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Path loss prediction is crucial to facilitate reliable vehicle-to-infrastructure (V2I) 
communications. In this study, machine learning techniques are investigated for 
path loss modeling using empirical measurements at 5.9 GHz from eight Road 
Side Unit (RSU) sites. The performance of Extreme Gradient Boosting (XGBoost) 
and Multilayer Perceptron (MLP) models is contrasted with traditional empirical 
models such as the Dual Slope and 3rd Generation Partnership Project (3GPP) 
models in three varied urban environments: open, suburban, and densely urbanized 
cities. The findings indicate that machine learning models, in particular XGBoost, 
consistently outperform traditional models with the lowest Root Mean Square 
Error (RMSE) in complicated urban environments. For additional robustness in 
prediction, we propose an innovative environmental classification system based 
on building density, street geometry, and transmitter position. Feature importance 
examination reveals that distance, environmental class, and transmitter height 
are the most significant factors affecting path loss prediction accuracy. These 
observations aid the development of adaptive V2I communication systems and 
provide valuable guidelines for enhancing reliability in diverse urban environments.
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1 Introduction

V2I communication is a critical aspect of Intelligent Transportation Systems (ITS). It enables 
vehicles to communicate with roadside equipment in real-time to make traffic safer, more efficient, 
and more effectively managed. One of the major issues with deploying trustworthy V2I systems is 
estimating path loss reliably. Path loss is the extent to which signal intensity weakens as it propagates 
through urban spaces. Obstacles such as buildings, terrain irregularities, and dynamic objects (e.g., 
traffic and weather) cause non-linear interference patterns, whose effect on signal reliability is 
significant. Traditional path loss models, such as the Dual Slope and 3GPP models (Kenney, 2011), 
are commonly empirical or deterministic in nature. While they work effectively in controlled 
settings, such models fail to capture the complexity of urban areas, resulting in predictions that can 
deteriorate V2I communication performance.

Recent developments in machine learning (ML) offer a hopeful alternative. With big data 
and better learning methods, ML models can learn subtle relationships between 
environmental factors and signal loss that go beyond the predictive capability of traditional 
models. XGBoost is a gradient-boosting tool that is good at managing complex data and can 
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work with many variables. It has shown great accuracy in predicting 
numbers. Likewise, MLP neural networks can learn complicated 
patterns well, which makes them suitable for predicting V2I path loss. 
Nevertheless, the performance of such models is highly dependent on 
effective data preprocessing in the form of outlier elimination, feature 
scaling, and dataset representativeness to ensure generalizability 
across various urban settings. This paper contrasts the performance 
of XGBoost and MLP with Dual Slope and 3GPP benchmarks for 
urban V2I path loss prediction. With a higher solution set of real-
world measurements, i.e., Received Signal Strength Indicator (RSSI), 
transmission power, and transceivers’ distances, we  show that 
machine-learning models generalize far better than traditional 
methods. Our findings point out that XGBoost can decrease 
prediction errors by as much as 38%, which makes V2I link budgeting 
and network planning more precise. Further, we  emphasize 
preprocessing techniques, considering that better data quality means 
higher model reliability. These findings have deep implications for 
ITS adoption in smart cities. Proper path loss prediction is crucial for 
optimal placement of infrastructure, ensuring reliable vehicle-to-
infrastructure communication, and enhancing the performance of 
autonomous vehicle technologies. This work helps create smart 
transportation networks by using machine-learning insights in V2I 
system design. These networks can adapt and respond to the 
challenges of moving around in today’s cities.

2 Previous studies

This section presents existing research on path loss prediction 
methods, including traditional models, artificial intelligence-based 
approaches, and deep learning techniques.

2.1 Traditional path loss prediction

Traditional path loss prediction models can be  broadly 
divided into two classes: deterministic and statistical. 
Deterministic models, such as ray tracing, rely on physical 
propagation equations to make very accurate predictions. They 
require, however, extensive environmental data and significant 
computational resources, and they are difficult to scale (Hoomod 
et al., 2018; Akpaida et al., 2018).

Statistical models, including the COST 231-Hata and ECC-33 
models, predict path loss trends from empirical data. While being of 
useful real-world relevance, they generally lack site-specific accuracy 
(Tarhuni and Ouni, 2022; Zhang et  al., 2023). As established by 
Rappaport (2002) in his foundational work on wireless 
communications, these statistical models provide a practical 
compromise between accuracy and implementation complexity for 
large-scale deployment scenarios.

