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Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental

condition characterized by challenges in communication, social interactions,

and repetitive behaviors. The heterogeneity of symptoms across individuals

complicates diagnosis. Neuroimaging techniques, particularly resting-state

functional MRI (rs-fMRI), have shown potential for identifying neural signatures

of ASD, though challenges such as high dimensionality, noise, and small sample

sizes hinder their clinical application.

Methods: This study proposes a novel approach for ASD detection utilizing deep

learning and advanced feature selection techniques. A hybrid model combining

Stacked Sparse Denoising Autoencoder (SSDAE) and Multi-Layer Perceptron

(MLP) is employed to extract relevant features from rs-fMRI data in the ABIDE

I dataset, which was preprocessed using the CPAC pipeline. Feature selection

is enhanced through an optimized Hiking Optimization Algorithm (HOA) that

integrates DynamicOpposites Learning (DOL) and Double Attractors to improve

convergence toward the optimal subset of features.

Results: The proposed model is evaluated using multiple ASD datasets. The

performance metrics include an average accuracy of 0.735, sensitivity of 0.765,

and specificity of 0.752, surpassing the results of existing state-of-the-art

methods.

Discussion: The findings demonstrate the e�ectiveness of the hybrid deep

learning approach for ASD detection. The enhanced feature selection process,

coupled with the hybrid model, addresses limitations in current neuroimaging

analyses and o�ers a promising direction for more accurate and clinically

applicable ASD detection models.

KEYWORDS

autism detection, deep learning, resting-state functional MRI (rs-fMRI), feature

selection, HikingOptimization Algorithm, dynamic-opposite learning, double attractors

1 Introduction

Autism can be defined as a set of behavioral manifestations that include restricted

activities, barriers to communication, as well as social interaction problems. A more

accurate term for this condition is autism spectrum disorder (ASD) (Lord et al.,

2018). Diagnosis can be made as early as 18 to 24 months, when symptoms become
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distinguishable from typical development and other cognitive or

developmental challenges (Sayers et al., 2023). ASD is classified

under neurodevelopmental disorders in the Diagnostic and

Statistical Manual of Mental Disorders (DSM-5) and is associated

with language impairments, poor social engagement, and limited

or repetitive interests and activities. Parents of children with ASD

face considerable psychological, physical, and financial burdens

(John and Sala, 2018). Various tools have been used to diagnose

ASD, such as the Autism Spectrum Quotient (AQ), the Childhood

Autism Rating Scale (CARS-2), and the Screening Tool for Autism

in Toddlers and Young Children (STAT) (Al-Hendawi et al.,

2023). These assessments help identify symptoms and determine

the severity of the condition, facilitating early intervention and

support. However, there is a pressing need for more advanced

and accurate methods, particularly those employing artificial

intelligence (AI) to enhance the effectiveness of these traditional

techniques.

According to the Global Burden of Disease (GBD) Study, ASD

ranks among the six most common developmental disabilities in

children under 5 years old. The prevalence of ASD has increased

significantly in recent decades, likely due to greater awareness and

improved recognition of the condition (Zeidan et al., 2022). In

2010, approximately 52 million children were diagnosed with ASD,

translating to a prevalence of 7.6 per 1,000 individuals. In 2018,

the Centers for Disease Control and Prevention (CDC) reported

that 1 in 59 children had ASD, a figure that rose to 1 in 44 by

2020 (Zeidan et al., 2022). Studies in Europe and the United States

suggest that ASD diagnoses have increased markedly over the last

two decades, from 0.48% to 3.13% (Zeidan et al., 2022). However,

most research on ASD prevalence in Arab countries has focused

on wealthier nations. A systematic meta-analysis found that ASD

prevalence rates vary across Oman, theUAE, Saudi Arabia, Bahrain,

Kuwait, and Qatar (Sayers et al., 2023). In Egypt, ASD prevalence

estimates have varied significantly, ranging from 5.4 per 1,000 to

as high as 33.6% (Zeidan et al., 2022). However, Egyptian studies

are often limited to specific regions, institutional settings, and small

sample sizes.

Diagnosing ASD remains challenging due to its frequent co-

occurrence with other disorders such as epilepsy, attention deficit

hyperactivity disorder (ADHD), and sensory processing disorders,

often resulting in delayed or missed diagnoses (Simonoff et al.,

2008). Recent research estimates that 1 in 36 children in the

United States are diagnosed with ASD, a figure substantially higher

than in previous decades, attributable to broadened diagnostic

criteria and increased public awareness (Christensen, 2016; Qin

et al., 2024). This growing prevalence places considerable strain on

healthcare systems, with families often incurring annual therapy

and treatment costs exceeding 60, 000 per child, underscoring the

critical need for accessible and advanced detection tools (Lavelle

et al., 2014; Huda et al., 2024).

Traditional ASD diagnosis primarily relies on parent-reported

developmental milestones and behavioral observations, which are

inherently subjective and susceptible to cultural and gender biases

(Patil et al., 2024; Bahathiq et al., 2022). Consequently, many

adolescents and adults, especially females without intellectual

disabilities, remain undiagnosed until secondary mental health

issues arise (Giarelli et al., 2010). In response, neuroimaging

techniques such as resting-state functional MRI (rs-fMRI) have

gained prominence by revealing abnormal connectivity patterns

within brain networks related to social cognition and sensory

processing (Supekar et al., 2013). Yet, bringing such findings to

the clinical realm necessitates surmounting the computational

challenges: one rs-fMRI dataset comprises tens of thousands of

regional connectivity features but scarcely over 1,000 subjects

even in public databases like the Autism Brain Imaging Data

Exchange (ABIDE) (Di Martino et al., 2014). Therefore, there is an

urgent imperative to develop effective diagnostic methods for ASD,

which not only facilitate early intervention but also play a crucial

role in managing the condition’s global prevalence. Implementing

such diagnostic tools can provide timely support and resources,

ultimately improving outcomes for individuals with ASD and

their families.

Machine learning (ML) offers a promising solution by detecting

subtle neural signatures associated with ASD. Nonetheless, high

dimensionality and noise in neuroimaging data continue to

challenge model accuracy (Mellema et al., 2022; Fares et al.,

2025). Feature selection (FS) techniques, such as recursive feature

elimination, have become essential for removing redundant

connections while preserving biomarkers related to social attention

and executive function (Mellema et al., 2022; Bahathiq et al., 2022;

Fares and Abd Elaziz, 2025). Hybrid approaches that combine

deep learning (DL) with FS have demonstrated notable success.

For example, methods integrating the Adaptive Bacterial Foraging

(ABF) algorithm with Support Vector Machine Recursive Feature

Elimination (SVM-RFE) have shown high performance in ASD

detection (Lamani and Benadit, 2023). Similarly, convolutional

neural networks (CNNs) hybridized with Elephant Herding

Optimization (EHO) algorithms have been applied to multiple

fMRI datasets, yielding promising results in identifying ASD

patients (Chola Raja and Kannimuthu, 2023).

However, despite such progress, various challenges remain. The

biological heterogeneity of ASD implies that no neural marker is

universally applicable; connectivity changes differ between toddlers

and adults, between verbal and non-verbal individuals, or between

those with and without genetic syndromes (Alzubaidi et al., 2023).

Reproducibility is also constrained by small sample sizes and

heterogeneous preprocessing pipelines at imaging sites (Schielen

et al., 2024; Chola Raja and Kannimuthu, 2023).

This paper aims to propose a modified version of the

autism detection model based on the strengths of DL and FS

techniques. In general, the DL model combining a Stacked Sparse

Denoising Autoencoder (SSDAE) and a Multi-Layer Perceptron

(MLP) is used to extract the relevant features (Liu et al., 2024).

