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Stroke-associated pneumonia (SAP) is a serious complication of acute ischemic 
stroke (AIS), significantly affecting patient prognosis and increasing healthcare 
burden. AIS patients are often accompanied by basic diseases, and atrial fibrillation 
(AF) is one of the common basic diseases. Despite the high prevalence of AF in AIS 
patients, few studies have specifically addressed SAP prediction in this comorbid 
population. We aimed to analyze the factors influencing the occurrence of SAP 
in patients with AIS and AF and to assess the risk of SAP development through an 
optimal predictive model. We performed a case-control study. This study included 
4,496 hospitalized patients with AIS and AF in China between January 2020 and 
September 2023. The primary outcome was SAP during hospitalization. Univariate 
analysis and LASSO regression analysis methods were used to screen predictors. 
The patients with AIS and AF were randomly divided into a training set, validation 
set, and test set. Then, we established logistic regression (LR), random forest 
(RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) 
models. The accuracy, sensitivity, specificity, area under the curve, Youden index 
and F1 score were adopted to evaluate the predictive value of each model. The 
optimal prediction model was visualized using a nomogram. In this study, SAP 
was identified in 10.16% of cases. The variables screened by univariate analysis 
and LASSO regression, variables such as coronary artery disease, hypertension, 
and dysphagia, identified by univariate and LASSO regression analyses (p < 0.05), 
were included in the LR, RF, and SVM. The LR model outperformed other models, 
achieving an AUC of 0.866, accuracy of 90.13%, sensitivity of 79.49%, specificity 
of 86.11%, F1 score of 0.80. A nomogram based on the LR model was developed 
to predict SAP risk, providing a practical tool for early identification of high-
risk patients, and enabling targeted interventions to reduce SAP incidence and 
improve outcomes.
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Introduction

Stroke is the second leading cause of death worldwide and the 
primary cause of disability-adjusted life years (DALYs) in China (GBD 
2019 Stroke Collaborators, 2021; Zhao et al., 2023). AIS is a critical 
nervous system disorder caused by thrombosis and embolism that 
block cerebral arteries, accounting for 85% of stroke types (Cerami 
and Perani, 2015). AIS is associated with the development of 
neuroinflammation and may also arise from cerebral hemodynamic 
abnormalities. AF is a significant contributor to the development of 
stroke (Kelley and Kelley, 2021). Approximately 24% of patients with 
AIS also have AF, and individuals with AF face a risk of AIS that is 4–5 
times higher than those without AF which increases the overall risk 
of AIS for these patients (Kimura et  al., 2018). Additionally, the 
inflammatory response plays a crucial role in both AIS and AF, as well 
as their related complications (Xu et al., 2024).

SAP refers to pneumonia occurring within 7 days of admission in 
non-ventilated stroke patients (Ji et al., 2013). It is a common and 
serious complication in stroke patients, significantly increasing 
morbidity and mortality. The global incidence rate of SAP ranges from 
7 to 38%, with the acute mortality rate reaching as high as 30–40% 
(Gittins et al., 2023; Teh et al., 2018; Yu et al., 2016; Bai et al., 2020; Yu 
et al., 2016). This significantly impacts patients’ prognosis, prolongs 
hospitalization time, and increases the medical burden (Koennecke 
et  al., 2011). Studies have shown that the frequency of SAP is 
significantly higher in patients with AF compared to non-AF patients 
(9.8% vs. 5.3%), which may be  related to systemic inflammatory 
responses and immune dysfunction associated with AF (Keller 
et al., 2020).

As a core technology of artificial intelligence, machine 
learning (ML) refers to the ability to recognize patterns and learn 
from data (Ting Sim et  al., 2023). In recent years, it has been 
widely applied in various areas, including disease prediction, 
disease prognosis assessment, disease-assisted diagnosis, and 
health management (Shurrab et al., 2024). ML models, including 
extreme gradient boosting (XGBoost), support vector machines 
(SVM), random forest (RF), logistic regression (LR), and deep 
neural networks (DNN), can capture complex non-linear 
relationships and identify unknown correlations in big data, 
providing deeper insights. RF is a non-parametric method based 
on the bagging principle, which adopts the outputs of integrating 
algorithms of multiple decision trees. This approach enhances the 
overall model performance by strengthening multiple weak 
classifiers, making it more effective than a single decision tree (Hu 
and Szymczak, 2023). SVM introduces the concept of kernel 
functions and employs the principle of structural risk 
minimization. This allows for nonlinear decision-making in the 
original space by identifying a linear hyperplane within a high-
dimensional space (Si et al., 2023). The XGBoost algorithm is a 
large-scale machine-learning algorithm that represents an 
efficient and extensible variant of gradient enhancement (Li 
et al., 2022).

The purpose of this study is to compare the predictive performance 
of various ML models for SAP in patients with AIS and AF by using 
predictive factors effectively. This approach aims to facilitate the early 
identification of high-risk groups in clinical settings, support 
individualized treatment, improve patient outcomes, and reduce 
social burden.

