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Tra�c classification is vital for cybersecurity, yet encrypted tra�c poses

significant challenges. We introduce PACKETCLIP which is a multi-modal

framework combining packet data with natural language semantics through

contrastive pre-training and hierarchical Graph Neural Network (GNN)

reasoning. PACKETCLIP integrates semantic reasoning with e�cient classification,

enabling robust detection of anomalies in encrypted network flows. By

aligning textual descriptions with packet behaviors, PACKETCLIP o�ers

enhanced interpretability, scalability, and practical applicability across diverse

security scenarios. With a 95% mean AUC, an 11.6% improvement over

baselines, and a 92% reduction in intrusion detection training parameters,

it is ideally suited for real-time anomaly detection. By bridging advanced

machine-learning techniques and practical cybersecurity needs, PACKETCLIP

provides a foundation for scalable, e�cient, and interpretable solutions to tackle

encrypted tra�c classification and network intrusion detection challenges in

resource-constrained environments.

KEYWORDS

contrastive pre-training, graph neural network, machine learning, multimodal,

reasoning

1 Introduction

Traffic classification plays a crucial role in modern network security analytics,

significantly influencing areas such as threat detection and micro-segmentation strategies.

As networks become increasingly dynamic, the ability to accurately classify traffic is

essential for enhancing security and swiftly responding to business needs. Traditionally,

traffic classification techniques relied on inspecting packet headers and payloads. However,

the rise of encrypted and anonymized traffic presents significant challenges by obscuring

content, making it harder to distinguish between benign and malicious flows.

Recent advances in machine learning, particularly with pre-trained models based on

architectures like BERT (Devlin, 2018; Lin et al., 2022; Meng et al., 2024) and masked

autoencoders (MAEs) (Zhao et al., 2023), have attempted to address this issue and achieved

state-of-the-art performance in various security-related tasks, including encrypted traffic

classification. Hyperdimensional Computing (HDC)-based hardware-efficient methods

have also been proposed (Lu et al., 2024). These methods leverage deep learning to

identify patterns in packet metadata and encrypted content, bypassing the need for

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1593944
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1593944&domain=pdf&date_stamp=2025-07-28
mailto:m.imani@uci.edu
https://doi.org/10.3389/frai.2025.1593944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1593944/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Masukawa et al. 10.3389/frai.2025.1593944

payload inspection. Despite their technical advancements, these

models still struggle to track and interpret the semantics of network

behaviors, particularly when trying to discern the underlying

intent or strategy of cyberattacks. Reasoning about the semantics

of cyberattacks remains a key research challenge. In the field

of video anomaly detection, MissionGNN (Yun et al., 2025), a

cutting-edge hierarchical graph neural network (GNN) model, has

demonstrated exceptional capability in reasoning about anomalies

using mission-specific knowledge graphs (KGs). By incorporating

node embeddings derived from dual modalities—natural language

and image data—and employing joint-embedding models such

as CLIP (Radford et al., 2021), MissionGNN effectively reasons

across both visual and textual domains. This success prompts an

intriguing question: Can this hierarchical GNN-based reasoning be

adapted for encrypted traffic detection, and if so, could it address

the persistent challenge of semantic reasoning in the cybersecurity

domain? This question arises from the conceptual similarity

between video (a sequence of images) and network flows (a

sequence of packets), which, while differing in modality, share a

sequential structure.

To explore this possibility, we propose a semantic reasoning

framework for encrypted traffic detection, illustrated in Figure 1. In

our framework, the user first defines a specific task in encrypted

traffic detection (e.g., detecting a Denial of Service (DoS) attack

as shown in Figure 1a). Then, a Large Language Model (LLM)

generates a KG, which is a Directed Acyclic Graph (DAG) serving

as an abstract representation of the task to be used later as amedium

for reasoning (Figure 1b).

To adapt hierarchical GNN reasoning to encrypted traffic

detection, we need a joint-embedding model capable of mapping

both encrypted traffic data and Natural Language (NL) into

a unified vector space (Figure 1c). This approach allows us

to leverage the semantic reasoning capabilities of hierarchical

GNNs while addressing the unique challenges posed by encrypted

network traffic (Figure 1d). To enable alignment between text

and packet data, we propose PACKETCLIP, which utilizes recent

advancements in LLMs (Achiam et al., 2023; Touvron et al.,

2023) to create a multi-modal joint embedding via contrastive

pretraining. Inspired by Contrastive Language–Image Pre-training

(CLIP), which links images with text, PACKETCLIP connects

packet-level traffic data with semantic descriptions. This alignment

not only improves traffic classification accuracy but also provides

human operators with NL explanations of packet behavior within

the network flow, enhancing interpretability.