Following by using an enhanced version of Hiking Optimization

Algorithm (HOA) as an FS technique (Oladejo et al., 2024). This

enhancement is conducted through using Dynamic Opposites

Learning (DOL) (Ahmad et al., 2022) and Double Attractors (He

and Lu, 2022) to enhance the convergence toward the optimal

subset of relevant features. These approaches have been established

in their performance in different applications. For example, DOL

has applied engineering problems (Cao et al., 2023; Xu et al., 2020),

job shop scheduling (Yang et al., 2022), IIR system identification

(Niu Y. et al., 2022), and skin cancer detection (Dahou et al.,

2023). Has applied to enhance design of structures (Kaveh and

Yousefpoor, 2024), color image compression (Yao et al., 2025), and

KELM diabetes classification (Zhu et al., 2025).
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The contributions of this study can be stated as follows:

• Development of an autism detection approach using DL and

an enhanced FS model based on a modified version of the

HOA algorithm.

• Integration of SSDAE and MLP for learning feature

representations from rs-fMRI data and performing

feature extraction.

• Introducing a modified version of HOA using the dynamic

opposite-based learning and double attractors.

• Evaluation of the performance of the developed autism

detection technique onmultiple datasets and comparison with

other well-known methods.

The organization of this paper is given as follows: Section 2

introduces the related works of using different AI models to detect

autism. Section 3 presents the basic information of the Hiking

Optimization Algorithm (HOA), Dynamic-Opposite Learning

(DOL), and Double Attractors. The stages of the proposed autism

detection model are presented in section 4. The experimental

results and discussion are introduced in Section 5. Finally, the

conclusion and future works are presented in Section 6.

2 Related works

The development of AI-based models for detecting ASD

has seen notable progress, particularly with the integration

of FS techniques and DL algorithms. Over the past decade,

various studies have explored innovative methods for leveraging

neuroimaging data, such as rs-fMRI, in combination with DL

approaches. This section will review the most influential works that

have contributed to the development of ASD detection models,

highlighting key advancements in both AI methodologies and

neuroimaging techniques used in ASD diagnosis.

Earlier work of Di Martino et al. (2014) and Guan and

Liu (2021) described Autism Brain Imaging Data Exchange

(ABIDE), a multi-site rs-fMRI repository, allowing for high-

dimensional analysis of functional connectivity in ASD, and

driving development in ML techniques. Nielsen et al. (2013)

displayed multisite fMRI classification with SVMs, but with

high-dimensional and site-related biases limiting it. The DL

transition began with graph-based techniques. Parisot et al. (2018)

started with graph convolutional networks (GCNs) representing

functional connectivity in brain graphs, with 70% accuracy in

ABIDE through encoding non-linear relationships between regions

of interest (ROIs). In parallel, Heinsfeld et al. (2018) utilized

convolutional neural networks (CNNs) for raw fMRI time-series,

with renewed emphasis on automatization of feature extraction

in an effort to reduce manual ROI selection. Hybrid architectures

soon dominated: Eslami et al. (2019) combined SVM-RFE FS

with 3D CNNs, and 88% accuracy in ABIDE through isolating

discriminative connections in the default mode network (DMN).

Similarly, Wang et al. (2020) designed a multi-atlas feature

ensemble scheme and showed FS preceding training with DL aided

generalizability improvement over ABIDE sites.

FS techniques specific to neuroimaging data gained

prominence. Niu X. et al. (2022) optimized site-wise feature

reproducibility with LASSO regularization, while Abraham et al.

(2017) proposed a deep embedded feature selection (DEFS)

algorithm, training FS layers and autoencoders together, and

discovering cerebellar and somatosensory connectivity to be

significant biomarkers. For multi-modal data, Abbas et al. (2023)

merged structural MRI and fMRI features with attention, mapping

87% accuracy for ABIDE-II. Graph-methods saw a quantum jump

with Li et al. (2020), utilizing graph neural networks (GNNs)

for investigating modular connectivity profiles, mapping 80%

accuracy, and indicating thalamocortical impairment in ASD.

Further, hybrid meta-heuristic algorithms along with

CNNs achieved 98.6% on the ABIDE dataset (Chola Raja

and Kannimuthu, 2023). Likewise, DL models like YOLOv8

while performing the analysis on facial images, showed 89.64%

classification accuracy with a F1-score of 89% (Gautam et al., 2023).

The proposed adaptive bacterial foraging optimization along with

SVM-RFE and mRMR and followed by the graph convolutional

network classifier obtained an accuracy of 97.512% (Lamani and

Benadit, 2023).

Liu et al. (2024) introduced MADE-for-ASD, which

integrates the power of various brain atlases and demographic

information with fMRI. It presented an accuracy as high as

96.40% by highlighting the essential ASD-relevant brain regions.

Furthermore, this efficient model is extendable and available

openly for public adoption. A meta-analysis in Ding et al. (2024)

emphasized the classification performance of these deep-learning

models in ascertaining the disorder amongst children; thereby it

may be exploited in extending present diagnostic methodologies.

Chen et al. (2024) introduced DeepASD, an adversary-regularized

GNN, aligning feature distributions between modalities (fMRI +

SNPs), and mapping state-of-the-art 93% AUC-ROC performance

for ABIDE-II. While the study Joe (2024) proposed using

AI robots integrated with visual strategies to enhance social

and communication skills in children with ASD. The author

employed interactive robots to deliver structured visual stimuli and

personalized learning experiences to improve engagement and skill

retention. The author used a tuned CNNmodel, and it achieved an

accuracy of 96% in the detection of ASD.

The study of Khan and Katarya (2025) proposes a new

scheme, WS-BiTM, fusing White Shark Optimization (WSO)

for FS and Bidirectional Long Short-Term Memory (Bi-LSTM)

for classification for ASD improvement. WSO is utilized for

selecting significant features out of sets of datasets for autism

screening, and then these are processed with Bi-LSTM for efficient

sequential processing. WSO-Bi-LSTM overcomes overfitting and

computational efficiency issues effectively. Baseline algorithms

outdo through comparative studies with 97.6%, 96.2%, and 96.4%

accuracy for datasets for toddlers, adults, and kids, respectively, and

proving its efficiency as a dependable tool for ASD classification.

The contribution of Abu-Doleh et al. (2025) introduces a

two-step model for improving ASD classification with volumetric

brain MRI images. First, subcortical structures are extracted and

processed with a 3D autoencoder in order to detect regions of

interest for analysis for ASD-related analysis. Secondly, these

regions are classified with a Siamese Convolutional Neural Network

(SCNN). SCNN achieved 66% accuracy with regions determined

with the Mutual Information FS criterion. This contribution

identifies the potential for fusing SCNNs and autoencoders for
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brainMRI-based ASD improvement. Jabbar et al. (2025) develop an

ML model for early ASD screening by combining parent-reported

questionnaires plus video analysis of child behavior. They achieved

high accuracy through feature engineering by using data balancing

techniques. Their hybrid algorithm outperforms traditional tools

in AUC (0.92). The solution enables low-cost, mobile-friendly

screening, particularly beneficial in resource-limited settings where

clinical access is restricted.

3 Background

Optimization algorithms play a crucial role in enhancing the

effectiveness of AI models by improving FS processes and model

performance. Among these, the Hiking Optimization Algorithm

(HOA) has shown promise as an effective tool for solving

complex optimization problems, due to its human-inspired search

mechanism that mirrors the dynamics of hiking. This section

will introduce the key concepts behind HOA, Dynamic-Opposite

Learning (DOL), and Double Attractors, which serve as the

foundational techniques for the proposed autism detection model.

3.1 Hiking Optimization Algorithm

The Hiking Optimization Algorithm (HOA) is a metaheuristic

inspired by hiking, where hikers navigate varying terrains to

reach a peak (Oladejo et al., 2024). Similar to the unpredictable

landscapes of hiking, optimization problems feature complex

search spaces. HOA uses Tobler’s Hiking Function (THF) to model

hikers’ movement, considering terrain elevation and distance.

This approach mimics hikers’ strategies of avoiding steep paths

to maintain a steady pace, helping agents in HOA find optimal

solutions while avoiding local optima. The algorithm’s human-

inspired structure makes it an efficient tool for solving complex

optimization problems.

3.1.1 Initialization
In the first step of the HOA, the initial positions of the

hikers—analogous to search agents—are established randomly.