Materials and methods

Study design

This study adopted a nested case-control design. First, 
we identified patients with AIS and AF from 2020 to 2023 as study 
subjects, collecting inpatient medical records and categorizing them 
into SAP and non-SAP groups based on in-hospital onset status. 
Initial screening was performed through univariate analysis of 
demographic characteristics, clinical indicators, and laboratory 
parameters. Statistically significant variables were subsequently 
processed using LASSO regression for dimensionality reduction and 
final feature selection. The overall sample was then randomly divided 
into training (70%), validation (20%), and test (10%) sets for model 
development, parameter optimization, and final evaluation, 
respectively. Four machine learning models—LR, RF, SVM, and 
XGBoost—were constructed using the selected features. To address 
class imbalance in the training set, which could adversely affect 
predictive performance, we applied a synthetic minority oversampling 
technique (SMOTE) to achieve balanced class distribution, thereby 
enhancing prediction accuracy and stability. Model hyperparameters 
were optimized via cross-validation and grid search on the validation 
set. Comprehensive evaluation metrics including accuracy, sensitivity, 
specificity, AUC, Youden index, F1 score, and decision curve analysis 
(DCA), were employed on the test set to identify the optimal 
predictive model. The final model was visualized using nomograms, 
with decision curve analysis assessing its clinical utility.

In this study, a total of 10,967 patients diagnosed with AIS and AF 
were identified. Among those, 6,471 were excluded according to the 
following criteria: 2,341 were under 18 years of age, 2,028 patients had 
a hospital stay of less than 24 h, 356 had an infection within 1 week 
before the onset of AIS, 337 had a tumor, and 1,139 had missing values 
for variable exceeding 20%. Ultimately, 4,496 patients with AIS and 
AF were enrolled in this study, including 457 cases of SAP during 
hospitalization, and 4,039 cases did not develop SAP.

Study population and diagnostic criteria

Inclusion criteria: (1) Meet the diagnostic criteria for AIS as 
outlined in the Chinese Guidelines for the Diagnosis and Treatment 
of AIS. (2) Diagnosed with AF either during the current screening 
electrocardiogram (12-lead electrocardiogram or single-lead 
electrocardiogram with AF rhythm ≥30 s); or through prior medical 
diagnoses, electrocardiograms, or medical records. (3) Over 18 of age.

Exclusion criteria: (1) Automatically discharged from hospital 
within 24 h of admission or died during hospitalization. (2) Lung 
infection before or shortly before the onset of stroke. (3) With 
infections affecting other tissues and organs. (4) With cancer, severe 
liver or kidney dysfunction, severe hematological disorders, or 
autoimmune diseases. (5) With incomplete medical records.

Diagnostic criteria for SAP refer to the “Chinese Expert 
Consensus on the Diagnosis and Treatment of SAP” and meet at least 
one of the following criteria: (1) Fever ≥38°C without identifiable 
alternative causes. (2) Decreased (≤4 × 109/L) or increased 
(≥10 × 109/L) peripheral blood leukocyte counts. (3) Elderly persons 
aged ≥70 years with a sudden change in consciousness. Additionally, 
patients must fulfill at least 2 of the following secondary criteria: (1) 
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Newly developed cough, increased respiratory rate, or even difficulty 
breathing. (2) New sputum production or changes in sputum within 
24 h. (3) Presence of rales, bronchial breath sounds, or crackling 
sounds in the lungs. (4) Impaired gas exchange. Chest imaging should 
demonstrate at least one of the following findings: (1) New or 
progressive infiltrating shadows. (2) New or progressive solid shading. 
(3) New or progressive ground-glass shadows. (Note: for patients 
without prior cardiopulmonary conditions, a single chest imaging 
examination showing any one of the above manifestations may 
be sufficient).

Variables

Demographic data
Age, sex, smoking, drinking, and medical history (whether it was 

the first cerebral infarction, coronary heart disease, hypertension, 
diabetes, and duration of AF), medication history (anticoagulants, 
antiplatelet medications, antihypertensive medications, lipid-lowering 
medications, and heart rate controlling medications), and hospital day.

Clinical data
Body temperature, heart rate, respiration rate, diastolic blood 

pressure (DBP), systolic blood pressure (SBP), admission date, 
consciousness disorders, cognitive disorders, limb movement 
disorders, dysphagia, oxygen intake, and nasal feeding requirements.

Laboratory data
Red blood cell count (RBC), white blood cell count (WBC), 

hemoglobin (HB), hematocrit (HCT), platelet count (PLT), platelet 
crit (PCT), neutrophil count (NEUT), lymphocyte count (LYM), 
monocyte count (MONO), eosinophil (EO), basophil (BA), neutrophil 
ratio (NEUT%), C-reactive protein (CPR), international normalized 
ratio (INR), prothrombin time (PT), activated partial prothrombin 
time (APTT), D-dimer (DD), fibrinogen (FIB), albumin (ALB), direct 
bilirubin (DBIL), creatinine (Cr), total cholesterol (TC), homocysteine 
(HCY), low-density lipoprotein (LDL), and high-density 
lipoprotein (HDL).