For 5.9 GHz city-wide V2I communications of critical significance 
to intelligent transportation systems (Boban et al., 2011), path loss 
models must be capable of addressing significant challenges presented 
by dynamic obstacles (e.g., cars, buildings, and foliage), road topology 
variations, and changing line-of-sight (LOS) conditions. While the 
classic Hata (1980) model established the foundation for urban path 
loss prediction, modern V2I systems operate at higher frequencies and 
in more complex environments, necessitating enhanced modeling 

approaches. Experimental data indicate that path loss exponents are 
likely to be  approximately 2.0 or higher in LOS scenarios and 
considerably greater than 3.5  in NLOS situations in dense urban 
settings (Abbas et al., 2013). This observation aligns with the seminal 
work by Chang and Yang (1997), who established the fundamental 
relationship between urban morphology and path loss exponent 
variations. To better model LOS-to-NLOS transitions, hybrid 
approaches like two-slope models have been proposed (Fernández 
et al., 2024).

While deterministic devices such as 3D ray tracing are more 
effective than others in modeling complex wave interactions such as 
diffraction and reflection, their computational expense emphasizes the 
value of balanced techniques with optimized efficiency and accuracy 
in the design of urban V2I networks (Pätzold and De Nardis, 2020). 
Fraile et al. (2000) demonstrated that simplified ray tracing models 
can achieve reasonable accuracy while significantly reducing 
computational requirements, making them suitable for large-scale 
network planning applications.

2.2 ML path loss prediction

ML has emerged as a powerful tool for improving path loss 
modeling in wireless communication, offering enhanced accuracy and 
adaptability over traditional empirical and deterministic models 
(Goodfellow et al., 2016). ML techniques have been widely applied in 
various domains, including image recognition (Krizhevsky et  al., 
2012), natural language processing (Devlin et al., 2019), and wireless 
communication systems (Zhang et al., 2019). Path loss prediction, a 
crucial component of wireless network planning, is inherently a 
regression problem, making it well-suited for supervised learning 
techniques such as support vector machines, artificial neural networks 
(ANN), random forests, and K-nearest neighbors (Murphy, 2012). 
Among these, ANN models have demonstrated superior accuracy in 
path loss estimation compared to empirical models (Bishop, 2006). 
For instance, Zhang et  al. (2019) developed a real-time channel 
prediction model that estimates path loss (PL) and packet drop 
probability in Dedicated Short-Range Communications (DSRC) 
systems, highlighting the flexibility of ML approaches in dynamic 
vehicular environments.

The adaptability of ML in path loss modeling is attributed to its 
ability to learn directly from measured propagation data, allowing 
models to generalize better across varying environments (Oroza et al., 
2017). This approach addresses the limitations of traditional channel 
models as identified by Molisch et al. (2011), who emphasized the 
need for context-aware propagation modeling in vehicular 
communications. Recent comprehensive studies by Huang et  al. 
(2022a) have demonstrated that ML models can effectively capture the 
complex relationship between environmental features and path loss in 
V2I scenarios. The follow-up work by Huang et al. (2022b) further 
validated these findings through extensive field measurements across 
diverse urban environments. Unlike traditional models that rely on 
predefined propagation assumptions, ML-based approaches use 
extensive datasets collected from real-world conditions to train 
algorithms for accurate signal prediction. Furthermore, ML models 
incorporate key radio environment factors, including distance, 
frequency, antenna height, terrain type, and obstacles, to enhance 
predictive accuracy (Uccellari et al., 2016).
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2.3 Deep learning for path loss prediction

Deep learning, a subset of ML characterized by neural networks 
with multiple hidden layers, has shown promising results in path loss 
prediction. Deep neural networks (DNNs) can automatically extract 
features from raw data, eliminating the need for manual feature 
engineering (Tarhuni and Ouni, 2022). This capability is particularly 
valuable in complex urban environments where signal propagation is 
influenced by numerous factors. For example, Thrane et al. (2020) 
demonstrated that DNNs outperform traditional path loss models in 
urban scenarios by capturing intricate relationships between 
environmental variables and signal attenuation (Gho et al., 2019).