This method ensures diversity in the search space, promoting a

broad exploration of potential solutions. The position of each hiker,

denoted as Xi(t), is determined within a defined search space. This

space is bounded by the upper limit UBi and the lower limit LBi for

each dimension j of the decision variable. The initialization process

follows the equation:

Xi(t) = (UBi − LBi) × rand()+ LBi (1)

where rand() is a uniformly distributed random variable within the

range [0, 1].

3.1.2 Modeling hiker speed using Tobler’s Hiking
Function

The next step is incorporating the widely recognized Tobler’s

Hiking Function (THF), a mathematical model formulated by the

geographer Waldo Tobler. THF is an exponential function that

estimates hikers’ velocity based on the terrain’s steepness. This

function plays a crucial role in HOA, as it simulates the movement

dynamics of search agents (hikers) within the optimization space.

The velocity of a hiker i at iteration t, denoted as Wi(t), is

computed using the following equation:

Wi(t) = 6e−3.5|Si,t+0.05| (2)

where Si,t represents the slope of the terrain at the hiker’s position.

The slope itself is determined by the elevation change (dh) and the

distance traveled (dx), given by:

Si,t =
dh

dx
= tan θi,t (3)

where θi,t is the inclination angle of the terrain, constrained within

the range [0◦, 50◦].

The integration of THF into HOA ensures that the movement

of hikers (agents) is guided by realistic terrain-based constraints.

In essence, steeper inclinations result in slower movement

speeds, mirroring real-world hiking behaviors. By leveraging this

function, HOA dynamically adjusts the step sizes of agents

in the optimization process, enhancing both exploration and

exploitation capabilities.

3.1.3 Exploitation phase
The exploitation phase of the HOA is responsible for refining

the search process by guiding hikers (agents) toward promising

regions in the optimization landscape. This phase leverages the

social intelligence of hikers as a group and their individual cognitive

abilities. A key parameter known as the sweep factor (SF) plays

a crucial role in defining the balance between exploitation and

exploration. The SF regulates the influence of the lead hiker on

the movement of other hikers, controlling the extent of their

deviation from the leader’s trajectory. A higher SF value directs the

HOA toward the exploitation phase, allowing agents to converge

toward promising solutions. Conversely, a lower SF encourages

exploration, enabling the algorithm to investigate diverse regions of

the search space. The velocity of a hiker i at iteration t is updated by:

Wi(t + 1) = Wi(t)+ γ × (Xbest − αi(t)Xi(t)) (4)

where γ is a random number within the range [0, 1]. Wi(t + 1)

and Wi(t) represent the actual and initial velocities of the hiker,

respectively. The variable Xbest corresponds to the position of the

lead hiker, representing the best solution found so far. Additionally,

αi(t) denotes the sweep factor (SF), which takes values in the

range [1, 3].

The updated position of hiker i at the next iteration,

incorporating its velocity, is expressed as:

Xi(t + 1) = Xi(t)+Wi(t) (5)

The complete implementation details of the Hiking

Optimization Algorithm, including its initialization, velocity
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1: Set the parameters: number of hikers (N), maximum

iterations (Max_Iter), upper bound (UB), lower

bound (LB), and dimensions of the problem (D).

2: Initialize the positions of the hikers Xi randomly

within the bounds [UB,LB].

3: Calculate the fitness of each hiker and allocate

the best of them.

4: while (t < Max_Iter) do

5: for each hiker i = 1 to N do

6: Determine the inclination angle θi,t and

calculate the slope using Equation 3.

7: Compute the initial hiking velocity Wi(t)

using Equation 2.

8: Update the current velocity Wi(t + 1) of Xi

using Equation 4.

9: Update the hiker’s position Xi(t + 1) using

Equation 5.

10: Compute the fitness value Fitn of update β.

11: if Fitn < Fiti then

12: Update Xi = Xn.

13: Update Fiti = Fitn;

14: end if

15: end for

16: t=t+1

17: end while

Algorithm 1. Pseudo-code of the HOA algorithm.

updates, and search mechanisms, are outlined in the pseudocode

provided in Algorithm 1.

3.2 Dynamic-opposite learning

Metaheuristic optimization algorithms often struggle with

premature convergence, leading to stagnation in local optima.

Dynamic-Opposite Learning (DOL) is a recent strategy designed

to enhance both exploration and exploitation by dynamically

adjusting the search space (Xu et al., 2020). DOL builds upon

Opposite-Based Learning (OBL) (Wang et al., 2011; Rahnamayan

et al., 2007; El-Abd, 2011), which improves convergence by

considering opposite solutions (Tizhoosh, 2005). Traditional OBL

methods refine this concept but remain susceptible to local

optima (Rahnamayan et al., 2007; Ergezer et al., 2009). To

overcome this, DOL introduces an asymmetric and dynamically

expanding search space, increasing population diversity and

reducing stagnation. A random opposite number is used to create

asymmetry, preventing premature convergence, while a weighting

factor balances exploration and exploitation. By integrating

DOL into metaheuristic frameworks, optimization performance is

significantly enhanced, making it a powerful approach for solving

complex problems.

The concept behind DOL is to expand the search space

dynamically, rather than symmetrically, by introducing a random

opposite number XRO, defined as:

XRO = rand× XO, where rand ∈ [0, 1] (6)

XO
j = aj + bj − Xj, j = 1, 2, ...,D (7)

where [a, b] represents the search domain of X. D is the dimension

of X. In general, replacing the standard opposite number XO with

XRO transforms the search into an asymmetric adaptive process,

preventing premature convergence. A new candidate solution XDO

is then selected as:

XDO = X + rand(XRO − X) (8)

To maintain feasibility, XDO is adjusted if it falls outside the

search boundaries [a, b]. However, as iterations progress, the search

space may shrink, reducing the algorithm’s exploitation capability.

To counteract this, a weighting factor w is introduced, refining the

final formulation:

XDOL = X + w× (XRO − X) (9)

where w is a positive constant ensuring an optimal balance between

exploration and exploitation.

3.2.1 Dynamic opposite number
Let X be a real number in the search space, where X ∈ [a, b]. To

introduce dynamic adaptation, the dynamic opposite number XDO

is defined as:

XDO = X + w× rand× (XO − X), (10)

where XO represents the opposite number of X as defined earlier in

the OBL in Equation 7, w is a positive weighting factor controlling

the expansion range, and rand is a random value sampled from

(0, 1). The introduction of w ensures a balanced adaptation,

preventing excessive search space contraction while enhancing

exploration capabilities.

3.2.2 Dynamic opposite point in
multi-dimensional space

Extending the DOL approach to higher dimensions, consider

X = (X1,X2, . . . ,XD) as a point in a D-dimensional search space,

where each coordinate Xj falls within the predefined range [aj, bj].

The opposite point in this space is denoted by XO
j , as defined in

Equation 7. The dynamic opposite point is formulated as:

XDO
j = Xj + w× rand× (rand× XO

j − Xj), j = 1 :D (11)

3.2.3 DOL-based optimization
The proposed DOL strategy is applied iteratively to guide the

optimization process. Given a population of candidate solutions

X, each point undergoes transformation based on the dynamic

opposite learning mechanism. The newly generated opposite

candidates XDO = (XDO
1 ,XDO

2 , . . . ,XDO
D ) are assessed based on

their objective function values.

The selection process follows a simple criterion:
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If the fitness of XDO surpasses that of X, the new candidate

is accepted. Otherwise, XDO is discarded, and the original X

is retained.

To ensure boundary constraints are maintained, each XDO
j

must satisfy:

XDO
j ∈ [aj, bj], j = 1 :D (12)

If any XDO
j falls outside this range, it is reinitialized as a random

value within [aj, bj].

3.3 Double attractors

In this section, we introduce Double attractors as one of the

most important operators that are used to enhance the balancing

between exploration and exploitation (He and Lu, 2022). In

general, the solutions in the metaheuristic algorithms are updated

their values according to the shared information and personal

knowledge. Moreover, the solutions during the updating process

move toward the feasible solution that is considered as an attraction

point. However, the process of balance between the main phases of

MH techniques, named exploration and exploitation, is considered

one of the main challenges that the MH algorithms suffer from

them. Therefore, DA is used to handle this challenge, and this is

achieved through using two attractors named L1 and L2.