We conducted experiments to evaluate the effectiveness

and efficiency of PACKETCLIP in conjunction with hierarchical

GNN reasoning. The results demonstrate that uses features

from PACKETCLIP achieves not only high classification accuracy

Abbreviations: AUC, Area Under the Receiver Operating Characteristic

Curve; mAUC, Mean Area Under the ROC Curve; DPI, Deep Packet

Inspection; FLOPS, Floating Point Operations per Second; GNN, Graph

Neural Network; IDS, Intrusion Detection System; IoT, Internet of Things;

InfoNCE, Information Noise-Contrastive Estimation; KG, Knowledge Graph;

LLM, Large Language Model; NLP, Natural Language Processing; ROC,

Receiver Operating Characteristic; SL, Supervised Learning; SSL, Self-

Supervised Learning.

but also significant improvements in robustness and efficiency.

Specifically, hierarchical reasoning with graph neural network

delivers an impressive 11.6%mean Area Under the Curve (mAUC)

of the receiver operating characteristics (ROC) improvement

compared to baseline methods. Notably, it maintains 95% mAUC

performance when trained on just 30% of the data, significantly

outperforming ET-BERT, which achieves only 50% mAUC under

the same conditions. In addition to its performance advantages,

the training of GNN reasoning model using PACKETCLIP

embeddingis highly efficient, achieving a 92% reduction in the

number of trainbale parameters and a 98% reduction in FLOPs

compared to existing methods. These efficiency gains underscore

themodel’s ability to deliver strong performance with a significantly

smaller computational footprint. Overall, these findings highlight

PACKETCLIP’s capability to generalize effectively in data-

constrained scenarios and its suitability for practical deployment

in environments with limited computational resources.

Finally, we evaluated the performance of both PACKETCLIP

and its hierarchical GNN within a real-time traffic intrusion

detection framework using the ACI-IoT-2023 dataset (Bastian

et al., 2023). Our results show that PACKETCLIP effectively aligns

packet and text modalities, while the hierarchical GNN achieves

robust and energy-efficient intrusion detection. Because our GNN-

based reasoning framework is intended for practical deployment

in routers (Figure 1e), these results underscore its potential for

real-world applications. The key contributions of this research are

as follows:

• Proposed PACKETCLIP, a multi-modal framework aligning

encrypted traffic data with NL.

• Introduced contrastive pretraining and hierarchical GNN

reasoning for robust intrusion detection, outperforming

baselines by 11.6% in mean ROC-AUC scores.

• Showed strong data scarcity resilience, maintaining 95%

mAUC even with 30% training data, compared to 70% for

ET-BERT.

• Achieved 92% parameter and 98% FLOPs reduction for

training hierarchical GNN reasoning, enabling deployment in

resource-constrained environments.

• Validated on real-world datasets, combining robust traffic

classification with efficient and scalable anomaly detection for

practical network security applications.

2 Background and related works

This section aims to highlight advancements in traffic intrusion

detection, outlining significant progress while identifying ongoing

challenges. By examining modern approaches, particularly those

leveraging machine learning and GNNs, we underscore the

field’s evolution and remaining challenges in achieving effective,

privacy-preserving, and interpretable detection techniques. We

also emphasize the differences between our proposed method and

previous works.

Port-based classification methods (Moore et al., 2001),

which historically provided effective means for categorizing

network traffic, have encountered limitations due to dynamic

port allocations, rendering it difficult to track application-specific
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FIGURE 1

Semantic AI framework for detecting tra�c related to specific cyber-attacks defined by a user (a), combining LLM-driven knowledge graphs (b),

PACKETCLIP alignment (c), hierarchical reasoning (d), and Tiny AI to enable e�cient, interpretable, and traceable detection on low-resource

devices (e).

patterns accurately. Traditional deep packet inspection (DPI)

techniques (Papadogiannaki and Ioannidis, 2021), which analyze

data payloads for distinguishing patterns, have similarly become

impractical, especially for encrypted traffic. The computational

burden and diminishing returns on accuracy for DPI methods,

as encryption becomes more widespread, highlight the critical

need for machine learning-driven approaches that accommodate

complex traffic patterns while maintaining privacy. Statistical

feature-based approaches leverage manually selected traffic

features, requiring substantial domain expertise (Hayes and

Danezis, 2016; Panchenko et al., 2016; Zaki et al., 2022; Taylor

et al., 2016). For instance, AppScanner (Taylor et al., 2016) utilizes

statistical attributes of packet sizes to train random forest classifiers;

however, these methods suffer from limitations in capturing high-

level semantic patterns essential for robust intrusion detection.