Inflammatory markers calculated using formulae: PLR = platelet 
count/lymphocyte count, NLR = neutrophil count/lymphocyte count, 
MLR = monocyte count/lymphocyte count, NRAP = neutrophil 
percentage/albumin, SIRI = (neutrophil count × monocyte count)/
lymphocyte count, SII = platelets count × (neutrophil count/
lymphocyte count), CAR = C-reactive protein/albumin.

Data analysis

Before establishing the model, whether SAP occurred in patients 
with AIS and AF was evaluated. These patients were divided into two 
groups: the SAP group and the non-SAP group. Univariate analysis 
was used to describe the demographic information, clinical data, and 
laboratory indicators of AIS and AF patients. The statistically 
significant variables identified from univariate analyses were then 
included in the LASSO regression to determine the predictors for 
inclusion in the model. When building the model, AIS, and AF 
patients were randomly divided into three sets: the training set, 
validation set, and test set, according to the ratio of 7:2:1. Due to the 

significant imbalance between the positive and negative samples, a 
SMOTE was utilized to balance the datasets within the training set.

The predictors were included in the training set after SMOTE 
balance, which was used to construct LR, RF, SVM, and XGBoost 
models. The validation set was employed to adjust model parameters 
and optimize model performance. In the LR, a stepwise regression 
approach was utilized for multifactor logistic regression analysis. The 
RF model utilized bootstrap sampling along with five-fold cross-
validation. For the SVM model, a grid search method combined with 
10-fold cross-validation was applied. The XGBoost model 
incorporated hyperparameter optimization along with 10-fold cross-
validation to enhance its performance.

The test set was used to evaluate the performance of four models. 
We  compared the receiver-operating-characteristic (ROC) curves 
among the models and computed various metrics, including accuracy, 
sensitivity, specificity, Youden index, F1 score, and AUC. Construct 
DCA in the test set. This analysis assisted in identifying the best 
predictive model, forest map, and nomogram to clarify independent 
influences on the occurrence of SAP in patients with AF and 
AIS. Calibration curve to evaluate the performance of a nomogram.

Statistical analysis

This study described the characteristics of various datasets and 
performed different statistical tests. For continuous data, we utilized 
means and standard deviations, or medians and quartiles, to describe 
the variables. The Kruskal–Wallis rank sum test was applied to 
compare differences among groups. For categorical data, we described 
the data using rates and absolute numbers, employing the chi-square 
test to assess differences between groups. A two-sided p-value <0.05 
was considered statistically significant. The predictive ability of models 
was determined based on the AUC value, with the best cutoff point 
defined as the one that maximized the Youden index. Statistical 
analyses and model construction were performed using IBM SPSS 
Statistics (version 26.0) and R (version 4.3.2).

Ethics approval and consent to participate

Ethics approval was approved by the Medical Ethics Committee 
of Shandong Provincial Center for Disease Control and Prevention. 
Because the data are anonymized, the Medical Ethics Committee of 
Shandong Provincial Center for Disease Control and Prevention 
agreed to waive informed consent. All research was conducted 
following national guidelines and regulations.

Results

Baseline characteristics

A total of 4,496 patients with AIS and AF were included in this 
study. The average age was 73.56 ± 9.95 years (mean ± standard), 
with 2,679 (59.59%) patients being male. Among the total sample, 
457 (10.16%) patients developed SAP. The baseline characteristics 
of the SAP patients are shown in Table  1. Patients in the SAP 
group were older, higher prevalence of coronary heart disease, 

https://doi.org/10.3389/frai.2025.1595101
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Su et al. 10.3389/frai.2025.1595101

Frontiers in Artificial Intelligence 04 frontiersin.org

TABLE 1 Baseline characteristics of patients with AIS and AF in the two groups.

Variables SAP (n = 4,039) Non-SAP (n = 457) t/x2/Z p

Demographics

Age (years, ±x s) 73.4 ± 10 75.1 ± 9.7 −3.51 <0.001

Sex, n (%) 1.72 0.181

Female 2,420 (59.9) 259 (56.7)

Male 1,619 (40.1) 198 (43.3)