Following (He and Lu, 2022), L1 is defined as in Equation 13.

L1ij(t) = φ1 × pij(t)+ (1− φ1)× pbj(t), i = 1, 2, ...,N (13)

In Equation 13, pij(t) indicates the historical best value at jth

dimension of Xi the iteration t. Whereas pbj(t) indicates the value

of Xb among dimension j among tth iteration. φ1 is a parameter

that linearly decreased over iterations and it is defined.

φ1 = (β2 − β1)×
T − t

T
+ β1, β1, β2 = 0.9 (14)

where T is the maximum number of iterations.

Moreover, the second attractor L2 is defined as:

L2ij(t) = φ2 × pij(t)+ (1− φ1)× pbj(t), i = 1, 2, ...,N (15)

where φ2 denotes a constant parameter.

Finally, the solution can be updated using either L1 and L2 as

defined in Equation 16.

Xat
ij =

{

X1
ij if f (X1

ij) < f (X2
ij)

X2
ij otherwise

(16)

X1
ij =

{

L1ij + β × |mj − Xij(t)|ln
1
u if rand < 0.5

L1ij − β × |mj − Xij(t)|ln
1
u otherwise

(17)

X2
ij =

{

L2ij + β × |mj − Xij(t)|ln
1
u if rand < 0.5

L2ij − β × |mj − Xij(t)|ln
1
u otherwise

(18)

4 Proposed method

Building on the foundational concepts of HOA, DOL, and

Double Attractors introduced in the previous section, this section

presents the developed autism detection model. The model

integrates DL techniques with the modified HOA to enhance the

diagnostic process by extracting meaningful features from raw data

and optimizing FS for improved diagnostic accuracy.

4.1 Feature extraction process

The feature extraction process in the proposed framework

involves leveraging multi-atlas fMRI data to identify discriminative

features for ASD diagnosis following the proposed model and

process in Liu et al. (2024). Functional connectivity matrices are

derived from three brain atlases (AAL, CC, EZ) using Pearson

correlation coefficients, which are flattened into one-dimensional

vectors. These vectors are input into a Stacked Sparse Denoising

Autoencoder (SSDAE) for pre-training, where sparsity and noise

constraints are applied to learn robust feature representations. The

SSDAE compresses the data into a reduced encoding, which is

then fine-tuned using the MLP. The final 100-unit layer of the

MLP extracts learned features, which are subsequently processed

by an FS algorithm to identify the most relevant features for

classification. This approach ensures the extraction of meaningful

and discriminative features frommulti-atlas fMRI data, optimizing

the model for ASD diagnosis.

4.2 Feature selection process

The modified HOA plays a pivotal role in the FS process by

refining the search for the most relevant features that contribute

to accurate ASD detection. By integrating dynamic OBL, HOA

enhances the ability to exploit known good solutions while avoiding

local optima. The introduction of DA further improves the balance

between exploration and exploitation, allowing the algorithm

to explore diverse regions of the feature space and converge

more effectively on the most discriminative features for ASD

classification. This makes the HOA an essential tool for improving

the diagnostic accuracy of the proposed model, as it ensures that

only the most relevant and informative features are used for

classification, which directly impacts the detection of ASD.

Followed by generating a set of solutions X and using its

opposition using DOL as defined in Equation 11. Then determining

the bestN solutions from X∪XDOL according to their fitness value.

The next process is to update the solutions X using the operators of

HOA and DA. This process of updating is conducted until the stop

conditions are met. The details of the proposed model are given

as follows.

4.2.1 First stage
This stage aims to generate a suitable population X which

has N solutions based on the DOL techniques. To achieve this

task, the first step is to use Equation 19 to set the initial value for

these solutions.

Xi = r5 × (Uj − Lj)+ Lj, j = 1, 2, ...,D, i = 1, 2, ...,N (19)
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where D denotes the dimension of X and r5 ∈ [0, 1] refers to

a random value. We apply Equation 11 to generate the opposite

solutions XDO for each Xi, i = 1, 2, ...,N. Then we compute the

fitness value for X and XDO, then select the best N solutions from

X ∪XDO to form the initial solution X. In general, this step leads to

enhancing the convergence rate toward the optimal solution.

4.2.2 Second stage
This second stage aims to enhance the value of solutions X

based on the operators of HOA and DA. This process is conducted

by determining the best solution Xb.

The next step is to determine the selected features using the

current solution Xi, and this is achieved by using the binary of Xi as

defined in the following formula.

BXij=

{

1 if r6 < 0.5

0 otherwise
(20)

In Equation 20, r6 ∈ [0, 1] denotes a random value. After that,

we evaluate the quality of the selected features which correspond

to the ones in BXi, and this is performed through computing the

fitness value (Fiti) as in the following equation.

Fiti=ρ×γ+ (1−ρ)×

(

|BXij|

D

)

(21)

In Equation 21, |BXij| refers to the number of selected features.

γ denotes the error of classification using the KNN classifier (we set

K = 5). ρ∈[0, 1] refers to a parameter used to balance between the

two terms of Equation 21.

The bestXb solution with the best Fit is then identified. Then we

apply the operators of HOA as defined in Equations 2–5. Then we

used the DA to enhance X, however, to reduce the time complexity

of this stage, we used the following formula.

Xij=

{

Xat
ij if mod(t, 20) == 0

Xij otherwise
(22)

The steps of this stage are repeated until the stop conditions are

met. Then the best solution is returned as the output of this stage.

4.2.3 Third stage
Finally, we used the testing set to assess the quality of the

selected features, and this was conducted by generating the binary

version of Xb is obtained using Equation 20. Then we select the

relevant features from the testing set that correspond to the ones

in BXb and assess the quality of those features by computing the

performance metrics of the predicted values obtained using the

trained KNN model. The steps of the developed model are given

in Figure 1.

5 Experimental results and discussion

Having outlined the architecture and processes of the proposed

autism detection model, this section presents the results of the

proposed autism detection model, including a comprehensive

analysis of its performance. The effectiveness of the model is

evaluated through various experiments, and its performance

is compared with existing models to assess its strengths

and limitations.

5.1 Dataset preparation

The rs-fMRI data used in this study were sourced from

the ABIDE I dataset, comprising 505 autistic individuals and

530 typical controls (TCs). The dataset includes subjects with

ASD and TC, with age ranges from 10.0 to 35.0 years for

ASD and 10.0 to 33.7 years for TC across different sites.

The data is preprocessed using the Configurable Pipeline for

the Analysis of Connectomes (CPAC) pipeline, which includes

essential steps such as slice timing correction, voxel intensity

normalization, motion correction, nuisance signal removal, global

signal regression, band-pass filtering, and spatial registration.

After preprocessing and quality control, the final dataset consists

of 1,035 samples distributed as follows: 623 samples for the

training set, 308 samples for the validation set, and 104 samples

for the test set. Functional connectivity matrices are generated

using three brain atlases (AAL, CC, EZ), and the mean time

series for each ROI is calculated following (Liu et al., 2024).

These matrices are flattened into one-dimensional vectors, forming

the input for the feature extraction model. Finally, we derived

three datasets from ABIDE I based on the EZ, AAL, and

CC atlases, designated as Dataset-1, Dataset-2, and Dataset-

3, respectively.

5.2 Model configurations

The model architecture integrates an SSDAE followed by an

MLP. For the SSDAE, pre-training was conducted with a learning

rate of 0.001 using gradient descent (GD) and a batch size of

100. Sparsity and noise constraints were applied to enhance robust

feature learning, with dropout set to 0.5 to reduce overfitting.

The SSDAE comprises two autoencoder layers: the first encoding

layer has 1,000 units, and the second reduces the representation to

600 units. The MLP was subsequently fine-tuned with a learning

rate of 0.0005 using stochastic gradient descent (SGD) and a

smaller batch size of 10 to allow for finer updates. Dropout was

set to 0.3 for the MLP. The final layer of the MLP includes

100 units, outputting the learned features for each atlas. The

number of training iterations was selected based on convergence

behavior: the first SSDAE autoencoder was trained for 700

iterations, and the second for 1,000 iterations to ensure adequate

reconstruction performance.