Recent works have introduced GNN-based frameworks for

enhanced traffic classification, leveraging graph structures to

capture relational dependencies within traffic data (Huoh et al.,

2022; Zhang et al., 2023, 2024; Alrahis et al., 2023). Among them,

TFE-GNN (Zhang et al., 2023) is notable for modeling packet

payloads at the byte level, treating each byte as a node and creating

edges based on point-wise mutual information (PMI) between

nodes. Additionally, a novel contrastive learning-based intrusion

detection framework extending TFE-GNN has shown promising

results. However, these GNN-based methods often struggle with

interpretability, as they rely on encrypted byte representations that

do not lend themselves to human understanding. Consequently,

these methods may fall short in supporting human security analysts

in devising precise micro-segmentation policies.

In the field of video anomaly detection, MissionGNN (Yun

et al., 2025) has demonstrated state-of-the-art performance by

employing KG reasoning techniques and shows powerful following

works. Building upon this approach, we introduce a novel

framework that combines a GNN-based reasoning component with

PACKETCLIP, a cross-modal embedding model designed to align

packet data with NL descriptions within a shared vector space.

To the best of our knowledge, this is the first integration of NL

processing with GNN-based network traffic intrusion detection,

facilitating intuitive and interpretable reasoning over encrypted

traffic patterns.

3 Methodology

3.1 Mission-specific knowledge graph
generation

To enable traffic classification and reasoning about the

semantics of the attack, the mission-specific KG generation

framework is used to create a KG that extracts relevant information

from a given packet. In encrypted traffic detection, each mission-

specific KG represents structured knowledge about a particular

event or scenario. The process begins by obtaining a set of

vocabularies for each event, referred to as Key Concepts. This is

done using an LLM such as GPT-4o (Achiam et al., 2023) with

the prompt: “List V(∈ N) typical vocabularies to represent [event

name]? Note: Everything should be a single word.” For example, in

case of DoS attack, LLM may provide key concepts as follows, K =

{flood,botnet,amplification,target,saturation}.

Next, we expand K by querying the LLM with the prompt:

“What are associated words with vocabularies in set K?” This

produces a set of associated vocabularies K
(i)
a for each key

concept (e.g., for “flood”:K
(1)
a = {overwhelm,packetstorm}),

ensuring no overlap with the original set (K ∩ K
(i)
a = ∅). The set K

is updated using the equation:

K = K ∪ K(i)
a (1 ≤ i ≤ N) (1)

For instance, after the first iteration: K = {flood, . . . } ∪

{overwhelm,packetstorm}. This process is repeated for N

iterations, after which edges are drawn from the (i − 1)th key
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concept to the ith key concept, forming a hierarchical directed

acyclic graph (DAG).

On top of the mission-specific KG, a sensor node is added,

containing sensory information such as packet data encoded by

joint-embedding models like PACKETCLIP. Directed edges are

projected from the sensor node to key concept nodes (e.g., s →

flood, s → botnet), and related concept nodes also project

edges to an embedding node, which aggregates messages passed

through the graph.

This KG design allows the GNN to pass interpretable messages

by embedding multimodal information from all nodes into a

unified vector space thanks to the PACKETCLIP alignment.

3.2 NL explanation for intrusion

A key challenge in our framework is achieving a rich textual

representation of cyberattacks, as, to the best of our knowledge,

no existing datasets related to network traffic classification include

NL descriptions. Most current datasets (Bastian et al., 2023; Neto

et al., 2023; Draper-Gil et al., 2016; Dadkhah et al., 2022) generally

provide two main types of data: (1) raw packets stored in PCAP

files with corresponding labels and (2) tabular data representing

network flows derived from these PCAP files, typically in CSV

format (see 1 in Figure 2). Our approach focuses specifically on

the tabular flow files, as certain columns within this data have

the potential to serve as elements in generating NL descriptions

for each packet’s semantic context. As shown in Figure 2, we

first convert the tabular data at row i into a template-based text

expression T∗
i (Step 2) by embedding each column value into

structured sentences.