Smoking, n (%) 670 (16.6) 76 (16.6) 0.001 0.982

Drinking, n (%) 730 (18.1) 91 (19.9) 0.930 0.335

Cerebral infarction, n (%) 1,151 (28.5) 150 (32.8) 3.76 0.053

Coronary heart disease, n (%) 814 (20.2) 160 (35) 53.4 <0.001

Diabetes, n (%) 460 (11.4) 98 (21.4) 38.19 <0.001

Hypertension, n (%) 1,235 (30.6) 214 (46.8) 49.63 <0.001

Duration of AF (years, ±x s) 7.38 ± 4.17 7.76 ± 4.86 −1.80 0.072

Anticoagulants, n (%) 180 (4.5) 27 (5.9) 1.65 0.158

Antiplatelet drugs, n (%) 207 (5.1) 18 (3.9) 0.98 0.309

Antihypertensive drugs, n (%) 140 (3.5) 20 (4.4) 0.74 0.349

Lipid lowering drugs, n (%) 151 (3.7) 11 (2.4) 1.73 0.184

Antiarrhythmic drugs, n (%) 34 (0.8) 7 (1.5) 1.47 0.185

Clinical data

Hospital day (days, ±x s) 9.09 ± 5.30 11.07 ± 6.44 −6.80 <0.001

Consciousness disorder, n (%) 263 (6.5) 209 (45.7) 672.15 <0.001

Cognitive disorder, n (%) 748 (18.5) 318 (69.6) 591.85 <0.001

Limb movement disorders, n (%) 1,013 (25.1) 335 (73.3) 454.79 <0.001

Dysphagia, n (%) 67 (1.5) 69 (15.1) 252.79 <0.001

Nasal feeding, n (%) 1,770 (43.8) 105 (23) 241.44 <0.001

Oxygen uptake, n (%) 1,280 (31.7) 121 (26.5) 644.77 <0.001

Temperature (°C, ±x s) 36.37 ± 0.31 36.46 ± 0.43 −4.17 <0.001

Respiration rate (times/min, ±x s) 18.83 ± 1.83 19.24 ± 2.71 −3.09 <0.002

Heart rate (times/min, ±x s) 88.60 ± 17.87 91.64 ± 20.23 −3.12 <0.002

SBP (mmHg, ±x s) 141.02 ± 20.04 146.35 ± 24.43 −4.50 <0.001

DBP (mmHg, ±x s) 84.16 ± 12.20 86.20 ± 15.17 −2.78 <0.006

Admission date (h, ±x s) 7.85 ± 6.27 7.96 ± 6.47 −0.35 0.725

Laboratory data

RBC (1012/L) 4.51 ± 1.22 4.47 ± 1.18 0.73 0.465

WBC (109/L) 7.41 ± 3.56 7.64 ± 3.69 −1.33 0.184

NEUT (109/L) 6.06 (4.41, 7.43) 6.55 (4.65, 8.00) −3.97 <0.001

LYM (109/L) 1.98 ± 1.48 2.13 ± 1.77 −1.74 0.082

MONO (109/L) 0.54 (0.38, 0.70) 0.54 (0.36, 0.71) −0.29 0.769

EO (109/L) 0.23 ± 0.29 0.22 ± 0.29 0.59 0.554

BA (109/L) 0.45 ± 0.33 0.48 ± 0.34 −1.72 0.085

HB (g/L) 130.75 ± 18.79 129.68 ± 19.92 1.149 0.251

NEUT% (%) 64.75 ± 8.05 65.58 ± 6.55 −2.48 0.013

PLT (109/L) 194 (157, 232) 194 (158, 233) −0.06 0.953

PCT (%) 0.21 ± 0.06 0.21 ± 0.07 −1.23 0.218

HCT (L/L) 0.40 ± 0.70 0.39 ± 0.07 2.22 0.026

(Continued)
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hypertension, and diabetes. They also experienced longer hospital 
stays and exhibited more frequent consciousness disorders, 
cognitive impairments, limb movement disorders, dysphagia, 
nasal feeding requirements, and oxygen intake. Additionally, the 
SAP group showed significantly elevated levels of body 
temperature, heart rate, respiration rate, systolic blood pressure, 
diastolic blood pressure, neutrophil count, neutrophil ratio, NLR, 
NPAR, SIRI, and SII. In contrast, the levels of hematocrit were 
significantly lower in the SAP group compared to the non-SAP 
group (p < 0.05).

Predictors screened by LASSO regression 
analysis

Using SAP as the dependent variable, we  included 24 
statistically significant variables (p < 0.05) identified in prior 
univariate analysis as independent variables. LASSO regression 
was employed to screen for predictors, and 10-fold cross-
validation was conducted to determine the optimal λ value. 
Ultimately, eight variables were identified as having the best 
performance with the least number of variables: coronary heart 
disease, hypertension, consciousness disorder, cognitive 
impairment, limb movement disorder, dysphagia, nasal feeding 
requirement, and oxygen intake (Figures 1A,B). These findings 
highlighted critical risk factors associated with the development 
of SAP in patients with AIS and AF, aiding in clinical decision-
making and targeted interventions.

Model construction, optimization, and 
evaluation

AIS and AF patients (n = 4,496) were randomly divided into three 
sets: the training set (n = 3,147), validation set (n = 903), and test set 
(n = 446), according to the ratio of 7:2:1. In the training set, there were 
312 positive samples (SAP) and 2,835 negative samples (non-SAP). 
We utilized SMOTE to balance the datasets within the training set, 
and construct LR, RF, SVM, and XGBoost models. The SMOTE is 
strictly confined to the training set, while both the validation and test 
sets consistently maintain their original imbalanced distributions. All 
performance metrics are evaluated exclusively on the non-resampled 
validation and test sets.