5.3 Evaluation metrics

The effectiveness of the suggested method, along with the

performance of the comparison algorithms, is assessed using the

following evaluation metrics:
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FIGURE 1

Phases of the developed autism detection based on the MHOA algorithm.

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

In this formula, TP and TN denote the true positive and

true negative counts, while FP and FN represent the false

positives and false negatives, respectively.

• Sensitivity:

Sensitivity =
TP

TP + FN
(24)

• Standard Deviation (StDev):

StDev =

√

√

√

√

1

N

N
∑

i=1

(xi − x̄)2 (25)

Where,N refers to the total number of runs, xi denotes the

individual values, and x̄ is the mean of those values.

5.4 Results and discussion

To assess the effectiveness of the proposed MHOA-based

ASD detection model, experiments were conducted using multiple

datasets derived from the ABIDE I database. Each dataset was

preprocessed using a consistent pipeline to extract functional

connectivity matrices, which were then transformed into feature

vectors for analysis. The experiments used identical training

and evaluation procedures across all algorithms to ensure a

fair comparison.

The MHOA method was compared against six metaheuristic

optimization algorithms: Hiking Optimization Algorithm (HOA),

slime mold algorithm (SMA) (Ewees et al., 2023), Attraction-

repulsion optimization algorithm (AROA) (Cymerys and Oszust,

2024), Harris hawk optimizer (HHO) (Abd Elaziz and Yousri,

2021), Great Wall Construction Algorithm (GWCA) (Guan et al.,

2023), and gray wolf optimizer (GWO) (Helmi et al., 2021).

These algorithms were selected based on their demonstrated

success in FS and high-dimensional search spaces. All methods

were evaluated using a k-nearest neighbors (KNN) classifier

with consistent parameter settings. Evaluation metrics included

accuracy, sensitivity, AUC, fitness value, and the number of selected

features. The same classifier and dataset splits were applied to each

method to ensure consistent benchmarking.

The proposed approach introduces a hybrid architecture

combining SSDAE and MLP for feature representation, integrated

with an enhanced optimization framework based on a modified

Hiking Optimization Algorithm. The use of Dynamic Opposite

Learning increases population diversity, while the Double

Attractors mechanism improves convergence toward better

feature subsets. These enhancements were specifically designed
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TABLE 1 Results of the Dataset-1.

Measure MHOA HOA SMA AROA HHO GWCA GWO

Accuracy Mean 0.7019 0.6779 0.6635 0.6442 0.6490 0.6587 0.6298

StDev 0.0272 0.0068 0.0136 0.0136 0.0204 0.0068 0.0476

Best 0.7212 0.6827 0.6731 0.6538 0.6635 0.6635 0.6635

Worst 0.6827 0.6731 0.6538 0.6346 0.6346 0.6538 0.5962

Sensitivity Mean 0.7400 0.7200 0.6700 0.7000 0.6600 0.7200 0.6800

StDev 0.0566 0.0283 0.0424 0.0000 0.0283 0.0000 0.0283

Best 0.7800 0.7400 0.7000 0.7000 0.6800 0.7200 0.7000

Worst 0.7000 0.7000 0.6400 0.7000 0.6400 0.7200 0.6600

AUC Mean 0.7668 0.7318 0.7161 0.6678 0.7239 0.7092 0.7100

StDev 0.0111 0.0034 0.0327 0.0079 0.0259 0.0164 0.0352

Best 0.7746 0.7342 0.7392 0.6733 0.7422 0.7207 0.7349

Worst 0.7590 0.7294 0.6930 0.6622 0.7056 0.6976 0.6851

Fitness value Mean 0.2777 0.2732 0.3027 0.3102 0.2689 0.3664 0.2698

StDev 0.0073 0.0048 0.0088 0.0831 0.0281 0.0040 0.0253

Best 0.2725 0.2698 0.2964 0.2514 0.2490 0.3635 0.2519

Worst 0.2828 0.2766 0.3089 0.3689 0.2887 0.3692 0.2876

Features no. Best 65.00 102.00 87.00 262.00 92.00 415.00 116.00

StDev 16.47 7.78 66.26 167.58 94.75 24.04 31.82

Mean 76.00 107.50 134.50 380.50 159.00 432.00 138.50

to address the high dimensionality and noise in rs-fMRI data

and contribute to improved classification outcomes across

the datasets.

The results, summarized in Tables 1–3, demonstrate that

MHOA consistently achieved competitive performance compared

to the other algorithms in most evaluation metrics.

Table 1 lists the numerical results for DATASET-1. In the table,

the accuracy results demonstrated thatMHOA achieved the highest

mean accuracy, followed closely by HOA and SMA. The stability

of MHOA was slightly lower than HOA, as indicated by its higher

standard deviation. However, its best and worst accuracy values

remained superior to those of the other methods. SMA exhibited

moderate performance, with AROA and HHO showing lower

mean values. GWO achieved the lowest accuracy.

In terms of sensitivity, MHOA ranked first, achieving the

highest mean value. HOA and GWCA followed with comparable

mean sensitivity scores, while AROA and GWOwere positioned in

the middle. HHO showed the lowest mean sensitivity. The standard

deviation analysis revealed that AROA and GWCA had the most

stable results, while MHOA exhibited intermediate stability. The

best sensitivity values confirmed MHOA’s advantage, as it reached

the highest observed value, while the worst results indicated

that GWCA achieved the highest stability, followed by MHOA

and HOA.

Regarding the AUC metric, MHOA achieved the highest

mean, indicating superior overall classification performance. HOA

and HHO also showed competitive results, with SMA ranking

slightly lower. AROA exhibited the lowest mean AUC. Standard

deviation values indicated that HOA maintained the most stable

performance, whereas SMA and GWO showed greater variability.

The best and worst AUC values showed MHOA’s effectiveness, as it

outperformed the compared methods.

For the fitness value, HHO exhibited the best mean. HOA

and GWO followed closely, with MHOA ranking slightly lower.

However, the standard deviation results indicated that MHOA

and HOA provided more stable optimization performance than

HHO and AROA, which had higher variance. The best and worst

fitness values showed that HHO maintained a strong optimization

capability, while GWCA had the highest worst fitness value.

The FS results revealed that MHOA achieved the lowest

number of selected features in the Best-case scenario. SMA

and HOA followed, while GWCA selected the highest number

of features. The standard deviation results indicated that HOA

had the most stable FS followed by MHOA, while AROA and

HHO exhibited greater variability. The mean values confirmed

that MHOA consistently selected fewer features than the other

methods and demonstrated its efficacy in reducing dimensionality

while preserving classification performance. Figure 2 presents a

comparison of the algorithms’ performance on Dataset-1 across

Accuracy, Sensitivity, and AUC metrics.

As shown in Figure 2, the MHOA algorithm consistently

outperformed other algorithms across all three key metrics:

accuracy, sensitivity, and AUC. Notably, MHOA achieved

the highest average accuracy of 0.7019, indicating improved

classification capability. These results validate the effectiveness

of combining SSDAE-based feature extraction with the
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TABLE 2 Results of the Dataset-2.

