 
the document was longer than 18,000 characters. On average, across 
all 6 context bases, less than 20 percent of the context was utilized 
when documents were longer than 10,000 characters and less than 10 
percent of the context was utilized when documents were longer than 
20,000 characters; our data suggests a full-utilization maximum of 
between 1,000 and 2,000 characters. While research seeking to 
decrease the magnitude of this effect continues, instructors and 
learners who intend to use LLM RAG to generate training material 
currently lack the capability to do so effectively on long documents 
without losing critical information. The DaaDy framework was 
developed to enable QAR generation coverage of the document 
sections individually and ensure all desired content is utilized.

3.2 Test questions generation

Question, Answer, Reference (QAR) groups were generated on 
selected documents with LLM RAG. The goal was to comprehensively 
utilize the material in the selected documents from which a subset of 
useful, accurate, and well-phrased questions could be  selected. A 

prompt was given for the LLM to generate a QAR for each sentence in 
the document which was longer than five words (see Appendix A for 
final prompts used in this research). Initially, this prompt was 
implemented on the document in its entirety, and a significant amount 
of context was unrepresented in the questions generated. Very high 
content coverage was observed for documents less than 1,000 characters 
in length, measured by assessing the number of QARs output divided 
by the number of sentences in the document which were greater than 
five words long (a result of 1.0 was assessed as full context utilization). 
To study this effect further, the prompt was tested on documents of 
varying lengths in order to assess where information was being utilized 
and lost; six documents were used in total (Figure 4). The prompt was 
implemented and from the output, the location of each reference was 
derived as a percentage of the full document length. A noticeable bias 
of content from beginning of the document was noted (Figure 5) with 
5 of 6 documents showing between 17 and 26 percent of the questions 
generated originating from the first 10 percent of the document (a single 

FIGURE 3

AIKIT command line and web interfaces.

FIGURE 4

Document coverage by LLM RAG generated questions.
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outlier at 9% was observed). In the 6 documents examined, 
underrepresented QAR coverage of documents was observed for 
locations at 30, 90, and 100% (Figure 5).

To mitigate the lost-in-the-middle effect, DaaDy was created. 
DaaDy takes a document as the input and separates the document into 
a series of nested dictionaries containing sections, subsections, and 
sentences. While future users could customize the base-level of DaaDy 
to their needs, our testing used the sentence as the lowest level value in 
the dictionary. SQAD calls the prompt separately on each desired section 
of the dictionary, creating a QAR for each sentence in the document. 
This also permits the storage of metadata about each sentence in the 
document, which by alleviating the LLM from the responsibility of 
correctly interpreting and storing data from the text, allows the user to 
store and retrieve sentence-level metadata with perfect recall.

Unsurprisingly, implementation of the prompt on sentence-level 
DaaDy data resulted in a perfect score for context utilization: for a 
105,000 character-long document, 910 QARs were produced in 
approximately 24 min and 30 s, resulting in a per-question QAR time 
of 1.62 s on an ARM-based system. The Chief Instructor Pilot from a 
USAF Fighter Squadron was asked to review the QARs and check 
them against the source document. This expert was asked to grade the 
utility, accuracy, and phrasing for each QAR. If the QAR needed no 
amendment to be useful, accurate, or well-phrased, the expert was 
instructed to provide no remarks for that attribute. For anything less 
than this criterion, the expert was asked to write a statement 
explaining what exactly was suboptimal for each attribute. Most 
questions (354 out of 477) received no remarks for utility, accuracy, 
and phrasing. The remaining 123 QARs were considered anomalous 
for one or more of the attributes. The expert’s notes were analyzed to 
understand, categorize, and describe these issues. There were seven 
main categories of anomalous QARs which emerged from the data 
(see Appendix B for definitions and examples): unable to answer, 
repetitive QA, unnecessary justification, missing context (lists), 
non-sequitur, misleading QA, and acronym hallucination. For both 
SQAD question generation and evaluation, significant degradation in 
LLM RAG performance was observed when niche acronyms were 
used or phrases were used outside of their normal context.