Recurrent Neural Networks and Long Short-Term Memory networks 
have been applied to path loss prediction in dynamic environments, 
leveraging their ability to model temporal dependencies in signal 
propagation (Pätzold and De Nardis, 2020). These approaches are 
especially relevant for V2I communications, where both the vehicle and 
the surrounding environment may change rapidly. Additionally, 
Convolutional Neural Networks have been utilized to process spatial 
information from environmental maps, enabling more accurate path loss 
predictions in urban settings (Filippi and Bazzi, 2021).

Despite their advantages, deep learning approaches face challenges 
such as the need for large training datasets, computational complexity, 
and potential overfitting (Gozalvez and Sepulcre, 2022). Wu et al. 
(2020) proposed a novel transfer learning approach to address these 
limitations by leveraging knowledge from source domains with 
abundant data to improve prediction accuracy in target domains with 
limited data. Hybrid models that combine deep learning with 
traditional path loss models have been proposed to address these 
limitations, offering a balance between accuracy and computational 
efficiency (Huang et al., 2022a).

3 Methodology

The methodology of this study is designed to systematically 
evaluate and enhance path loss prediction for V2I communications in 
dynamic urban environments. Guided by the workflow illustrated in 
Figure 1, this section outlines a structured three-phase approach: (i) 
data collection and preprocessing, (ii) model development and 
analysis, and (iii) performance evaluation. The objective is to validate 
the effectiveness of ML models compared to traditional empirical 

FIGURE 1

The workflow of this study.
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approaches, while addressing the challenges posed by critical urban 
variables such as distance, obstruction density, and antenna height.

The study begins with the acquisition of real-world data across 
diverse urban scenarios, ensuring robust representation of signal 
propagation dynamics. This data undergoes rigorous preprocessing 
including normalization and feature selection to enhance model 
generalizability. Subsequently, state-of-the-art ML models (XGBoost and 
MLP) are developed and evaluated against empirical frameworks (3GPP 
TR 38.901 and Dual Slope) to identify the optimal prediction method for 
urban V2I networks. By aligning with the workflow in Figure 1, the 
proposed methodology ensures reproducibility, minimizes bias, and 
promotes adaptability to real-world complexities ultimately supporting 
the development of reliable 5G/6G vehicular communication systems.

3.1 Dataset collection

We utilize an open-access dataset (30), which was gathered 
under a V2I measurement campaign in Bologna. Eight RSU 
positions as transmitters (Tx) are included in this dataset, which 
function in between 5.9 GHz. The transmitters were mounted at 
two different heights: 6.5 and 10.5 m. The receiver (Rx) was 
mounted on the roof of a car at a height of 1.75 m. The dataset 
includes RSSI measurements, which were converted to path loss 
using the formula shown in Equation 1:

 = − + − −Tx Rx cable Tx RxPL P P L G G  (1)

where TxP  is the transmission power, and RxP  is the received 
power, which in this context is the measured RSSI value, cableL  
represents the cable loss, and TxG  and RxG  are the Tx and Rx antenna 
gains, respectively.

The dataset includes measurements from various urban 
environments, including open areas, narrow streets, and areas with 
dense buildings. GPS coordinates for both transmitters and receivers 
were recorded, allowing for accurate distance calculations and 
environmental classification.

3.2 Data preprocessing

To ensure data quality and reliability prior to model training, 
several preprocessing techniques were applied to the raw V2I 
communication dataset. These techniques were designed to handle 
noise, normalize feature scales, and preserve the statistical 
distribution of environmental classes across training, validation, and 
testing sets.

3.2.1 Outlier elimination
Outliers were identified and removed using the Interquartile 

Range (IQR) method. For a given feature X, the IQR is calculated as 
shown in Equation 2:

 = −3 1IQR Q Q  (2)

where 1Q  and 3Q  are the first and third quartiles, respectively. A data 
point x is considered an outlier if − ∗ + ∗1 3x 1.5 IQR or x 1.5 IQR.Q Q

3.2.2 Feature scaling
Min-max normalization was used to rescale all numerical features 

to a standard range [0, 1]. For each feature value x, the normalized 
value x′ is computed as:

 
( )( ) ( ) ( )( )x' x min x / max x min x= − −

This ensures that all input features contribute proportionally 
during model training.