To train PACKETCLIP with a rich and diverse vocabulary

comparable to LLMs, we incorporate a mission-specific KG

that aligns with each tabular data row’s label, such as those

associated with DoS attack detection.We enhance textual variety by

sampling nodes from the KG and integrating them into template-

based descriptions (Step 3). Recognizing the limitations of static

templates, we use lightweight LLMs to paraphrase descriptions,

ensuring grammaticality and semantic diversity (Step 4). However,

due to the lack of direct correspondence between knowledge graph

keywords and observable flow features—especially in encrypted or

anonymized traffic—there exists a fundamental “chicken-and-egg”

problem. This motivates our contrastive pretraining: by aligning

packet features with LLM-generated concepts, PACKETCLIP learns

associations between observed data and high-level semantics, even

without explicit mapping. Modern LLMs such as GPT (Achiam

et al., 2023) and LLaMA (Touvron et al., 2023) have demonstrated

strong paraphrasing capabilities, and are frequently used as

paraphrase oracles in recent studies (Jayawardena and Yapa, 2024).

Accordingly, we leverage LLM-paraphrased sentences as diverse

packet descriptions. Tomitigate LLMhallucination, similar to CLIP

(Radford et al., 2021), we prepend each text with a prompt like “A

network traffic of label,” followed by the generated paraphrase, and

append relevant key concepts—especially for anomalous flows—to

serve as nodes in the GNN reasoning module. Example prompts

and outputs are shown in Figure 3.

Finally, we can obtain a diverce text expression of each packet

(Step 5). This augmentation not only mitigates the constraint of

limited class labels but also elevates the diversity of template-based

learning, enabling broader generalization.

This NL augmentation method we described so far can be

formulated as follows. We first obtain n(∈ N) template-based text

data (D∗
T = {T∗

i }
n
i=1) from flow that is represented as tabular data.

After this, we use LLMs as follows

Ti = LLM(T∗
i )(1 ≤ i ≤ n), (2)

where LLM indicates LLMs and we obtain augmented highly

diverse text expression of each packet.

3.3 PacketCLIP contrastive pre-training

Using the approach described in the previous section,

PACKETCLIP obtains a set of text data, DT = {Ti}
n
i=1, paired with

corresponding packet payload data, DP = {pi}
n
i=1. We clarify the

pre-training of PACKETCLIP described in Figure 4a.

During contrastive pre-training, we keep the weights of both

the text encoder (fT) and the packet encoder (fP) fixed. This

strategy preserves the consistency of text representations and
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FIGURE 2

A framework to generate NL explanations for intrusion scenarios by mapping tabular security flow data (1) to text templates (2), leveraging

LLM-generated knowledge graphs (3), utilizing LLMs for paraphrased explanations (4), and producing interpretable descriptions of network events (5).
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FIGURE 3

LLM prompt and sample outputs illustrating paraphrasing and concise explanation of cybersecurity network tra�c incidents.

FIGURE 4

(a) The overall architecture of the contrastive pre-training process for PACKETCLIP, including encoding packets and paired texts for learning. (b) A

mission-specific hierarchical GNN framework that integrates PACKETCLIP with temporal models and classifiers to derive intrusion detection results.

avoids catastrophic forgetting (French, 1999). Rather than fine-

tuning the large pre-trained models used for the packet and text

encoders, we adopt a method from Gupta et al. (2022), introducing

a simple linear projection layer as a self-supervised learning (SSL)

head for each encoder: one for the packet encoder (gP) and another

for the text encoder (gT). During pre-training, only these projection

layers are updated.

The text t ∈ DT and its paired packet p ∈ DP are encoded

as follows:

zt = gT ◦ fT(t), zp = gP ◦ fP(p). (3)

For contrastive pre-training, we use the InfoNCE loss (Chen

et al., 2020) l as defined below:

l(zt , zp;Z
\) = − log

exp
(

cos(zt, z
+
p )/τ

)

∑

zp\∈Z\ exp
(

cos(zt, z
\
p)/τ

) , (4)

where Z\ denotes a set of embedded vectors sampled from DP

that excludes the packet vector (z+p ) matching the text vector

zt, and τ > 0 represents the temperature parameter. This loss

function encourages alignment between embeddings from paired

text and packet instances while pushing apart embeddings from

different instances.

By completing this contrastive pre-training process,

PACKETCLIP learns robust, aligned representations for

both text and packet data, enhancing its ability to capture

semantic connections between textual and packet-based

cyberattack data.