In the validation set optimization model, the results showed that 
all models exhibited robust performance (AUC > 0.8). The LR model 
demonstrated the highest discriminative ability (AUC = 0.891), 
followed by XGBoost (AUC = 0.877), random forest (AUC = 0.868), 
and SVM (AUC = 0.847). The accuracy and sensitivity of the LR 
model were 91.36 and 88.42, respectively. The specificity of the RF 
model was 88.42, and the Youden index of the SVM model was 0.68. 
LR achieved the highest F1-score (0.84), outperforming XGBoost 
(0.83), SVM (0.82), and RF (0.79).

Evaluate the model in test set, the AUC (95% CI) for LR, RF, and 
SVM, XGBoost models were 0.866 (0.8160–917), 0.818 (0.728–0.877), 
0.817 (0.780–0.820), and 0.838 (0.780–0.896), respectively 
(Figures  2A,B). LR had the best predictive performance 
(AUC = 0.866), highest accuracy (90.13%), sensitivity (79.49%), and 
Youden index (0.63) in models. LR maintained its lead (0.80) with 
SVM following closely (0.78), while both XGBoost (0.71) and RF 

TABLE 1 (Continued)

Variables SAP (n = 4,039) Non-SAP (n = 457) t/x2/Z p

CPR (mg/L) 5.58 ± 3.25 5.62 ± 3.29 −0.26 0.796

INR 1.14 ± 0.19 1.14 ± 0.17 0.75 0.452

PT (s) 12.91 ± 1.48 12.97 ± 1.45 −0.74 0.457

APTT (s) 31.70 ± 4.92 31.96 ± 4.92 −1.09 0.276

DD (mg/L) 0.36 ± 0.21 0.36 ± 0.22 0.33 0.735

FIB (g/L) 3.24 ± 0.81 3.28 ± 0.83 −1.08 0.280

ALB (g/L) 37.42 ± 4.86 37.05 ± 5.25 1.47 0.143

DBIL (μmol/L) 4.78 ± 2.23 4.79 ± 2.23 −0.44 0.965

Cr (mg/dL) 76.74 ± 25.68 75.84 ± 27.37 0.71 0.480

TC (mmol/L) 4.02 ± 1.09 3.97 ± 1.04 0.88 0.377

LDL (mmol/L) 2.42 ± 0.82 2.39 ± 0.81 0.66 0.509

HDL (mmol/L) 1.21 ± 0.27 1.21 ± 0.28 0.34 0.731

HCY (μmol/L) 13.20 ± 3.28 13.18 ± 3.49 0.12 0.906

PLR 125.00 (89.22, 171.81) 129.41 (79.22, 181.66) −0.68 0.497

NLR 4.13 ± 2.52 4.49 ± 2.91 −2.55 0.011

MLR 0.36 ± 0.23 0.38 ± 0.25 −1.23 0.220

NPAR 1.73 (1.55, 1.95) 1.80 (1.62, 2.00) −3.76 <0.001

SIRI 2.30 ± 1.97 2.56 ± 2.28 −2.36 0.019

SII 822.53 ± 587.33 899.73 ± 678.67 −2.34 0.020

CAP 0.15 ± 0.09 0.16 ± 0.10 −0.88 0.401
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TABLE 2 Prediction performance of four models for SAP in patients with AIS and AF.

Variables Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI) Youden index F1 score

Validation set

LR 91.36 88.42 77.97 0.891 (0.855–0.927) 0.66 0.84

RF 87.49 78.09 88.42 0.868 (0.826–0.906) 0.67 0.79

SVM 87.04 82.10 86.39 0.847 (0.821–0.864) 0.68 0.82

XGBoost 87.26 86.32 79.33 0.877 (0.836–0.918) 0.66 0.83

Test set

LR 90.13 79.49 83.04 0.866 (0.816–0.917) 0.63 0.80

RF 84.98 70.00 86.11 0.818 (0.728–0.877) 0.56 0.72

SVM 84.30 78.03 82.03 0.817 (0.780–0.820) 0.60 0.78

XGBoost 84.61 66.01 88.64 0.838 (0.780–0.896) 0.55 0.71

(0.72) showed significant performance drops (Table 2). The DCA 
showed that the LR model achieved superior net benefit over a broad 
threshold probability range compared to RF, SVM, and XGBoost 

models (Figure 3). Among these, the LR model demonstrated the 
optimal performance in both the validation set and the test set.

Optimal model and independent influences

The findings from the LR model indicated that coronary heart 
disease, hypertension, consciousness disorder, cognitive impairment, 
limb movement disorders, dysphagia, nasal feeding, and oxygen intake 
were independent factors influencing the occurrence of SAP in patients 
with AIS and AF (p < 0.05). Specifically, coronary heart disease 
[OR = 1.958, 95% CI (1.494–2.566), p < 0.001], hypertension 
[OR = 2.218, 95% CI (1.710–2.876), p < 0.001], consciousness disorder 
[OR = 2.720, 95% CI (2.027–3.650), p < 0.001], cognitive impairment 
[OR = 3.133, 95% CI (2.310–4.248), p < 0.001], limb movement 
disorders [OR = 2.623, 95% CI (1.961–3.507), p < 0.001], and dysphagia 
[OR = 1.846, 95% CI (1.187–2.871), p = 0.006] were identified as risk 
factors for SAP in patients with AIS and AF (OR > 1). In contrast, nasal 
feeding [OR = 0.601, 95% CI (0.411–0.878), p = 0.008], and oxygen 
intake [OR = 0.059, 95% CI (0.040–0.087), p < 0.001] were recognized 
as protective factors (OR < 1) (Table 3 and Figure 4).

