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This paper outlines a path toward more reliable and effective evaluation of Large 
Language Models (LLMs). It argues that insights from the study of human judgment 
and decision-making can illuminate current challenges in LLM assessment and 
help close critical gaps in how models are evaluated. By drawing parallels between 
human reasoning and model behavior, the paper advocates moving beyond narrow 
metrics toward more nuanced, ecologically valid frameworks.

KEYWORDS

LLM, generative AI (GenAI), hallucinations, AI in business, human judgment, judgment 
and decision making, heuristics & biases

OPEN ACCESS

EDITED BY

Amir Zadeh,  
Wright State University, United States

REVIEWED BY

J. D. Opdyke,  
Sachs Capital Group Asset Management, LLC, 
United States

*CORRESPONDENCE

Andrea Polonioli  
 apolonioli@coveo.com

RECEIVED 12 March 2025
ACCEPTED 29 April 2025
PUBLISHED 27 May 2025

CITATION

Polonioli A (2025) Moving LLM evaluation 
forward: lessons from human judgment 
research.
Front. Artif. Intell. 8:1592399.
doi: 10.3389/frai.2025.1592399

COPYRIGHT

© 2025 Polonioli. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Perspective
PUBLISHED 27 May 2025
DOI 10.3389/frai.2025.1592399

1 Introduction

Large Language Models (LLMs) have become central to the progress of artificial 
intelligence, powering advances across industries—from healthcare and education to legal 
analysis and creative writing (Chowdhery et al., 2022; Touvron et al., 2023). The public release 
of ChatGPT in 2022 marked a turning point, introducing LLMs into everyday discourse and 
positioning them as general-purpose intelligence systems. Yet despite their impressive 
versatility, these models often produce surprising errors, raising persistent questions about 
how to evaluate their reliability and adaptability (Bishop, 2021).

A growing ecosystem of benchmarks has emerged to address this challenge. Factuality 
assessments such as FELM (Chen et al., 2023), code-focused tasks like HumanEval (Chen 
et al., 2021), and domain-specific evaluations like SWE-bench Verified (Jimenez et al., 2023) 
each offer partial insight into model capabilities. Ranking-based platforms like Chatbot Arena 
(Zheng et al., 2023) have further shaped public perception, rewarding models that perform 
well in direct comparison. Yet these evaluation strategies remain fragmented and narrow, often 
incentivizing superficial improvements rather than generalizable progress.

Promising developments within the deep learning community have begun to address these 
limitations. Notably, Martin et al. (2021) present a framework for evaluating neural networks 
using structural metrics derived from the models’ own weight matrices. Building on theoretical 
results by Martin and Mahoney (2021), their approach offers a means of assessment that does 
not rely on external test data. It introduces a different kind of benchmark—one that focuses 
on the internal properties of a model and the distribution of capacity across its architecture. 
In doing so, it offers a more nuanced perspective on model quality, extending beyond the 
fragmented and task-bound metrics that dominate much of today’s evaluation landscape. 
Nevertheless, such contributions have yet to significantly shape the broader discourse, which 
remains largely driven by surface-level performance and high-profile failure cases (e.g., 
Silberling, 2024).

Consider this seemingly simple exchange:

Human: “How many R’s are in the word strawberry?”
LLM: “There are two.”
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 Human: “Actually, there are three—one in the middle and two 
at the end.”
LLM: “No, count again.”

LLMs frequently fail at these kinds of counting tasks, producing 
confident but incorrect responses. Such errors raise concerns not only 
about model precision but also about the deeper mechanics of how 
these systems handle symbolic information and logical sequence 
processing. Do these failures reflect minor blind spots in token 
processing, or do they expose more fundamental architectural 
limitations? Could such mistakes result from asking the wrong kind of 
question—or using the wrong kind of evaluation? Are these isolated 
quirks, or signs of broader, generalizable weaknesses? And do different 
models exhibit systematically different error patterns? Recent evidence 
suggests yes – different models can have distinctive failure profiles. For 
example, Martin et al.’s analysis (2020) indicates that model architecture 
and training influence the types of errors a network is prone to.

Once these questions are raised, it becomes clear that they echo 
long-standing debates in the study of human judgment. For decades, 
cognitive scientists have explored how people process information, why 
they make systematic errors, and whether such errors signal 
irrationality or adaptive trade-offs. Concepts like bounded rationality 
(Simon, 1955) and ecological validity (Gigerenzer and Todd, 1999) 
helped reframe these debates—moving beyond binary success/failure 
judgments toward more nuanced, context-sensitive models of 
reasoning. These same ideas, we argue, can enrich the way we approach 
LLM evaluation.