3.3 Test questions evaluation

Outdated test questions based on updated publications were evaluated 
with LLM RAG on documents via SQAD to identify whether the question 
was (1) still supported by the knowledge base, (2) in need of revision, or 
(3) if relevant content had been removed. Two question-evaluation trials 
were run. First, each question in the test was posed using the entire source 
publication as the context. Second, the same queries were made using only 
the localized context from the DaaDy as search context. The results of 
these methods were compared against an expert’s assessment of the test 
questions. The expert compared each QAR against the current source 
publication and given paragraph reference from the source document. 
The answer was categorized into one of three bins: (1) correct answer 
contained in specified reference context, (2) correct answer not contained 
in specified reference context, (3) question verbiage so vague that a 
specific, correct answer could not be reasonably determined. Once this 
gold standard was established, the expert graded the answers generated in 
each of the two trial methods and was again asked to create and categorize 
each response. If the answer was contained in the specific reference 
context and the LLM RAG query produced the correct answer, that was 
categorized as a correct response; the opposite would be a false response. 
If the correct answer was not contained in the specific reference context, 
the LLM RAG query could produce either a correct absence or an 
incorrect absence. Five other distinct categories emerged from the data 
(see Appendix C for definitions): vague response, irrelevant response, 
incomplete response, RAG error, and context regurgitation responses. The 
results of these two trials are summarized in Figure 6.

3.4 AIKIT user interface

A Ruby on Rails web interface was developed for AIKIT. The 
AIKIT UI includes a user interface enabling access to documents, 
document queries (LLM RAG), tests, and test results. LLM model 
queries and LangChain (2022) chaining of questions is also included. 
The instructor interface is also included with access to test questions 
and answers, and evaluation of test questions.

FIGURE 5

Context utilization in varying document lengths.
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3.5 Documents query

Querying knowledge base documents is implemented in AIKIT 
as standard RAG embedding of documents with a LLM. Queries can 
be run via command line, Jupyter notebook, or AIKIT web interface 
(Figure 3). The AIKIT web interface database retains query results.

4 Discussion

4.1 SQAD

The DaaDy framework combined with SQAD for QAR generation 
resulted in 100% content utilization in large documents, a significant 
improvement over current methods. As the quality of a question stems 
directly from the utility of the source context and the studied documents 
lack an accepted metric for relative or absolute sentence utility, no 
quantitative data was generated from this study to determine whether 
the question quality using DaaDy/SQAD was superior or inferior than 
single-prompt LLM RAG. While quantitative observations were not 
produced, there were a number of relevant qualitative assessments made 
based on the observation of SQAD QAR-generation. By using a single 
sentence as the context provided to the LLM RAG, a significant portion 
of context/background knowledge was removed from the LLM RAG, 
which may have caused at least four of the seven categories of anomalous 
QAR generation (unable to answer, repetitive QA, missing context-lists, 
non-sequitur, and possibly, misleading). Rudimentary trials (data not 
shown) showed that, generally, when context length was kept to less 
than 1,000 characters, the full context was utilized for QAR generation. 
Thus, we hypothesize that if the SQAD method instead of passing a 

sentence, passed 1,000 or less characters that group together coherent 
sentences, paragraphs, or sections within the DaaDy, the generation of 
anomalous QARs would decrease while maximizing context utilization.

In the area of SQAD QAR evaluation, three scenarios were studied. 
When the answer was contained in the provided context, LLM RAG of 
the full document performed better at QA than the localized context 
(72.7% vs. 64%), see Figure 6. Additionally, QA on the localized context 
reported incorrect absences significantly more than when queried 
against the full document (24% vs. 6.1%) (Figure 6). When the answer 
was not contained in the provided context, RAG of the full document 
produced significantly more false (33.3% vs. 11.8%) and irrelevant 
(11.1% vs. 0%) responses than querying only the localized context 
(Figure  6). We  also observe that the full-document LLM RAG 
malfunctioned more than the localized-context LLM RAG, producing 
RAG errors (11.1%) whereas the localized-context RAG produced none 
(Figure 6). While the study of answering poorly-phrased questions lacks 
significant benefit, it is interesting to note that the full-document query 
produced irrelevant responses (50%), RAG errors (25%), and context 
regurgitation (25%) responses, while the localized-context query either 
accurately recognized the vagueness and reported that insufficient 
context was provided to answer the question (50%), provided a correct 
but incomplete response (25%), or stated that the answer was not 
contained in the context (25%) (Figure 6). From this data, we draw the 
conclusion that an increased quantity of background information 
permits higher certainty on QA when the answer is contained explicitly 
in the context. However, when the answer is not contained in the 
provided context, the presence of extraneous material produces 
undesirable (irrelevant and false) responses as well as text-generation 
malfunctions (RAG errors and context regurgitation). Using localized 
context in these cases produce a more desirable and transparent result.