3.4 Downstream hierarchical GNN
reasoning module

After generating M KGs Gmi (1 ≤ i ≤ M, where mi denotes

the i-th mission), we train a hierarchical GNN model to classify

events or anomalies in network traffic data (Figure 4b). GNNs

capture relational information using feature vectors for each node,

connecting packet node features x
(0)
s,mi for packet at timestamp t

(Pt) from the packet encoder EP(= gP ◦ fP) and concept node
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features x
(0)
c,mi for each concept c from the text encoder ET(= gT ◦ fT)

as follows:

x(0)s,mi
= EP(Pt), x(0)c,mi

= ET(c) (5)

A multi-layer perceptron (MLP) then embeds these node

features at layer l(1 ≤ l ≤ L) of GNN as follows:

x(l)mi
= W(l)

mi
x(l−1)
mi

+ b(l)mi
, (6)

whereW
(l)
mi denotes a trainable weight matrix and b(l)mi

indicates the

bias. The core idea is hierarchical message passing, where messages

are propagated through three levels of the KG hierarchy: packet

nodes to key concepts, key concepts to associated concept nodes,

and finally to embedding nodes. This structure allows efficient and

targeted aggregation of information across modalities, resulting in

interpretable, goal-oriented embeddings.

Hierarchical message passing from node v to neighboring node

in the previous hierarchy u at layer l is recursively defined as:

x(l)v =
1

|N (h−1)(v)|

∑

u∈N (h−1)(v)

φ(l)(x(l−1)
v · x(l−1)

u ) (7)

where φ indicates the activation function and N (h)(v) represents

the neighbors of node v at hierarchy h. The final embeddings

feature node xemb for each mission-specific KG are combined into

a single vector:

f (t) = [x
(L)
emb,m1

, x
(L)
emb,m2

, . . . , x
(L)
emb,mM

] (8)

For each packet Ft , the sequence of tokens Xt is constructed as:

Xt = {f (t−A+1), f (t−A+2), . . . , f (t)},

where A represents a hyperparameter that specifies a fixed number

of time frames to be input into the temporal model. This sequence

is input into a Transformer encoder T followed by an MLP to

produce the final classification output:

ŷ = Softmax(MLP(T (Xt))) (9)

Training leverages cross-entropy loss, smoothing loss, and

anomaly localization techniques to optimize the GNN model for

network traffic event recognition and anomaly detection tasks

following (Yun et al., 2025).

4 Experiments

4.1 Implementation details

For converting tabular data into NL expressions, we used

LLaMA 3 (Touvron et al., 2023). For KG generation, we employed

an automated framework powered byGPT-4o (Achiam et al., 2023).

The PACKETCLIP packet encoder was implemented using the ET-

BERT pre-trained encoder (Lin et al., 2022), while the text encoder

relied on RoBERTa (Liu, 2019). For optimization, we adopted the

Adam (Kingma, 2014) optimizer, configured with a learning rate of

5.0 × 10−4, β1 = 0.9, β2 = 0.8, and ǫ = 1.0 × 10−6. Within the

hierarchical GNN model, we ensured a consistent dimensionality

of Dmi ,l = 8 for mission mi at hierarchy l. For the short-term

temporal model, an internal dimensionality of 128 was employed,

alongside 8 attention heads and the hyperparameter A was set to

30. The training process was conducted over 3,000 steps, utilizing a

mini-batch size of 128 samples for each step.

4.2 Datasets

We utilized the ACI-IoT-2023 dataset (Bastian et al., 2023),

a comprehensive IoT cybersecurity dataset containing 3,157,430

labeled benign and malicious traffics, including threats like

malware, DoS, and botnets. Using an LLM-based paraphrasing

method (Figure 2), we generated diverse payload-text pairs to

enhance semantic representation.

For PACKETCLIP pretraining evaluated in Section 4.4, the

data were categorized into 10 distinct classes: Benign, OS Scan,

Vulnerability Scan, Port Scan, ICMP Flood, Slowloris, SYN Flood,

UDP Flood, DNS Flood, and Dictionary Attack. Notably, 95.31% of

the dataset comprises benign traffic, while the class distribution for

anomalous categories is detailed in Figure 5. We randomly split the

dataset into 80% for training and 20% for testing.

For GNN-based reasoning classification in Section 4.5, we

consolidated the dataset into broader categories: Benign, DoS,

Reconnaissance, and Brute Force. Each sample was treated as

a time-series packet sequence by attaching timestamps and

sorting chronologically, enabling the GNN models to capture

temporal structures akin to those in video analysis. Since the joint

embedding learned by PACKETCLIP is optimized for obtaining NL

representations rather than direct anomaly classification, we again

partitioned the data into 80% for training and 20% for testing.

Note that all evaluation metrics reported in subsequent sections are

calculated on the held-out test data.