To facilitate the clinical service, we  converted the complex 
mathematical model into a nomogram (Figure 5). It was necessary to 
sum the scores of variables included in the model. And then a vertical 
line at the total score was drawn and making it intersect with the one 
line representing the predicted SAP. The calibration curve 
demonstrated that the LR model predicted the risk of SAP in patients 
with AIS and AF with good consistency to the actual risk, as indicated 
by the curve fitting closely to the diagonal of the calibration chart, 
which reflects the agreement between observed results and predicted 
probabilities. The mean absolute error in the validation set and the test 
set were 0.012 and 0.014, respectively (Figures 6A,B). It shows that the 
nomogram had good distinguishing ability.

Discussion

AIS pathophysiological mechanisms are closely related to 
immunity. It can disrupt the balance between immunity and the 
central nervous system by activating the autonomic nervous system 
and the stress axis, which leads to secondary immune deficiency and 

FIGURE 1

(A) LASSO coefficient path plot: as the lambda value increases, the 
coefficients of the features are compressed toward zero. When a 
coefficient is compressed to zero, it means that the corresponding 
variable has been eliminated from the model. The later a variable’s 
coefficient is compressed to zero, the more influential it is in the 
model. (B) Cross-validation curves for LASSO regression: the solid 
curve represents the mean cross-validated error, and the region 
between the two dotted lines indicates the range of positive and 
negative standard deviations of log (λ). The left dotted line 
corresponds to the value of log (λ) at which the model error is 
minimized. Eight variables were selected when log (λ) = −3.8724.
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increases the risk of infections and SAP (Meisel et al., 2005). After AIS, 
the inflammatory reaction, as a defense mechanism against infection, 
promotes tissue regeneration and removal of necrotic cells. However, 
an excessive inflammatory response can lead to secondary injury. 
Pneumonia is the most common type of infection following AIS and 
significantly impacts the recovery of neurological function (Hotter 
et al., 2020).

Immunoinflammatory markers, including neutrophil-
lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and 
systemic immune-inflammatory index (SII)—a composite of 
neutrophil, platelet, and lymphocyte counts—are widely used to 
assess inflammatory responses in malignancies and infections, 
while prior studies highlight their predictive value for pneumonia 
(Liu et  al., 2018). SIRI, SII, and NLR were more predictive of 

FIGURE 2

ROC curves of LR, RF, SVM, and XGBoost models for predicting SAP occurrence. (A) The validation set ROC curves. (B) The test set ROC curves. AUC 
represents the area under the ROC curve. An AUC value closer to 1 indicates better model performance, while a value closer to 0 indicates poorer 
performance.
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pneumonia than traditional inflammatory factors (Chang et al., 
2021). In this study, SII and SIRI were introduced as markers to 
assess the overall immune and inflammatory status of SAP in 
patients with AIS and AF. However, our findings revealed reduced 
predictive utility of these indices in AF-associated AIS patients. This 
discrepancy may stem from the incomplete understanding of the 
pathogenesis of AF, where atrial electrical remodeling serves as a 

crucial pathophysiological mechanism (Wang et al., 2023). Patients 
with AF typically exhibit weakened immune function and are prone 
to inducing inflammation. At the same time, inflammation may 
promote the development of AF, thus creating a vicious circle 
between the two (Korantzopoulos et al., 2018). Numerous studies 
have confirmed the various immune inflammatory markers, such 
as CPR, interleukins, white blood cell count, are significantly higher 
in patients with AF compared to those without AF (Ihara and 
Sasano, 2022). Elevated inflammatory markers in AF patients may 
result from pre-existing conditions, which increase systemic 
inflammation even prior to AIS onset. Consequently, future 
research should include longitudinal immune inflammatory 
markers to improve the accuracy of prediction.

This study identified a 10.16% incidence of SAP in patients with 
AIS and AF, lower than rates in severe stroke populations but higher 
than general hospitalized patients. Key risk factors included 
hypertension, diabetes, consciousness disorder, dysphagia, cognitive 
impairment, and limb movement disorders all significantly more 
prevalent in the SAP group, impaired physical function in elderly 
patients combined with other chronic diseases may also lead to 
SAP. In this study along with previous findings and are acknowledged 
to increase the risk of SAP (Nso et al., 2020; Chang et al., 2022). These 
comorbidities can contribute to a more complex clinical picture, 
making patients more vulnerable to respiratory complications.