FIGURE 6

Context-based question evaluation versus expert assessment.
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For the purpose of SQAD QAR evaluation, there is a key difference 
between the definitions of responses which were deemed “false” or 
“hallucinated.” Answers were categorized as “hallucinated” when the 
answer included information which was not found in the source 
document. In this study, this was almost always the result of the LLM 
attempting to spell out an acronym which was not defined in the source 
document. This could be ameliorated in the future by including an 
acronym list or adding instructions to the prompt to avoid spelling out 
acronyms. Answers were categorized as “false” when the answer only 
included information which was found in the source document but the 
answer to the question was incorrect. This usually occurred when the 
answer to a question required synthesizing information found in 
multiple, separated sentences in a document or multiple documents.

The use of DaaDy and SQAD creates a framework where LLM RAG 
behavior is more predictable and the context utilized can be known with 
high fidelity. Due to this increase in both transparency and predictability, 
we assert that LLM RAG can be  implemented as a tool to improve 
human efficiency in knowledge-intensive professions. The importance 
of expert supervision and quality assurance cannot be understated. LLM 
RAG enhanced with SQAD and DaaDy can increase efficiency and 
comprehensiveness are still susceptible to the aforementioned anomalies 
observed in text generation. Thus, it is absolutely critical that these 
methods be  utilized with appropriate levels of supervision and a 
framework for quality assurance, else the enormous increase inefficiency 
could turn into a rapid spread of false information (Fernando, 2023).

4.2 AIKIT user interface

Access to LLMs currently is via graphical user interfaces or 
frequently by developing small Python programs. New interfaces 
providing LLM RAG capabilities are being rapidly developed. Getting 
the technical details connected properly is a barrier for many projects 
to easily access LLM RAG capabilities. The two Python tools docs_to_
vs.py and llm_rag_query.py provide configurable access to creating 
LLM RAG embedded documents and querying them. The Ruby on 
Rails AIKIT web interface profiles configurable creation and querying 
of documents in LLM RAG knowledge bases. AIKIT provides web 
viewing and downloading of knowledge base documents. AIKIT also 
includes support of test-taking with feedback on test questions to 
instructors. LLM RAG queries and responses and test question 
responses for learners are retained in the AIKIT database.

AIKIT tools can be  by command line interfaces, via Jupyter 
notebook, or Rails interface. The utility of AIKIT has been increased 
to include multiple document types including Microsoft Word, Excel, 
PowerPoint, text, voice, text within images, and automatically 
generated description of content within images for LLM RAG queries. 
To increase user friendliness, multiple different levels of user interface 
capabilities were developed to enable alignment of user needs with 
desired AIKIT capabilities. Multiple unrelated research efforts are 
currently ongoing applying AIKIT to multimodal LLM RAG 
applications highly leveraging the multiple document types supported.

4.3 Recommendations for knowledge base 
management

This study focused on a document corpus which had an 
associated framework for QA. Fields which lack this formal 

infrastructure but require professionals to learn and commit vast 
amounts of information to memory may want to consider creating 
this QA framework. SQAD will help accelerate the process of 
turning documents into QARs and can minimize time required 
for manual updates. Both should be  supervised by an expert 
before QARs are put into use. Finally, this study focused only on 
documents that were highly structured. While parsing structured 
documents is very simple, this structure is not required to use 
these methods; the parser’s code could be updated easily to assign 
an index number to each sentence and use that index number as 
a reference in absence of a paragraph header. Creating sections 
which provide logical context, such as the “Section DaaDy” does 
for structured documents, will be  a challenge for managing 
knowledge stored in less structured documents, as the user’s 
available chunking mechanisms are punctuation and white 
space characters.

Throughout this research there were numerous roadblocks 
that, if avoided, will significantly improve or simplify the process 
by which LLM RAG can be  wielded to assist in knowledge-
intensive professions. Well-structured documents can make the 
parsing from text to DaaDy expedient and easy. First, 
maintaining the master copy of each document in the corpus in 
a purely text form (void of headers, footers, page numbers, and 
other formatting characters) will significantly ease the burden 
on coding and debugging automatic parsers. Using word-
processing software that encodes the document structure in text 
form that can be  parsed using regular expressions (Rossum, 
1999) will simplify the process by which the knowledge can 
be  accessed using LLM RAG. Finally, for professions that 
generate and maintain QARs, avoiding the following will allow 
straightforward usage of LLM RAGs for test evaluation: (1) avoid 
asking vague or open-ended questions, (2) avoid using different 
verbiage in the question than in the context (e.g., “night” versus 
“between sunset and sunrise”), (3) avoid referencing the 
publication title in the question unless that data is included in 
the prompt.