FIGURE 5

Proportion of Class labels.
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4.3 Visualization of LLM generated
cyberattack semantics

Figure 6 shows the textual explanations generated from the

ACI-IoT dataset, emphasizing the most frequent terms used to

describe network events. The lower bar graph highlights common

words and phrases, such as “attack,” “network,” and “security,”

which encapsulate key cybersecurity themes. Above, word clouds

visually represent mission-specific vocabularies, showing the

terms that form the nodes of corresponding KGs. Together,

these visualizations illustrate PACKETCLIP’s ability to generate

contextually relevant explanations, providing enriched semantic

insights into various cyber incidents.

4.4 PacketCLIP semantic classification
performance

Baselines: To establish a baseline, we fine-tuned the ET-

BERT (Lin et al., 2022) packet classifier on the ACI-IoT-2023

dataset, demonstrating the effectiveness of leveraging NL-based

semantics for improved classification performance. Additionally,

we performed an ablation study to evaluate the contribution of

the SSL head in PACKETCLIP. Specifically, we examined three

configurations: PACKETCLIP without any SSL head, with a single

SSL head applied only to the packet encoder, and with SSL heads

applied to both the text and packet encoders. We did not include

an analysis of applying a single SSL head to the text encoder

because the primary goal of PACKETCLIP’s contrastive learning is to

align the non-interpretable packet modality with the NL modality.

Applying an SSL head solely to the text encoder could potentially

degrade valuable NL information, which is counterintuitive to

our objective.

Evaluation metrics: For zero-shot performance, we use both

macro-averaged Top-1 and Top-5 accuracy, defined as

Top-1macro =
1

C

C
∑

c=1

1

Nc

∑

i : yi=c

I
[

yi = ŷ
(1)
i

]

,

Top-5macro =
1

C

C
∑

c=1

1

Nc

∑

i : yi=c

I
[

yi ∈ {ŷ
(1)
i , . . . , ŷ

(5)
i }

]

,

(10)

where C = 10 is the number of classes, Nc the number of instances

in class c, yi the ground-truth label for instance i, and ŷ
(k)
i its k-th

ranked prediction. For comparison, since the baseline methods can

only output a single classification result, we mainly compare with

macro top-1 accuracy.

Table 1 shows the performance comparison between each

baselines that PACKETCLIP methods perform better than ET-BERT

fine-tuning in traffic classification. While ET-BERT demonstrates

moderate accuracy, PACKETCLIP using only packet information

TABLE 1 Comparison of models highlighting PACKETCLIP configurations

achieving highest macro top-1 accuracy and macro top-5 accuracy.

Method top-1 top-5

ET-BERT (Lin et al., 2022) 0.730 -

PACKETCLIP (No SSL Head) 0.001 0.955

PACKETCLIP (SSL Head Only on Packet Encoder) 0.831 0.991

PACKETCLIP (SSL Head on both Encoder) 0.856 0.961

Bold values indicate the highest performance in both metrics.

FIGURE 6

Word clouds and top 10 frequent vocabularies for DoS, Brute Force, and Reconnaissance missions from ACI-IoT-2023, highlighting key terms like

“botnet,” “credential,” and “port scanning” for respective categories.
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achieves a noticeable improvement, with nearly perfect reliability

when considering multiple predictions. PACKETCLIP, when

incorporating both packet data and contextual information,

further enhances its ability to make accurate top predictions but

slightly reduces its broader predictive range. Overall, PACKETCLIP

offers superior accuracy, especially when combining packet and

contextual details, making it a more effective method for precise

traffic classification in network management. At the same time,

PACKETCLIP’s performance comparison in Figure 7 highlights the

critical role of the SSL head. When incorporated, the SSL head

significantly boosts both macro top-1 and macro top-5 accuracy,

demonstrating its ability to enhance classification reliability and

precision. Without only having one SSL head in packet Encoder,

the performance drops notably in the middle of the training,

underlining its importance in leveraging SSL heads on both

encoders effectively. This comparison underscores the value of the

SSL head in extracting meaningful features from both packet data

and contextual information, enabling more accurate predictions

in traffic classification. The results clearly establish the SSL

head as a crucial component for achieving superior classification

performance in PACKETCLIP.