Nasal feeding remains a controversial topic. It is typically used in 
patients with dysphagia to provide essential nutritional support, 
helping to mitigate the risk of malnutrition and related complications 
(Tinker et al., 2021). In clinical practice, enteral nutrition is generally 
considered as the first choice, and feeding via nasogastric tube is more 
common in Asian countries (Galovic et  al., 2019). Studies have 
confirmed that nasal feeding in patients with massive cerebral 
infarction could effectively correct metabolic disorders, promote 
neurological recovery, and reduce the occurrence of related infections 
(Minelli et al., 2022). The findings of our study align with previous 
study, indicating that nasal feeding may act as a protective factor 
against SAP in patients with AIS and AF, thereby reducing the 
incidence of this complication. However, prolonged use of nasogastric 
feeding may increase the risk of nasal infection, thereby raising the 
likelihood of SAP in turn (Patel et al., 2020). Therefore, it is crucial to 
maintain cleanliness of the nasal passages and to regularly change the 
nasal tubes to minimize the chance of infection when implementing 
nasal feeding therapy.

In this study, oxygen intake was identified as a protective factor 
for SAP in patients with AIS and AF. Since its introduction in 1855, 

FIGURE 4

Forest plot of odds ratios (OR) with 95% confidence intervals (CI) for 
variables associated with SAP. The dashed vertical line indicates the 
null effect (OR = 1). Error bars represent 95% CIs intervals not 
crossing the null line denote statistical significance (p < 0.05). OR < 1 
indicates protective effects, while OR > 1 indicates increased risk.

FIGURE 3

Decision curve analysis (DCA) on test set. The plot displays 
standardized net benefit (y-axis) against high-risk probability 
thresholds (x-axis). Higher curves indicate better clinical utility.

TABLE 3 LR analysis results.

Variables B SE Waldχ2 OR (95% CI) p

Coronary heart disease 0.6681 0.1378 23.712 1.958 (1.494, 2.566) <0.001

Hypertension 0.7941 0.1324 36.055 2.218 (1.710, 2.876) <0.001

Consciousness disorder 1.0186 0.1504 44.503 2.720 (2.027, 3.650) <0.001

Cognitive impairment 1.1442 0.1551 54.028 3.133 (2.310, 4.248) <0.001

Limb movement disorders 0.9721 0.1482 42.248 2.623 (1.961, 3.507) <0.001

Dysphagia 0.6324 0.2260 7.415 1.846 (1.187, 2.871) 0.006

Nasal feeding −0.5097 0.1933 6.039 0.601 (0.411, 0.878) 0.008

Oxygen intake −2.8299 0.1981 204.142 0.059 (0.040, 0.087) <0.001

https://doi.org/10.3389/frai.2025.1595101
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Su et al. 10.3389/frai.2025.1595101

Frontiers in Artificial Intelligence 09 frontiersin.org

supplemental oxygen has been widely used in acute care, and 
physicians consider it a harmless and potentially beneficial 
treatments, even in the absence of hypoxemia (Park et al., 2021). Our 
research results also demonstrated the same conclusion. However, a 
systematic review and meta-analysis of more than 16,000 patients 
with acute illnesses have indicated that supplemental oxygen levels 
exceeding the range of SpO2 (94–96%) may lead to vasoconstriction 
in the pulmonary, cardiovascular, and neurological systems, as well 
as inflammatory responses, and oxidative stress, potentially resulting 
in life-threatening conditions (Shultz and Hartmann, 2005). 
Therefore, when administering oxygen to improve clinical symptoms 
in patients with AIS, it is crucial for clinicians to conduct thorough 
assessment before providing oxygen, to minimize the risk of 
pulmonary inflammation.

The data for this study were extracted from the web-based 
reporting system of 24 hospitals in Shandong Province, China. 
Given potential variations in assessment criteria across hospitals of 
different tiers, NIHSS and CHA₂DS₂-VASc scores were excluded 
from our analysis to minimize potential bias. The NIHSS scores is 
a widely used tool for assessing neurological deficits in stroke 
patients, with higher scores indicating more severe neurological 
impairment. Studies have demonstrated a linear correlation 
between NIHSS scores and patient prognosis, where elevated 
admission scores are associated with increased risks of adverse 
outcomes (Cheng et al., 2022). However, certain NIHSS components 
(including facial palsy, ataxia, and gaze assessment) showed 
significant scoring variations due to subjective interpretation 
differences (Kasner, 2006). Since standardized assessment protocols 
were not implemented across study sites during initial data 
collection, we observed substantial scoring inconsistencies, there 

FIGURE 5

Nomogram for predicting SAP risk in AIS patients with AF. The nomogram integrates multiple predictors to estimate the risk of SAP in AIS patients AF. 
Each predictor is assigned a score on the point scale, and the total points correspond to the predicted probability of SAP. Higher total points indicate a 
greater risk of SAP.