Measure MHOA HOA SMA AROA HHO GWCA GWO

Accuracy Mean 0.6635 0.6442 0.6442 0.6490 0.6490 0.6490 0.6442

StDev 0.0136 0.0000 0.0136 0.0068 0.0068 0.0068 0.0000

Best 0.6731 0.6442 0.6538 0.6538 0.6538 0.6538 0.6442

Worst 0.6538 0.6442 0.6346 0.6442 0.6442 0.6442 0.6442

Sensitivity Mean 0.7300 0.7100 0.7400 0.7000 0.7300 0.7200 0.7200

StDev 0.0424 0.0141 0.0283 0.0000 0.0141 0.0000 0.0000

best 0.7600 0.7200 0.7600 0.7000 0.7400 0.7200 0.7200

Worst 0.7000 0.7000 0.7200 0.7000 0.7200 0.7200 0.7200

AUC Mean 0.6931 0.6873 0.6711 0.6839 0.6794 0.6781 0.6839

StDev 0.0076 0.0064 0.0113 0.0060 0.0028 0.0009 0.0058

Best 0.6985 0.6919 0.6791 0.6881 0.6814 0.6787 0.6880

Worst 0.6878 0.6828 0.6631 0.6796 0.6774 0.6774 0.6798

Fitness value Mean 0.1658 0.3484 0.2846 0.2626 0.2877 0.3482 0.3187

StDev 0.0036 0.0047 0.0089 0.0176 0.0201 0.0065 0.0230

Best 0.1633 0.3450 0.2784 0.2501 0.2735 0.3436 0.3025

Worst 0.1683 0.3517 0.2909 0.2751 0.3019 0.3528 0.3349

Features no. Best 16.00 74.00 10.00 41.00 48.00 58.00 51.00

StDev 3.54 1.41 14.85 0.71 7.78 5.66 10.61

Mean 18.50 75.00 20.50 41.50 53.50 62.00 58.50

TABLE 3 Results of the Dataset-3.

Measure MHOA HOA SMA AROA HHO GWCA GWO

Accuracy Mean 0.8382 0.8261 0.8164 0.8333 0.8309 0.8285 0.8333

StDev 0.0034 0.0137 0.0137 0.0034 0.0068 0.0171 0.0034

Best 0.8406 0.8357 0.8261 0.8357 0.8357 0.8406 0.8357

Worst 0.8357 0.8164 0.8068 0.8309 0.8261 0.8164 0.8309

Sensitivity Mean 0.8257 0.7936 0.7890 0.8165 0.8211 0.8028 0.8211

StDev 0.0000 0.0195 0.0130 0.0000 0.0065 0.0324 0.0065

best 0.8257 0.8073 0.7982 0.8165 0.8257 0.8257 0.8257

Worst 0.8257 0.7798 0.7798 0.8165 0.8165 0.7798 0.8165

AUC Mean 0.9099 0.8980 0.9006 0.9065 0.9085 0.9008 0.9065

StDev 0.0013 0.0018 0.0045 0.0010 0.0028 0.0059 0.0029

Best 0.9108 0.8993 0.9038 0.9072 0.9105 0.9050 0.9086

Worst 0.9091 0.8967 0.8974 0.9058 0.9065 0.8966 0.9045

Fitness value Mean 0.2100 0.2048 0.1826 0.2382 0.2681 0.2029 0.2358

StDev 0.0257 0.0084 0.0021 0.0274 0.0018 0.0034 0.0300

Best 0.1919 0.1989 0.1811 0.2188 0.2668 0.2005 0.2146

Worst 0.2282 0.2108 0.1841 0.2576 0.2694 0.2053 0.2570

Features no. Best 35.00 15.00 20.00 57.00 73.00 22.00 36.00

StDev 16.26 9.90 12.12 6.36 13.44 15.56 29.70

Mean 46.50 22.00 21.50 61.50 82.50 33.00 57.00
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FIGURE 2

Results of accuracy, sensitivity, and AUC for Dataset-1.

modified HOA in capturing discriminative features from

rs-fMRI data.

Table 2 presents the results of the DATASET-2. In the table,

MHOA achieved the highest mean accuracy, followed closely by

AROA, HHO, and GWCA, which exhibited similar performance.

The standard deviation values showed that HOA and GWO

exhibited the most stable results. MHOA outperformed other

methods in the best and worst accuracy values. SMA, AROA, and

HHO exhibited moderate performance, while HOA and GWO had

lower rankings.

In terms of sensitivity, SMA achieved the highest mean value,

with MHOA and HHO ranking closely behind. HOA and AROA

exhibited the lowest sensitivity. Standard deviation values showed

that AROA, GWCA, and GWOwere the most stable. The Best-case

confirmed MHOA’s strength, while the worst value demonstrated

that SMA, HHO, GWCA, and GWO showed similar results,

followed by MHOA.

Regarding the AUC metric, MHOA ranked highest in

mean performance and demonstrated its superior classification

capability. HOA followed closely, while SMA recorded the lowest

mean AUC. Standard deviation results indicated that GWCA

maintained the most stable AUC performance, whereas SMA

showed greater variability. The best and worst values confirmed

MHOA’s consistently high performance across various scenarios.

For the fitness value, MHOA exhibited the best mean. AROA

followed, while HOA recorded the highest mean value. The

standard deviation analysis showed that MHOA had the most

stable fitness value, whereas GWO and HHO exhibited greater

variability. The best and worst fitness values further confirmed that

MHOA maintained strong optimization capability, whereas HOA

and GWCA showed inconsistent performance.

The FS results revealed that SMA achieved the lowest number

of selected features in the best case. MHOA followed closely,

while HOA selected the highest number of features. The standard

deviation values indicated that AROA maintained the most stable

FS, followed by HOA and MHOA, while SMA and GWO

exhibited greater variability. The mean values confirmed that

MHOA consistently selected fewer features than most methods

and proved effective in dimensionality reduction while maintaining

classification accuracy. Figure 3 presents a comparison of the

algorithms’ performance on Dataset-2 across Accuracy, Sensitivity,

and AUC metrics.

In Figure 3, the proposed MHOA model outperforms all

competing methods in terms of accuracy and AUC, demonstrating

improved classification capability. Although the SMA algorithm

achieved slightly higher sensitivity, MHOA exhibits a strong

balance between sensitivity and accuracy, which is crucial in

minimizing both false negatives and false positives in ASD

detection. The GWCA and GWO models showed relatively stable

sensitivity but did not match the overall classification performance

of MHOA.

Table 3 presents the results and shows that MHOA achieved the

highest mean accuracy. AROA and GWO followed closely, while

HOA and SMA ranked lower. Standard deviation values indicated

that AROA and GWO exhibited stable performance, whereas

HOA and SMA showed greater variability. MHOA maintained

its dominance in best and worst accuracy values, reinforcing

its robustness.

Regarding sensitivity, MHOA ranked the highest with the

best mean performance. HHO and GWO followed closely behind.

HOA showed the lowest sensitivity and indicated its weakness in

detecting positive instances. Standard deviation results indicated

that MHOA and AROA were the most stable in sensitivity, while

SMA, HOA, and GWCA exhibited higher variability. The best-

case values demonstrated that MHOA consistently performed well

in identifying positive instances, while HOA’s worst-case results

showed significant variability.

For AUC, MHOA outperformed all other algorithms in

mean performance and demonstrated clear class differentiation

capability. HHO and GWO ranked next, while HOA performed

the weakest in AUC. Standard deviation analysis revealed that

AROA exhibited the most stability in AUC performance, while
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FIGURE 3

Results of accuracy, sensitivity, and AUC for Dataset-2.

FIGURE 4

Results of accuracy, sensitivity, and AUC for Dataset-3.

SMA and GWCA showed higher fluctuations. The best and worst

values confirmed thatMHOAmaintained good performance across

different scenarios and indicated its reliability in class separation.

In terms of fitness value, SMA achieved the lowest mean. HOA

and GWCA followed, while HHO recorded the highest mean.

Standard deviation results showed that HHO was the most stable

in optimization performance, while AROA and GWO exhibited

higher variability. The best and worst values further supported

SMA’s optimization efficiency, while MHOA exhibited competitive

performance with relatively stable optimization. HHO and AROA

displayed less stability in converging to optimal solutions.

Regarding FS, HOA selected the fewest features in the best-

case scenario. SMA followed closely behind, while HHO selected

the highest number of features. MHOA demonstrated a balanced

approach by selecting a moderate number of features, maintaining

a trade-off between dimensionality reduction and classification

performance. Standard deviation values revealed that AROA

exhibited the most stable FS, while GWO showed the greatest

variability. The mean values confirmed that HOA and SMA

consistently selected fewer features, while MHOA maintained a

competitive balance between FS and model performance. Figure 4

presents a comparison of the algorithms’ performance on Dataset-3

across Accuracy, Sensitivity, and AUC metrics.