4.5 Evaluation on hierarchical GNN
reasoning

Baselines: The ACI-IoT-2023 dataset, utilized in our experiments,

has been previously explored in works such as AIS-NIDS (Farrukh

et al., 2024). AIS-NIDS introduced a novel approach involving

serialized RGB image transformations for packet-level feature

extraction and employed basic machine learning models, including

XGBoost and LightGBM, for intrusion detection. However, AIS-

NIDS relies on closed-set classifiers and lacks publicly available

code for its CNN preprocessing pipeline, posing challenges

for reproducibility and adaptation to alternative methods. To

FIGURE 7

Zero-shot accuracy change during training shows a trade-o�: SSL

on both encoders improves faster but is less stable, while SSL only

on the packet encoder progresses slower but is more stable.

address these limitations, we adopt baselines that incorporate

the PACKETCLIP packet feature encoder in conjunction with

various machine learning models. Specifically, we evaluate the

following configurations: PACKETCLIP + XGBoost, PACKETCLIP

+ LightGBM, and PACKETCLIP (packet) + Deep Neural Network

(DNN). Furthermore, to assess the performance of an external

baseline, we fine-tuned ET-BERT (Lin et al., 2022) on the same

dataset for comparative analysis.

Evaluation metrics : To evaluate our method, following the

convention of previous research (Yun et al., 2025; Bhavsar et al.,

2023; Ajagbe et al., 2024), We adopted the Area Under the

Receiver Operating Characteristic Curve (ROC AUC) as our

evaluation metric, which offers a robust measure of performance

across all classification thresholds. AUC is particularly suitable

for cybersecurity tasks, given the highly imbalanced nature

of datasets, where attack instances are far fewer than benign

traffic. By focusing on ranking instances correctly, AUC ensures

a comprehensive evaluation of anomaly detection performance

under varying conditions.

We present the result of our approach in Table 2, showing

an average AUC score gain of more than 11.6% compared

to baseline methods. This substantial improvement highlights

significant advancements in intrusion detection, combining

semantic reasoning, interpretability, and advanced classification

capabilities. By employing PACKETCLIP alongside hierarchical

GNN reasoning, we provide a robust and innovative solution

tailored for real-time anomaly detection in IoT networks,

demonstrating the potential for enhanced semantic understanding

and improved adaptability compared to traditional methods.

4.6 Hardware e�ciency analysis during
training

The computational efficiency of training hierarchical GNN

reasoning module in PACKETCLIP is compared against ET-BERT

(Lin et al., 2022), TFE-GNN (Zhang et al., 2023), and CLE-TFE

(Zhang et al., 2024) in terms of FLOPs and parameter count. These

baselines are chosen due to their proven effectiveness in encrypted

traffic detection tasks. GNN reasoning module using the joint

embedding vectors from PACKETCLIP demonstrates a significant

improvement, achieving a 107M reduction in training parameters

compared to fine-tuning ET-BERT, as shown in Figure 8b. This

reduction highlights the module’s streamlined architecture, which

effectively aggregates semantic information through hierarchical

message passing while minimizing parameterization. Moreover, as

shown in Figure 8a, the FLOPs of the GNN reasoning module

are approximately one-thirtieth of ET-BERT, while still delivering

competitive performance in traffic anomaly detection tasks. These

results emphasize the training scalability of the hierarchical

GNN module using PACKETCLIP joint embeddings, particularly

for resource-constrained environments like IoT networks, where

computational overhead is a critical concern. By incorporating

GNN reasoning using PACKETCLIP balances performance and

efficiency, making it highly suitable for real-time intrusion

detection applications.
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TABLE 2 AUC scores for individual classes and their mean AUC are compared across models.

Model Benign DoS Reconnaissance Brute force Average

ET-BERT Fine-Tuning (Lin et al., 2022) 0.717 0.731 0.752 0.784 0.746

PACKETCLIP + XGBoost 0.522 0.500 0.477 0.458 0.489

PACKETCLIP + LightGBM 0.961 0.544 0.974 0.567 0.761

PACKETCLIP + DNN 0.978 0.724 0.996 0.623 0.830

PACKETCLIP + GNN Reasoning 0.996 0.930 0.999 0.909 0.946

The results highlight the performance superiority of PACKETCLIP with GNN Reasoning, achieving the highest scores in all categories. Bold values indicate the highest performance in both

metrics.

FIGURE 8

(a) Comparison of models based on FLOPs (×106 Log-scale) and (b)

on the number of parameters (M) for training.

4.7 GNN reasoning robustness of scarce
data availability

To assess the robustness of PACKETCLIP + GNN Reasoning

under varying levels of data availability, we conducted experiments

using the ACI-IoT-2023 dataset, selecting ET-BERT (Lin et al.,

2022) as a baseline for comparison. Both models were trained on

three different proportions of the training data: 100%, 70%, 50%,

40%, and 30%, while the test set remained consistent across all

experiments to ensure a fair and controlled evaluation. The mAUC,

again, served as the primary performance metric.