This paper contends that advancing LLM evaluation requires 
drawing from the intellectual history of human judgment research. By 
moving beyond narrow benchmarks and reductive metaphors toward 
frameworks that foreground trade-offs, context, and structured 
interventions, we can build a more robust and empirically grounded 
understanding of what these models can - and cannot - do.

2 Accuracy does not speak with one 
voice

Just as research in human judgment and decision-making has long 
been shaped by influential metaphors (e.g., “cognitive illusions” and 
“biases”), the evaluation of LLMs has similarly gravitated toward 
evocative language. In particular, “hallucination” has emerged as a 
dominant descriptor of model error. While some scholars have 
proposed alternatives like “confabulation,” drawn from 
neuropsychology to describe plausible but incorrect responses in the 
absence of sufficient information (Smith et al., 2023), others—such as 
Brender (2023)—have rejected anthropomorphic metaphors 
altogether, warning that terms like hallucination risk projecting 
human cognitive assumptions onto fundamentally different systems.1

1 While terms like “reasoning” and “hallucination” are widely used as 

convenient functional descriptors of model behavior, they should not be taken 

to imply that LLMs possess cognitive or experiential capacities akin to those 

of human minds. For a critique of such anthropomorphic metaphors—and of 

the conceptual risks involved in borrowing language between AI and brain 

sciences—see Floridi and Nobre (2024).

The issue with such metaphors is not only that they introduce 
conceptual baggage or polarize discussion; more critically, they 
oversimplify the multifaceted nature of model failure. LLM 
outputs do not merely succeed or fail in binary terms—accuracy 
manifests across different dimensions. Some errors reflect 
misalignment with external truth (factuality), while others arise 
from internal inconsistency, poor calibration, or sensitivity to 
prompt phrasing.

Hammond’s (2007) distinction between coherence and 
correspondence in human judgment offers a useful lens. Coherence 
refers to internal consistency—how well a model’s outputs logically hang 
together. This concept is central to the heuristics-and-biases tradition, 
which often highlights deviations from logical norms (e.g., the 
conjunction fallacy; Kahneman and Tversky, 1983). Correspondence, by 
contrast, focuses on alignment with external reality and predictive 
success, as seen in ecological approaches like fast-and-frugal heuristics 
(Gigerenzer and Todd, 1999; Polonioli, 2014, 2016). For example, the 
recognition heuristic can help people make accurate predictions in 
uncertain environments despite limited information.

Crucially, coherence and correspondence do not always align 
(Arkes et al., 2016; Katsikopoulos, 2009). Coherence-based evaluations 
often cast human reasoning in a negative light, while correspondence-
based approaches highlight when heuristics yield adaptive, real-world 
performance. This tension has been instrumental in reshaping how 
we  assess rationality, and it offers a valuable precedent for LLM 
evaluation. Polonioli (2015) further argues that the coherence–
correspondence distinction, while useful, does not exhaust the 
complexity of cognitive evaluation. Other dimensions—such as context 
sensitivity and calibration—also matter. As Nisbett and Wilson (1977) 
famously showed, human judgments are heavily influenced by 
contextual cues. LLMs exhibit similar fragility: minor prompt variations 
can yield dramatically different outputs, yet few benchmarks test this.

Despite a growing ecosystem of benchmarks, most focus 
overwhelmingly on correspondence. Datasets such as FELM 
(Factuality Evaluation of Large Language Models; Chen et al., 2023) 
or TruthfulQA (Lin et al., 2022) measure accuracy relative to known 
facts. These tools are valuable—but they neglect coherence-related 
errors, such as when models contradict themselves or generate 
answers that do not align with their own justifications.

Several recent studies hint at the importance of coherence, though 
not always explicitly. For example, Wang et al. (2022), in Self-Consistency 
Improves Chain-of-Thought Reasoning in Language Models, show that 
averaging a model’s answers across multiple reasoning paths often 
improves correctness—suggesting that internal consistency may 
correlate with better performance. Zhou et al. (2022), in Least-to-Most 
Prompting Enables Complex Reasoning, point out that LLMs sometimes 
arrive at correct answers via logically invalid chains—indicating that 
output correctness does not always reflect processing quality.