FIGURE 6

Calibration curves of the LR model. (A) Calibration curve of the LR 
model in the validation set. (B) Calibration curve of the LR model in 
the test set. The diagonal dashed line represents perfect calibration, 
where predicted probabilities match observed probabilities. Points 
closer to the diagonal indicate better model calibration.
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are excessive outliers and extremes. Consequently, NIHSS scores 
were excluded from our final analysis to ensure data reliability. The 
CHA₂DS₂-VASc score, while validated for stroke risk assessment in 
atrial fibrillation patients (Requena Calleja et  al., 2019), was 
excluded from our analysis due to incomplete data (>50% missing 
components). This composite metric incorporates congestive heart 
failure, prior stroke and vascular disease, but could not be reliably 
calculated in our cohort. We  therefore could not assess its 
prognostic value for cognitive outcomes in this population.

Based on a large-scale cohort of 4,496 patients with AIS and 
AF, this study systematically evaluated the performance of LR, RF, 
SVM, and XGBoost machine learning models in predicting 
SAP. The results demonstrated that the LR model achieved 
superior overall performance (AUC = 0.866) and calibration 
consistency compared to complex ensemble algorithms, 
outperforming RF, SVM, and XGBoost in predicting 
SAP. Additionally, the LR model demonstrated superior clinical 
utility in predicting SAP after intracerebral hemorrhage, 
outperforming RF, SVM, and XGBoost models (Chu et al., 2018). 
Although prior studies suggest XGBoost may excel in specific 
scenarios (Zhang et  al., 2024). In our study confirms that LR 
remains the gold standard for balancing predictive accuracy and 
clinical utility in large-scale datasets dominated by linear 
associations. Compared with complex ensemble algorithms, the 
predictive advantage of LR model in SAP may be  because the 
linear feature screening mechanism is more suitable for clinical 
data and provides a transparent decision-making framework for 
clinical practice while mitigating interference from high-
dimensional noise (Greenland et al., 2016). In clinical applications, 
the choice of predictive models is intrinsically linked to dataset 
scale. For small-to-medium-sized datasets (n < 1,000), penalized 
linear models such as LR generally outperform complex machine 
learning methods due to their superior interpretability and 
robustness (Steyerberg, 2019). A meta-analysis of 112 clinical 
prediction modeling studies demonstrated that the difference in 
AUC between LR and sophisticated algorithms was consistently 
<0.02. The inherent simplicity and transparency of LR models 
facilitate both clinical interpretation and practical implementation. 
Notably, linear feature selection methods based on LR demonstrate 
exceptional compatibility with clinical data, exhibiting marked 
advantages in disease assessment and diagnostic differentiation 
compared to alternative approaches (Christodoulou et al., 2019). 
Future research should explore multimodal integration of LR with 
radiomics or dynamic biomarker monitoring to enhance real-time 
predictive capabilities.

This study possesses several limitations. Firstly, due to the varying 
levels of hospital comprehensiveness and differing judgmental criteria 
among clinicians, CHA₂DS₂-VASc scores, and NIHSS scores were not 
included, which limited the ability to assess the severity of the patients’ 
conditions. Secondly, while the target population comprised patients 
with AIS and AF, it remains unverified whether the model can 
be generalized to the border population, highlighting the need to 
consider its applicability across different demographics. Lastly, this 
study was validated and tested hospitals in Shandong Province, and 
further validation is required to determine its relevance in 
other regions.

Conclusion

In this study, we used a large-sample, multi-center case–control 
design to identify the risk factors for SAP in patients with AIS and 
AF. We systematically analyzed coronary artery disease, hypertension, 
consciousness disorder, cognitive impairment, limb movement disorder, 
dysphagia, nasal feeding, and oxygen intake as independent influencing 
factor of SAP. Through comparative evaluation of four machine learning 
algorithms—LR, RF, SVM, and XGBoost—the risk prediction model 
based on LR demonstrated the optimal predictive efficacy for SAP in 
patients with AIS complicated by AF. The derived nomogram serves as 
a clinically interpretable visualization tool, providing actionable evidence 
to guide risk stratification and individualized intervention strategies in 
future clinical research and practice.
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Glossary

SAP - Stroke-associated pneumonia

AIS - Acute ischemic stroke

AF - Atrial fibrillation

LASSO - Least absolute shrinkage and selection operator

SMOTE - Synthetic minority oversampling technique

RF - Random forest

SVM - Support vector machine

XGBoost - Extreme gradient boosting

DBP - Diastolic blood pressure

SBP - Systolic blood pressure

RBC - Red blood cell count

WBC - White blood cell count

HB - Hemoglobin

HCT - Hematocrit

PLT - Platelet count

PCT - Plateletcrit

NEUT - Neutrophil count

LYM - Lymphocyte count

MONO - Monocyte count

EO - Eosinophil

BA - Basophil

NEUT% - Neutrophil ratio

CPR - C-reactive protein

INR - International normalized ratio

PT - Prothrombin time

APTT - Activated partial prothrombin time

DD - D-dimer

FIB - Fibrinogen

ALB - Albumin

DBIL - Direct bilirubin

Cr - Creatinine

TC - Total cholesterol

HCY - Homocysteine

LDL - Low-density lipoprotein

HDL - High-density lipoprotein

ROC - Receiver-operating-characteristic

AUC - Area under the receiver operating characteristic curve

CI - Confidence interval
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