5 Future work

The results of this research showed that while there is 
currently an upper limit to the length of context that can be fully 
utilized effectively by LLM RAG, there is also a minimum length 
at which the context is so isolated that its utility decreases to the 
point of difficulty and inconvenience for the user. In future 
iterations of SQAD, research should be pursued to determine the 
optimal context length and chunk size to maximize effective 
context utilization. Further inquiry into whether there is any 
relationship between chunk size and presence (and type) of 
anomalous response would be a worthwhile contribution. Once 
these parameters are defined, LLM RAG can be optimized for 
question generation and evaluation. Improvements to LLM RAG 
should provide sentence context metadata aligned with the 
document’s structure.

The AIKIT UI, due to its fully offline implementation, has the 
potential to transition to secure systems. The ability to use AI in 
querying and updating a vast knowledge base while keeping one’s 
data and documents secure has enormous potential in many fields 
with highly-restrictive security requirements.
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6 Conclusion

While the capability of LLMs to produce human-like, accurate, 
and attributable responses has improved significantly in recent years, 
LLM RAG utilization of text in long documents is an area in need of 
improvements; these deficiencies render LLM RAG unsuitable as a 
tool for professions which require accountable and full utilization of 
the profession’s knowledge base. The document organization 
framework, DaaDy, and the querying method, SQAD, presented in 
this paper significantly improve the utilization rate of LLM RAG over 
long documents and provide transparency for QA tasks. By utilizing 
SQAD and DaaDy, human expertise and intuition can be enhanced 
by expedient context-querying and content generation.

Additionally, the AIKIT prototype is a fully-containerized, offline 
solution which can be easily deployed on laptops, workstations, high-
performance computing (HPC) clusters, and cloud solutions. AIKIT 
can thus provide easy-to-use LLM RAG to a wide audience. AIKIT 
runs on any platform—from a system on a chip (SOC) to HPC or 
cloud infrastructure. AIKIT is being released as open source at https://
github.com/mit-ll/AIKIT. Please contact the authors with questions, 
requests, or feedback.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

CR: Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Software, Writing – original draft, Writing – review & 
editing. AM: Methodology, Writing  – review & editing. DR: 
Conceptualization, Formal analysis, Investigation, Methodology, 
Software, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This material is based upon 
work supported by the Department of the Air Force under Air Force 
Contract (No. FA8702-15-D-0001). Any opinions, findings, 

conclusions, or recommendations expressed in this material are those 
of the author and do not necessarily reflect the views of the 
Department of the Air Force.

Acknowledgments

This research was facilitated by the Department of the Air Force 
Artificial Intelligence Accelerator at Massachusetts Institute of 
Technology (MIT) and MIT/Lincoln Laboratory. The authors 
acknowledge the MIT SuperCloud and Lincoln Laboratory 
Supercomputing Center teams for providing the HPC resources that 
were utilized to generate the research results reported within this 
paper. The authors would also like to acknowledge Jason Williams 
from MIT Lincoln Laboratory for providing graphic artist support.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/
full#supplementary-material

References
all-mpnet-base-v2. (2021). Hugging face sentence transformers all-mpnet-base-v2. 

Available online at: https://huggingface.co/sentence-transformers/all-mpnet-base-v2 
[Accessed July 14, 2024].

Chroma. (2022). LangChain Chroma vector store database. Available online at: https://
python.langchain.com/docs/integrations/vectorstores/chroma/ [Accessed July 14, 2024].

FAISS. (2017). LangChain Facebook AI similarity search (FAISS). Available online at: 
https://python.langchain.com/docs/integrations/vectorstores/faiss/ [Accessed July 14, 2024].

Fernando, R. (2023). Module 1: setting the stage. Available online at: https://www.
humanetech.com/course [Accessed July 14, 2024].

GNU. (1983). GNU Parallel. Available online at: https://www.gnu.org/software/
parallel/ [Accessed July 14, 2024].

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: scientific containers 
for mobility of compute. PLoS One 12:e0177459. doi: 10.1371/journal.pone.0177459

LangChain. (2022). LangChainAvailable online at: https://pypi.org/project/langchain/ 
[Accessed July 14, 2024].

LangChain. (2022). LangChain framework for developing large language models 
(LLMs) applications. Available online at: https://python.langchain.com/docs/
introduction/ [Accessed July 14, 2024].