Other work more directly engages with internal inconsistency. 
Madaan et al. (2023), in Self-Refine: Iterative Refinement with Self-
Feedback, explore prompting models to revise their own outputs—a 
method that frequently surfaces contradictions and logical analysis 
failures. Meanwhile, Macmillan-Scott and Musolesi (2024), in Biases 
and Fallacies in Large Language Models: A Human Reasoning 
Perspective, test LLMs on known human reasoning biases. Their 
findings show that while models can replicate certain fallacies, they 
often do so inconsistently or incoherently—further demonstrating 
that LLM failure modes do not map cleanly into human patterns.
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Despite these developments, there is still no large-scale benchmark 
dedicated to assessing coherence in LLMs. This is a critical gap. If 
coherence is key to evaluating the quality of how models arrive at 
answers, then the absence of such a benchmark skews our 
understanding of model behavior and limits opportunities for targeted 
improvement. A coherence benchmark would bring at least 
three benefits:

 1 Clarify the coherence–correspondence relationship: It would 
help disentangle cases where models generate correct answers 
for the wrong reasons—or coherent but incorrect responses.

 2 Test generalization more meaningfully: Stable, consistent 
reasoning is likely to be more robust across prompt variations 
and domains.

 3 Enable structured interventions: Coherence metrics could 
guide improvements like chain-of-thought prompting, 
instruction tuning, or self-verification.

In the same way that coherence and correspondence may not 
capture the full spectrum of human judgment, evaluating the intrinsic 
properties of language models offers an important complement to 
these dimensions. For instance, Martin et al. (2021) propose assessing 
neural networks through heavy-tailed spectral properties of their 
weight matrices. These structural indicators have been shown to 
correlate strongly with generalization performance across models - 
even in the absence of traditional test data. By analyzing a model’s 
internal structure, such methods offer a perspective that treats the 
model itself as data, complementing coherence-based evaluation with 
a view from the inside. This line of work reinforces our broader 
argument: that advancing LLM evaluation requires diverse and 
scalable approaches- those that assess both behavior externally and 
structure internally.

In short, just as the study of human cognition matured by 
expanding its understanding of rationality, LLM evaluation must 
move beyond narrow factuality checks. Accuracy does not speak with 
one voice—and understanding how models perform is central to 
grasping their capabilities and limitations. A dedicated, scalable 
coherence benchmark would mark an important step forward, as 
would further emerging criteria that focus on a model’s 
internal characteristics.

3 Assessing LLMs through the lens of 
bounded rationality

Much like human cognition, LLMs operate under resource 
constraints. They must balance competing objectives—accuracy, 
latency, compute efficiency, and cost. This mirrors what Herbert 
Simon (1955) described as bounded rationality: the idea that decision-
makers (including artificial systems) rarely have unlimited time or 
resources and therefore rely on heuristics to make “good enough” 
decisions under constraint, rather than always optimizing for 
perfect accuracy.

This framework offers a compelling analogy for how we should 
evaluate LLMs. While current evaluation metrics often emphasize 
static measures—such as factual correctness or performance on fixed 
tests—they typically ignore the computational trade-offs that define 
real-world deployment. For instance, high-performing models like 

GPT-4 Turbo or Anthropic’s Claude 3 (Opus) may deliver excellent 
benchmark results, but they require vast GPU memory, distributed 
inference infrastructure, and expensive hardware acceleration. These 
systems are optimized for capability, not efficiency.

Meanwhile, smaller or more efficient models (e.g., Mistral-7B, 
DeepSeek-V2, or Phi-2) can deliver near-state-of-the-art performance 
on select tasks with significantly lower resource usage. In latency-
sensitive applications (such as customer support or real-time decision 
aids), a slightly less accurate but immediate response may be more 
valuable than a more accurate yet delayed one.

The recent development of DeepSeek R2 in 2025 exemplifies 
this trade-off. Developed to be cost-effective and deployable on 
relatively constrained hardware, the model prioritizes throughput 
and latency over marginal gains in benchmark accuracy (Baptista 
et al., 2025). Similarly, new inference strategies like vLLM and 
GGUF-based quantization (e.g., running LLaMA-2 13B at 4-bit 
precision) show a growing interest in efficient deployment rather 
than leaderboard dominance.

Yet most public evaluation frameworks overlook these 
constraints, focusing almost exclusively on benchmark-based 
correctness. As a result, they fail to capture the resource–accuracy 
trade-off that is central to many applied AI systems. Just as 
bounded rationality urges us to assess human decision-making in 
light of ecological constraints, LLM evaluation should recognize 
that a model’s real-world utility depends not only on what it gets 
right, but also on what it achieves within the limits of time, 
compute, and memory.