As shown in Figure 4, the MHOA algorithm achieved the best

results across all metrics. It ranked first in accuracy, followed by

AROA, GWO, and HHO. In sensitivity, MHOA again led, while

HHO, GWO, and AROA showed similar outcomes. For AUC,

MHOAmaintained the top position, with HHO, AROA, and GWO
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TABLE 4 Results of the Friedman test.

Measure MHOA HOA SMA AROA HHO GWCA GWO

Accuracy 7.00 3.33 2.67 4.17 4.00 4.00 2.83

AUC 7.00 4.33 2.50 3.33 4.67 2.17 4.00

Sensitivity 6.50 3.17 3.33 3.00 4.00 4.00 4.00

close behind. GWCA and HOA showed lower sensitivity and AUC

values, and SMA ranked lowest in accuracy and sensitivity.

These observed performance rankings are further supported by

the results of the Friedman test, a non-parametric statistical method

commonly used to detect differences across multiple conditions

when the data does not follow normal distribution assumptions.

It is particularly useful in model comparison as it accounts for

the ordinal nature of the data and dependencies between repeated

measures. The results of the Friedman test, as shown in Table 4,

reveal considerable variability in performance across the models.

MHOA consistently ranks highest in accuracy, AUC, and sensitivity

and shows better overall effectiveness. In contrast, GWO ranks

lowest in accuracy and reflects relatively lower performance in this

context. Models such as HOA, SMA, AROA, HHO, and GWCA

demonstrate intermediate performance. These findings highlight

differences among the models, with MHOA showing the most

consistent results.

To further evaluate the performance of the developed MHOA

model to detect ASD, we compared it with the results obtained

in Liu et al. (2024). Since this work uses the same strategy to

split ABIDE I dataset. The technique used in Liu et al. (2024) is

named MADE-for-ASD, and its accuracy for CC, AAL, and EZ is

73.42%, 71.20%, and 68.74%, respectively. However, our developed

MHOA based on the SSDAE model has accuracy 66.35%, 70.19%,

and 83.82% for EZ, AAL, and CC, respectively. So, MADE-for-ASD

is better than MHOA at EZ and AAL, whereas MHOA is better

according to the results of CC split (dataset-3). In addition, the

average accuracy of MADE-for-ASD and ourMHOAmodel overall

the three datasets is 71.12% and 73.45%, respectively. This indicates

the high ability of the developed model to detect ASD.

In general, MHOA consistently achieved the highest

accuracy and AUC across datasets and demonstrated strong

classification performance. Sensitivity results confirmed its ability

to identify positive instances. Its optimization performance

remained competitive with relatively stable fitness values.

FS analysis indicated that MHOA maintained a balance

between dimensionality reduction and model effectiveness

and demonstrating its reliability across diverse evaluation criteria.

However, its stability in some metrics, such as fitness value and

sensitivity, was lower than that of certain methods and suggesting

potential improvements in robustness under varying conditions.

6 Conclusion and future works

This paper presents a novel DL model integrated with a

modified version of the HOA for detecting ASD from rs-

fMRI data. The proposed model enhances the accuracy of ASD

detection, potentially improving early intervention strategies for

individuals who may otherwise be missed by traditional methods.

By combining the SSDAE and MLP, the model effectively extracts

relevant features, while the enhanced HOA, utilizing dynamic

opposite-based learning and double attractors, optimizes FS. The

developed model demonstrates promising results, with an average

accuracy of 0.735, sensitivity of 0.765, and AUC of 0.790 across

various datasets, showing the potential of DL and the MHOA

algorithm in automated ASD detection.

Despite the promising results, several challenges remain. The

biological heterogeneity of ASD, along with variations in imaging

protocols and preprocessing steps, introduces potential limitations

that could affect the generalizability and reproducibility of the

model. Future work could focus on addressing these challenges

by incorporating multi-site datasets with consistent preprocessing

pipelines to enhance the model’s robustness and external

validity. Additionally, the model’s interpretability remains a key

consideration, as understanding the decision-making process of DL

models is crucial for clinical adoption. Efforts toward developing

explainable AI techniques could be integrated to provide more

transparent insights into the detected features and their relevance

to ASD.Moreover, future research should explore the application of

this approach to other neurodevelopmental disorders that exhibit

overlapping symptoms with ASD, such as ADHD and intellectual

disabilities. Expanding the model’s applicability across a broader

spectrum of neurodevelopmental conditions could facilitate the

development of more generalized and efficient diagnostic tools.

Furthermore, incorporating longitudinal data and examining the

model’s performance over time could provide deeper insights into

the progression of ASD and its early detection.

In conclusion, this study lays the groundwork for a more

effective, DL-based diagnostic tool for ASD, offering a promising

direction for early detection and intervention. However, further

refinements and validations in diverse clinical settings are

necessary to ensure the model’s practical applicability in real-world

healthcare environments.
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Elaziz, M. A. (2021). A novel hybrid gradient-based optimizer and grey wolf optimizer
feature selection method for human activity recognition using smartphone sensors.
Entropy 23:1065. doi: 10.3390/e23081065

Huda, S., Khan, D. M., Masroor, K., Warda Rashid, A., and Shabbir, M. (2024).
Advancements in automated diagnosis of autism spectrum disorder through deep
learning and resting-state functional mri biomarkers: a systematic review. Cogn.
Neurodyn. 18, 3585–3601. doi: 10.1007/s11571-024-10176-z

Jabbar, U., Iqbal, M. W., Alourani, A., Shinan, K., Alanazi, F., Sarwar, N., et al.
(2025). Machine learning-based approach for early screening of autism spectrum
disorders. Appl. Comput. Intell. Soft Comput. 2025:9975499. doi: 10.1155/acis/9975499

Joe, C. V. (2024). Exploring ai robots-based visual strategy in training children with
autism disorder. J. Innov. Image Proc. 6, 40–49. doi: 10.36548/jiip.2024.1.004

John, J., and Sala, R. (2018). 043 Is the prevalence of autism spectrum disorder
decreased in black and ethnic children and adolescents?. Arch. Disease Childhood 103,
A17A18. doi: 10.1136/goshabs.43

Kaveh, A., and Yousefpoor, H. (2024). Chaotic Meta-Heuristic Algorithms for
Optimal Design of Structures. Cham: Springer. doi: 10.1007/978-3-031-48918-1

Khan, K., and Katarya, R. (2025). Ws-bitm: Integrating white shark optimization
with BI-LSTM for enhanced autism spectrum disorder diagnosis. J. Neurosci. Methods
413:110319. doi: 10.1016/j.jneumeth.2024.110319

Lamani, M. R., and Benadit, P. J. (2023). Automatic diagnosis of autism spectrum
disorder detection using a hybrid feature selection model with graph convolution
network. SN Comput. Sci. 5:126. doi: 10.1007/s42979-023-02439-z

Lavelle, T. A., Weinstein, M. C., Newhouse, J. P., Munir, K., Kuhlthau, K. A.,
and Prosser, L. A. (2014). Economic burden of childhood autism spectrum disorders.
Pediatrics 133, e520–e529. doi: 10.1542/peds.2013-0763

Li, X., Zhou, Y., Dvornek, N. C., Zhang, M., Zhuang, J., Ventola, P., et al.
(2020). “Pooling regularized graph neural network for fMRI biomarker analysis,” in
Medical Image Computing and Computer Assisted Intervention-MICCAI 2020: 23rd
International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23
(Springer), 625–635. doi: 10.1007/978-3-030-59728-3_61

Liu, X., Hasan, M. R., Gedeon, T., and Hossain, M. Z. (2024). Made-for-ASD: a
multi-atlas deep ensemble network for diagnosing autism spectrum disorder. Comput.
Biol. Med. 182:109083. doi: 10.1016/j.compbiomed.2024.109083

Lord, C., Elsabbagh, M., Baird, G., and Veenstra-Vanderweele, J. (2018). Autism
spectrum disorder. Lancet 392, 508–520. doi: 10.1016/S0140-6736(18)31129-2

Mellema, C. J., Nguyen, K. P., Treacher, A., and Montillo, A. (2022). Reproducible
neuroimaging features for diagnosis of autism spectrum disorder with machine
learning. Sci. Rep. 12:3057. doi: 10.1038/s41598-022-06459-2

Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N.,
Bigler, E. D., et al. (2013). Multisite functional connectivity MRI classification
of autism: abide results. Front. Hum. Neurosci. 7:599. doi: 10.3389/fnhum.2013.
00599

Niu, X., Gou, J., Chang, H., Lowe, M., and Zhang, F. (2022). Classification model
with weighted regularization to improve the reproducibility of neuroimaging signature
selection. Stat. Med. 41, 5046–5060. doi: 10.1002/sim.9553

Niu, Y., Yan, X., Wang, Y., and Niu, Y. (2022). Dynamic opposite learning
enhanced artificial ecosystem optimizer for IIR system identification. J. Supercomput.
78, 13040–13085. doi: 10.1007/s11227-022-04367-w

Oladejo, S. O., Ekwe, S. O., and Mirjalili, S. (2024). The hiking optimization
algorithm: a novel human-based metaheuristic approach. Knowl.-Based Syst.
296:111880. doi: 10.1016/j.knosys.2024.111880

Parisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., et al.
(2018). Disease prediction using graph convolutional networks: application to
autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130.
doi: 10.1016/j.media.2018.06.001

Patil, M., Iftikhar, N., and Ganti, L. (2024). Neuroimaging insights into autism
spectrum disorder: structural and functional brain. Health Psychol. Res. 12:123439.
doi: 10.52965/001c.123439

Qin, L., Wang, H., Ning, W., Cui, M., and Wang, Q. (2024). New advances in
the diagnosis and treatment of autism spectrum disorders. Eur. J. Med. Res. 29:322.
doi: 10.1186/s40001-024-01916-2

Rahnamayan, S., Tizhoosh, H. R., and Salama, M. M. (2007). “Quasi-oppositional
differential evolution,” in 2007 IEEE Congress on Evolutionary Computation (IEEE),
2229–2236. doi: 10.1109/CEC.2007.4424748

Sayers, E. W., Beck, J., Bolton, E. E., Brister, J. R., Chan, J., Comeau, D. C.,
et al. (2023). Database resources of the national center for biotechnology information.
Nucleic Acids Res. 52:D33. doi: 10.1093/nar/gkad1044

Schielen, S. J., Pilmeyer, J., Aldenkamp, A. P., and Zinger, S. (2024). The diagnosis
of ASD with MRI: a systematic review and meta-analysis. Transl. Psychiatry 14:318.
doi: 10.1038/s41398-024-03024-5

Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., and Baird, G.
(2008). Psychiatric disorders in children with autism spectrum disorders: prevalence,
comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child
Adolesc. Psychiatry 47, 921–929. doi: 10.1097/CHI.0b013e318179964f

Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy, L.
E., et al. (2013). Brain hyperconnectivity in children with autism and its links to social
deficits. Cell Rep. 5, 738–747. doi: 10.1016/j.celrep.2013.10.001

Tizhoosh, H. R. (2005). “Opposition-based learning: a new scheme for machine
intelligence,” in International Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce (CIMCA-IAWTIC’06) (IEEE), 695–701.
doi: 10.1109/CIMCA.2005.1631345

Wang, H., Wu, Z., Rahnamayan, S., Liu, Y., and Ventresca, M. (2011). Enhancing
particle swarm optimization using generalized opposition-based learning. Inf. Sci. 181,
4699–4714. doi: 10.1016/j.ins.2011.03.016

Wang, Y., Wang, J., Wu, F.-X., Hayrat, R., and Liu, J. (2020). Aimafe:
autism spectrum disorder identification with multi-atlas deep feature
representation and ensemble learning. J. Neurosci. Methods 343:108840.
doi: 10.1016/j.jneumeth.2020.108840

Xu, Y., Yang, Z., Li, X., Kang, H., and Yang, X. (2020). Dynamic opposite learning
enhanced teaching-learning-based optimization. Knowl. Based Syst. 188:104966.
doi: 10.1016/j.knosys.2019.104966

Yang, D., Wu, M., Li, D., Xu, Y., Zhou, X., and Yang, Z. (2022). Dynamic
opposite learning enhanced dragonfly algorithm for solving large-scale flexible job
shop scheduling problem. Knowl. Based Syst. 238:107815. doi: 10.1016/j.knosys.2021.1
07815

Yao, M., Chen, Z., Deng, H., Wu, X., Liu, T., and Cao, C. (2025).
A color image compression and encryption algorithm combining compressed
sensing, sudoku matrix, and hyperchaotic map. Nonlinear Dyn. 113, 2831–2865.
doi: 10.1007/s11071-024-10334-2

Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., et al.
(2022). Global prevalence of autism: a systematic review update. Autism Res. 15,
778–790. doi: 10.1002/aur.2696

Zhu, Y., Zhang, M., Huang, Q., Wu, X., Wan, L., and Huang, J. (2025).
Secretary bird optimization algorithm based on quantum computing and
multiple strategies improvement for kelm diabetes classification. Sci. Rep. 15:3774.
doi: 10.1038/s41598-025-87285-0

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1594372
https://doi.org/10.1007/s00521-022-07852-8
https://doi.org/10.1016/j.knosys.2025.113351
https://doi.org/10.1016/j.eij.2025.100666
https://doi.org/10.1016/j.dhjo.2009.07.001
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.1016/j.eswa.2023.120905
https://doi.org/10.1016/j.eswa.2022.118339
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.3390/e23081065
https://doi.org/10.1007/s11571-024-10176-z
https://doi.org/10.1155/acis/9975499
https://doi.org/10.36548/jiip.2024.1.004
https://doi.org/10.1136/goshabs.43
https://doi.org/10.1007/978-3-031-48918-1
https://doi.org/10.1016/j.jneumeth.2024.110319
https://doi.org/10.1007/s42979-023-02439-z
https://doi.org/10.1542/peds.2013-0763
https://doi.org/10.1007/978-3-030-59728-3_61
https://doi.org/10.1016/j.compbiomed.2024.109083
https://doi.org/10.1016/S0140-6736(18)31129-2
https://doi.org/10.1038/s41598-022-06459-2
https://doi.org/10.3389/fnhum.2013.00599
https://doi.org/10.1002/sim.9553
https://doi.org/10.1007/s11227-022-04367-w
https://doi.org/10.1016/j.knosys.2024.111880
https://doi.org/10.1016/j.media.2018.06.001
https://doi.org/10.52965/001c.123439
https://doi.org/10.1186/s40001-024-01916-2
https://doi.org/10.1109/CEC.2007.4424748
https://doi.org/10.1093/nar/gkad1044
https://doi.org/10.1038/s41398-024-03024-5
https://doi.org/10.1097/CHI.0b013e318179964f
https://doi.org/10.1016/j.celrep.2013.10.001
https://doi.org/10.1109/CIMCA.2005.1631345
https://doi.org/10.1016/j.ins.2011.03.016
https://doi.org/10.1016/j.jneumeth.2020.108840
https://doi.org/10.1016/j.knosys.2019.104966
https://doi.org/10.1016/j.knosys.2021.107815
https://doi.org/10.1007/s11071-024-10334-2
https://doi.org/10.1002/aur.2696
https://doi.org/10.1038/s41598-025-87285-0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Deep learning-based feature selection for detection of autism spectrum disorder
	1 Introduction
	2 Related works
	3 Background
	3.1 Hiking Optimization Algorithm
	3.1.1 Initialization
	3.1.2 Modeling hiker speed using Tobler's Hiking Function
	3.1.3 Exploitation phase

	3.2 Dynamic-opposite learning
	3.2.1 Dynamic opposite number
	3.2.2 Dynamic opposite point in multi-dimensional space
	3.2.3 DOL-based optimization

	3.3 Double attractors

	4 Proposed method
	4.1 Feature extraction process
	4.2 Feature selection process
	4.2.1 First stage
	4.2.2 Second stage
	4.2.3 Third stage


	5 Experimental results and discussion
	5.1 Dataset preparation
	5.2 Model configurations
	5.3 Evaluation metrics
	5.4 Results and discussion

	6 Conclusion and future works
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