Figure 9 presents the results of this experiment. PACKETCLIP +

GNN Reasoning consistently achieved high mAUC scores (∼ 95%)

across all training data splits, demonstrating strong generalization

even with limited data. In contrast, ET-BERT exhibited notable

performance degradation, with mAUC dropping from ∼ 70% at

100% training data to ∼ 50% at 30%. These findings emphasize

the robustness of PACKETCLIP + GNN Reasoning, making it well-

suited for scenarios with constrained training data.

5 Discussions and limitations

In this paper, we introduce PACKETCLIP, a novel framework

that aligns encrypted packet data and natural language explanations

within a shared vector space through contrastive pre-training. Our

FIGURE 9

Robustness against Data Scarcity Analysis by mAUC Comparison of

PACKETCLIP + GNN Reasoning and ET-BERT with Varying Training

Data (100%, 70%, 50%, 40%, 30%).

results show that PACKETCLIP achieves up to a 12% improvement

in zero-shot detection accuracy on novel examples of known classes

compared to static, one-size-fits-all graph-based methods. Instead

of generating explicit human-readable labels, PACKETCLIP enables

querying natural language expressions in a manner similar to CLIP,

providing flexible interpretability for detected events. Furthermore,

we demonstrate that a downstream hierarchical GNN reasoning

module, leveraging the PACKETCLIP joint embedding space, can

be trained to detect traffic anomalies with fewer parameters,

enhancing efficiency in adapting to new cyberattacks.

Despite these strengths, PACKETCLIP also presents several

limitations that highlight opportunities for future work. First,

the quality of the generated knowledge graphs is fundamentally

dependent on the underlying language model: outdated or domain-

misaligned LLMs may introduce irrelevant or redundant concepts,

adding noise to the GNN and slowing inference. Second, although

we demonstrate a reduction in trainable parameters within

the hierarchical GNN framework, the initial knowledge graph

generation and packet embedding steps still require PACKETCLIP

inference, which imposes a hardware burden—particularly because

loading the ET-BERT (Lin et al., 2022) is essential for PACKETCLIP.

Hardware acceleration of the PACKETCLIP encoder therefore

represents an important avenue for future improvement. Third,

our explanation module currently uses a fixed set of templates,

paraphrased by the LLM, but we do not perform explicit validation

of these paraphrased textual expressions for each packet. As a result,

this approach may introduce irrelevant words during pre-training
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and struggle to handle rare or novel attack patterns, potentially

leading to vulnerabilities from unintentional adversarial samples

or insufficient template coverage. Finally, while our experiments

focus on encrypted packet metadata, extending PACKETCLIP to

other modalities—such as host logs or full packet inspections—

would likely require new vocabulary prompts, retraining of

the contrastive encoder, and careful consideration of privacy

implications. Addressing these limitations will further strengthen

PACKETCLIP’s applicability across diverse operational settings and

accelerate its adoption in production security systems.

6 Conclusions

We introduced PACKETCLIP, a multi-modal framework

integrating packet-level data with NL semantics to advance

encrypted traffic classification and intrusion detection. By

combining contrastive pre-training and a downstream hierarchical

GNN reasoning, PACKETCLIP demonstrates robustness in both

performance and efficiency. PACKETCLIP itself achieved an

11.6% higher top-1 accuracy compared to baseline models,

and the downstream GNN reasoning module consistently

delivering superior mAUC scores of approximately 95%, even

with only 30% of the training data. These results highlight

the resilience of hierarchical GNN reasoning in PACKETCLIP

to handle data scarcity and its ability to generalize effectively.

Furthermore, hierarchical GNN module trained by PACKETCLIP

joint embeddings reduces model size by 92% and computational

requirements by 98%, making it highly efficient for real-time

applications in resource-constrained environments like IoT

networks. By providing interpretable semantic insights alongside

robust anomaly detection, PACKETCLIP harmonizes advanced

machine learning techniques and practical cybersecurity solutions,

setting a strong foundation for future developments inmulti-modal

network security frameworks. Integrating NL semantics improves

detection capabilities and offers a more intuitive understanding

of network behaviors, crucial for cybersecurity professionals to

diagnose and respond to threats effectively. Future work includes

analyzing PACKETCLIP’s versatility by applying it to a broader

range of network security tasks and exploring its performance

in diverse network environments and hardware acceleration for

its encoders.
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