In short, the bounded rationality perspective invites us to ask 
different questions about LLMs: not only “How accurate is this 
model?” but also “How effective is it under pressure?” and “How well 
does it scale when resources are tight?” Incorporating such 
perspectives is crucial. Without it, LLM benchmarks risk promoting 
models that are academically impressive but operationally impractical.

4 Rethinking generality: lessons from 
ecological rationality

A longstanding critique from Gigerenzer and Todd (1999) is 
that many so-called cognitive “biases” identified by the heuristics-
and-biases tradition arose from using abstract or ecologically 
invalid tasks. When tested in contexts that mirrored real-world 
decision-making—such as using natural frequencies instead of 
probabilities—many biases disappeared. This insight is highly 
relevant to today’s conversations around LLMs: Are we evaluating 
these systems with benchmarks and tasks that reflect their 
intended real-world use.

The implications extend beyond benchmarking. The dominant 
narrative in AI assumes that generality is the hallmark of intelligence, 
with AGI (artificial general intelligence) as its ultimate form. But 
findings from ecological rationality and evolutionary psychology offer 
a different view: intelligence is about efficiency and adaptiveness 
within specific environments—not universal competence. Human 
cognition relies on specialized heuristics tailored to particular tasks 
and constraints. Similarly, recent trends in LLM research point toward 
a resurgence of task-specific optimization over raw generalization.

Concrete examples from the LLM landscape support this. 
For instance:
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 • Med-PaLM (Singhal et al., 2022) – a model fine-tuned on medical 
Q&A – outperforms general-purpose models like GPT-3.5 on 
domain-specific benchmarks such as USMLE-style 
exam questions.

 • BloombergGPT (Wu et al., 2023), trained on a blend of financial 
news, filings, and proprietary data, significantly improves 
performance on finance-related NLP tasks compared to 
general models.

 • WizardCoder (Xu et al., 2023) – a specialized coding assistant – 
can outperform a general LLM like ChatGPT on code generation 
and bug-fixing tasks.

 • OpenAI’s rumored “Strawberry” model (referred to unofficially 
by researchers) reportedly emphasizes logical consistency and 
chain-of-thought reasoning over general fluency, aiming to 
improve structured problem-solving.

Moreover, retrieval-augmented generation (RAG) architectures 
(Lewis et al., 2020) are increasingly used to bring domain-specific 
grounding into LLMs—especially in legal, medical, and enterprise 
contexts—underscoring the need for environment-aware  
adaptation.

These developments challenge the assumption that general-
purpose models are universally superior. Instead, they highlight the 
importance of aligning model design, training, and evaluation with 
the ecological context in which models operate. Thus, just as ecological 
validity reshaped how we understand human reasoning, it should also 
reshape how we evaluate LLMs. Benchmarks must reflect context-
specific demands, and success should be defined in terms of fit-for-
purpose performance, not abstract generality. Without this shift, 
we  risk misjudging the capabilities—and limitations—of these 
increasingly central AI systems.

5 Task redesign and structural 
interventions in LLM research

If the previous section raised concerns about 
representativeness and cross-task generalization, this one turns to 
robustness: Why do LLMs fail, and how can their outputs 
be systematically improved?

A central lesson from human judgment research is that 
performance can often be  improved not by altering individual 
cognition directly, but by modifying the structure of the task or 
environment. This insight underpins the distinction between 
nudging and boosting—two families of interventions aimed at 
facilitating better decisions. Boosting, in particular, emphasizes 
durable, transparent improvements via structural changes to how 
information is presented (Hertwig and Grüne-Yanoff, 2017). A 
classic illustration comes from Gigerenzer and Hoffrage (1995), 
who showed that presenting statistical information as natural 
frequencies (e.g., “8 out of 10”) rather than probabilities 
dramatically enhances diagnostic analysis. Such insights have 
informed practice in domains as varied as medicine, law, and 
public policy (Gigerenzer et al., 2007).

A similar structuralist perspective is emerging in LLM 
research. Interventions like prompt engineering, instruction 
tuning, and retrieval-augmented generation (RAG) have been 
shown to significantly improve model outputs without modifying 

the underlying weights. For example, Wei et  al. (2022) 
demonstrated that well-designed prompts can elicit improved 
reasoning from models, at times rivaling the benefits of fine-
tuning. RAG methods (Lewis et  al., 2020) help mitigate 
hallucinations by grounding responses in external documents, 
while instruction tuning (Mishra et al., 2022) enhances alignment 
with task-specific requirements.