Lewis, P, Perez, E, Piktus, A, Petroni, F, Karpukhin, V, Goyal, N, et al. (2020). Retrieval-
augmented generation for knowledge-intensive NLP tasks. presented at: NeurIPS. doi: 
10.48550/arXiv.2005.11401

Liu, NF, Lin, K, Hewitt, J, Paranjape, A, Bevilacqua, M, Petroni, F, et al. (2023). Lost 
in the middle: How language models use long contexts. arXiv. doi: 10.48550/
arXiv.2307.03172

Merkel, D. (2024). Docker: lightweight Linux containers for consistent development 
and deployment. Linux J. Available online at: https://www.linuxjournal.com/content/

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://github.com/mit-ll/AIKIT
https://github.com/mit-ll/AIKIT
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2025.1592013/full#supplementary-material
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://python.langchain.com/docs/integrations/vectorstores/chroma/
https://python.langchain.com/docs/integrations/vectorstores/chroma/
https://python.langchain.com/docs/integrations/vectorstores/faiss/
https://www.humanetech.com/course
https://www.humanetech.com/course
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://doi.org/10.1371/journal.pone.0177459
https://pypi.org/project/langchain/
https://python.langchain.com/docs/introduction/
https://python.langchain.com/docs/introduction/
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2307.03172
https://doi.org/10.48550/arXiv.2307.03172
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment


Randolph et al. 10.3389/frai.2025.1592013

Frontiers in Artificial Intelligence 09 frontiersin.org

docker-lightweight-linux-containers-consistent-development-and-deployment 
[Accessed July 14, 2024].

Mistral-7B-instruct-v0.2. (2023). Available online at: https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1 [Accessed July 14, 2024].

Mixtral-8x7B-Instruct-v0.1. (2024). [Accessed July 14, 2024].

PyPDFLoader. (2021). LangChain PyPDFLoader. Available online at: https://python.
langchain.com/docs/integrations/document_loaders/pypdfloader/ [Accessed July 14, 2024].

Python programming language. (1991). Available online at: https://www.python.org 
[Accessed July 14, 2024].

Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., et al. (2018). 
Scalable system scheduling for HPC and big data. J. Parallel Distrib. Comput. 111, 76–92. 
doi: 10.1016/j.jpdc.2017.06.009

Rossum, G. V. (1999). Python library reference: To Excel Inc. Available online at: 
https://www.amazon.com/Python-Library-Reference-Open-Source/dp/158348373X

Ruby. (1995). Ruby Programming Language. Available online at: https://www.ruby-
lang.org/en/ [Accessed July 14, 2024].

RubyOnRails. (2004). Ruby on rails. Available online at: https://rubyonrails.org 
[Accessed July 14, 2024].

TX-Green. (2024). MIT Lincoln Laboratory TX-green supercomputer. Available 
online at: https://www.top500.org/system/178939/ [Accessed July 14, 2024].

Wu, K, Wu, E, Cassasola, A, Zhang, A, Wei, K, Nguyen, T, et al. (2024). How well do 
LLMs cite relevant medical references? An evaluation framework and analyses. arXiv. 
doi: 10.48550/arXiv.2402.02008

Xu, P, Ping, W, Wu, X, McAfee, L, Zhu, C, Liu, Z, et al (2023). Retrieval meets Long Context 
Large Language Models. presented at: ICLR 2024. doi: 10.48550/arXiv.2310.03025

https://doi.org/10.3389/frai.2025.1592013
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/
https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/
https://www.python.org
https://doi.org/10.1016/j.jpdc.2017.06.009
https://www.amazon.com/Python-Library-Reference-Open-Source/dp/158348373X
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://rubyonrails.org
https://www.top500.org/system/178939/
https://doi.org/10.48550/arXiv.2402.02008
https://doi.org/10.48550/arXiv.2310.03025

	Large language models for closed-library multi-document query, test generation, and evaluation
	1 Introduction
	2 Materials and methods
	2.1 Document as a Dictionary—DaaDy
	2.2 Structured Question Answer Dictionary—SQAD
	2.3 Containerized AI for knowledge intensive tasks (AIKIT)
	2.4 Large language models and retrieval-augmented generation
	2.5 Web interface
	2.6 Multi-GPU enabled systems
	2.7 Prototyping environment
	2.8 HPC system implementation (2-NVIDIA-V100)

	3 Results
	3.1 Document as a Dictionary—DaaDy
	3.2 Test questions generation
	3.3 Test questions evaluation
	3.4 AIKIT user interface
	3.5 Documents query

	4 Discussion
	4.1 SQAD
	4.2 AIKIT user interface
	4.3 Recommendations for knowledge base management

	5 Future work
	6 Conclusion

	References