3.2.3 Temporal averaging
To reduce temporal noise in RSSI measurements, a sliding 

window average was applied. For a signal s(t) over time, the smoothed 
signal ( )s t−  is given by Equation 3:

 ( ) ( ) { } { } ( )1/ _ 0 ^ 1s t N i N s t i− = ∗Σ = − −
 (3)

where N is the window size.
Finally, the dataset was split into three subsets: 80% for training, 

10% for validation, and 10% for testing. Stratified sampling was used 
to maintain the proportional distribution of environmental classes 
(open, suburban, and dense urban) across all subsets, ensuring fair 
evaluation of model performance.

3.3 Feature importance analysis

Feature importance analysis was conducted to identify the most 
significant factors affecting path loss prediction accuracy. Figure 2 shows 
the relative importance of different features in the XGBoost model.

The analysis reveals that distance, environmental class, and 
transmitter height are the most significant factors affecting path loss 
prediction accuracy. While receiver latitude and longitude also show 
high importance, this is primarily because they implicitly capture the 
road network geometry and building distribution patterns in our 
study areas.

Regarding the use of latitude and longitude as features, 
we acknowledge that an intrinsic coordinate system (such as a 
polar coordinate system with radius = distance and angle with 
origin at the RSU might be theoretically more elegant. However, 
we  found that latitude and longitude provided practical 
advantages in our specific dataset, as they inherently encode 
spatial relationships between the transmitter and receiver within 
the urban landscape. Future work could explore alternative 
coordinate systems to potentially improve model 
performance further. The most critical hyperparameters include 
in Table 1.

3.4 Environmental classification

We classify the urban environments into three categories based on 
building density, street layout, and vegetation coverage:

 • Open Urban Environment: Characterized by wide streets, low 
building density (<50 buildings/km2), and minimal vegetation. 
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These areas typically have excellent line-of-sight (LOS) conditions 
between the RSU and vehicles.

 • Suburban Environment: Medium building density (50–200 
buildings/km2), moderate street widths, and variable vegetation. 
These areas feature a mix of LOS and non-line-of-sight (NLOS) 
conditions.

 • Dense Urban Environment: High building density (>200 
buildings/km2), narrow streets, and urban canyons. These areas 
predominantly have NLOS conditions with significant multipath 
effects. The classification methodology builds upon the urban 
propagation environment categorization proposed by Neskovic 
et al. (2001), who established the correlation between building 
density metrics and radio propagation characteristics.

This classification system provides a structured approach to 
understanding how different urban characteristics affect signal 
propagation and path loss prediction.

3.5 Path loss prediction models

This section presents a comprehensive overview of the four 
path loss prediction models evaluated in this study, each 

representing a different class of modeling approaches. As shown 
in Figure 3, we begin with the dual slope model, an empirical 
formulation known for its simplicity and effectiveness in capturing 
distinct propagation characteristics at varying distance intervals. 
This is followed by the 3GPP model, a standardized model widely 
adopted in cellular communication research. The last two models, 
XGBoost and MLP, belong to the machine learning domain and 
leverage data-driven training to enhance prediction accuracy. 
Together, these models provide a diverse analytical foundation for 
evaluating path loss behavior in V2I communication scenarios.

3.5.1 Dual slope model
The Dual Slope model is an empirical approach that accounts for 

distinct propagation characteristics at different distances. It is 
mathematically represented in Equation 4:

 

( )
( )

( ) ( )
0 1 10 0

0 1 10 0 2 10

log / ,
log / log / ,

break

break break break

PL d
PL n d d d d

PL n d d n d d d d

=
 + <


+ + ≥  
(4)

where: ( )PL d  represents the predicted path loss at distance d ; 0PL  
denotes the reference path loss at 0d ; breakd  is the breakpoint distance; 
1n  and 2n are the path loss exponents before and after breakd .

The parameters 0PL , breakd , 1n , and 2n were individually estimated 
for each case study using a least-squares curve-fitting approach, 
minimizing the error between the model’s predictions and the 
measured path loss data.

Several studies (32–34) have explored the effectiveness of the Dual 
Slope model in different environments.

3.5.2 3GPP model
The 3GPP model is a standardized path loss model developed by 

the 3rd Generation Partnership Project for various wireless 

TABLE 1 XGBoost various parameters.