Crucially, these approaches are not merely engineering hacks—
they benefit from being grounded in an understanding of the 
mechanisms underlying LLM errors. Zhang et  al. (2024) offer a 
compelling case study, identifying knowledge overshadowing as a key 
driver of what they term amalgamated hallucinations. This 
phenomenon occurs when a model trained on exclusively true 
statements still produces incorrect outputs by conflating multiple 
factual patterns. The root cause is an imbalanced training distribution, 
where high-frequency conditions suppress lower-frequency—but 
equally valid—ones.

Their analysis yields three core insights:

 • Systematic error patterns: Hallucinations follow predictable 
generalization dynamics, reflecting the statistical dominance of 
certain patterns in the training data.

 • Causal structure: These error patterns emerge from biased token 
prediction conditioned by asymmetric exposure during training.

 • Corrective strategies: A decoding technique known as self-
contrastive decoding can offset these effects at inference time, 
without additional model retraining.

Zhang et  al.’s work exemplifies what the philosopher Bechtel 
(2008) calls mechanistic explanation: identifying components, 
mapping their interactions, and designing interventions to influence 
outcomes. Rather than relying on anthropomorphic labels like 
“hallucination,” their framework offers a clearer, system-level account 
of when and why certain failures emerge—and how they might 
be mitigated.

Still, these strategies have limits. As with boosting in human 
cognition, structural interventions do not eliminate foundational 
flaws; instead, they reshape inputs and task contexts to reduce 
error and enhance performance. That is precisely their strength. 
LLM task redesign, approached experimentally and informed by 
cognitive science, provides a principled way to test, probe, and 
refine model behavior. It enables us to study not just what models 
output, but how—and under what conditions—they succeed 
or fail.

6 LLM differences in thinking style

Another important lesson from research on human judgment 
comes from the study of individual differences. In particular, 
Stanovich’s (2011) work on rational thought highlights the variability 
in how people reason—emphasizing distinctions in cognitive style, 
thinking dispositions, and the capacity for reflective override. Much 
of this builds on the heuristics-and-biases tradition, yet Stanovich’s key 
contribution is to show that intelligence is not monolithic. 
He distinguishes between algorithmic-level intelligence (akin to IQ) 
and reflective-level rationality—the latter involving critical 
engagement with one’s beliefs and goals.
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This distinction offers a compelling analogy for understanding 
differences among LLMs. Just as people vary in their susceptibility 
to biases or their willingness to engage effortfully with complex 
problems, different LLMs exhibit distinct “thinking styles” shaped 
by their architectures, training regimes, and fine-tuning methods. 
Some may excel at structured reasoning (e.g., OpenAI’s GPT-4), 
others shine in contextual interpretation (e.g., Claude 3.5), while 
still others trade raw capability for speed and deployability (e.g., 
Mistral L2 or DeepSeek-R1). Each model has its superpowers—
and its blind spots.

This diversity matters for evaluation: a one-size-fits-all metric 
may fail to capture each model’s unique strengths and weaknesses. 
Recent work by Martin et  al. (2021) demonstrates that these 
behavioral differences are often reflected in a model’s internal 
structure, revealing consistent patterns in how architectural and 
training choices shape model capabilities. Treating LLMs as 
interchangeable is as misleading as treating all human thinkers the 
same. Do different LLMs favor fluency over factuality? How do they 
respond under instruction pressure or in ambiguous contexts? 
Understanding and systematically comparing these tendencies - akin 
to studying cognitive styles in psychology - can help developers and 
users better match models to use cases and move toward a more 
principled science of evaluation.

7 Conclusion: toward an empirically 
grounded evaluation framework

Current LLM evaluation frameworks risk misalignment by over-
relying on simplistic accuracy metrics and misleading metaphors. As 
argued throughout this paper, insights from human judgment research 
offer a pathway forward. Embracing lessons on heuristics, bounded 
rationality, and task design—while emphasizing mechanistic 
explanations, multi-dimensional accuracy models, and domain-
sensitive evaluation strategies—can help build more robust evaluation 
frameworks for AI. By integrating such insights from cognitive 
science, AI assessment can evolve into a more rigorous, ecologically 
valid discipline, ensuring that future LLM development is driven by 
meaningful improvements rather than mere optimization for 
narrow benchmarks.
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