Hyperparameter Value

Number of boosting rounds 500

Learning rate (shrinkage) 0.05

Maximum depth of trees 6

Minimum sum of instance weight 5

Minimum loss reduction 0.1

Subsample ratio of training data 0.8

FIGURE 2

Feature importance in XGBoost model.
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communication scenarios. For urban V2I communications at 
5.9 GHz, the model is defined in Equation 5:

 

( ) ( ) ( )
( )

10 10

10 10

40 log 7.8 18 log

18 log 2 log
5.0

BS

c
MS

PL d d h
fh

= ∗ + − ∗
 − ∗ + ∗  
   

(5)

where d is the distance between the transmitter and receiver in 
kilometers, BSh  is the base station (RSU) height in meters, MSh  is the 
mobile station (vehicle) height in meters, and cf is the carrier 
frequency in GHz.

3.5.3 XGBoost model
XGBoost is an ensemble learning method that uses a gradient 

boosting framework to build a collection of decision trees. The model 
was implemented with the following hyperparameters:

Number of estimators: 100
Maximum depth: 6
Learning rate: 0.1
Subsample ratio: 0.8
Column sample by tree: 0.8
Minimum child weight: 1
Regularization alpha: 0
Regularization lambda: 1
The total number of learnable parameters in our XGBoost model 

is approximately 6,500, varying slightly based on the specific tree 
structures learned during training. Mean squared error was used as 
the loss function during training.

3.5.4 MLP model
The MLP is a feedforward artificial neural network with multiple 

layers of nodes. Our implementation consists of:
Input layer: 8 neurons (corresponding to our feature set)
Hidden layer 1: 64 neurons with ReLU activation
Hidden layer 2: 32 neurons with ReLU activation
Hidden layer 3: 16 neurons with ReLU activation
Output layer: 1 neuron with linear activation

Additional architectural details:
 - Dropout rate of 0.2 between layers to prevent overfitting
 - Batch normalization after each hidden layer
 - Adam optimizer with learning rate of 0.001
 - Batch size of 32
 - Early stopping with patience of 10 epochs
 - Mean squared error as the loss function

3.5.5 Performance metrics
To evaluate the accuracy and reliability of both models, several 

performance metrics were computed:

 • Mean Squared Error (MSE): Measures the average squared 
differences between predicted and actual values as shown in 
Equation 6:

 

( )
=

= −∑
2

1

1 n

i i
i

MSE y y
n  

(6)

where iy  is the actual path loss ˆiy is the predicted path loss, and n 
is the number of observations.

 • RMSE: Provides the standard deviation of residuals, indicating 
model precision as defined in Equation 7:

 
( )

=
= −∑ 2

1

1 ˆ
n

i i
i

RMSE y y
n  

(7)

 • R-squared (R2): measures the proportion of variance in the target 
variable explained by the model as shown in Equation 8, providing 
an overall indication of model fit. An R2value close to 1 suggests 
that the model accounts for most of the variance and makes 
accurate predictions. A value near 0 implies the model performs 

FIGURE 3

Block diagram of evaluated path loss prediction models categorized by modeling approach.
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no better than simply predicting the mean of the observed data. 
Negative values indicate the model performs worse than this 
naive, mean-based prediction.

 

( )

( )
=

=

−

= −

−

∑

∑

2

1

2

1

2 1

n

i i
i
n

i
i

y y
R Score

y y
 

(8)

 • Mean Absolute Error (MAE): Represents the average absolute 
differences between predicted and actual values as defined in 
Equation 9:

 



=
= −∑

1

1 n

i i
i

MAE y y
n  

(9)

 • Standard Deviation of Residuals (Std Dev): Measures the spread 
of errors in prediction, indicating model consistency in 
Equation 10:

 
( )2

1

1 ˆ
n

i i
i

y y e
n =

σ = − −∑
 

(10)

where e  is the mean error.
These metrics provide a comprehensive evaluation of the models’ 

predictive capabilities, with lower error values indicating higher accuracy.

4 Results and discussion

This section gives a clear picture of how different path loss 
prediction models perform in three case studies. Every case study 

represents a variant V2I communication situation. The XGBoost 
model is compared with the Dual Slope model, the 3GPP TR 38.901 
model, and the MLP. The assessment utilizes benchmark metrics to 
verify the performance of the models, which include RMSE, MSE, 
MAE, and R2, as presented in Table  2. The findings confirm that 
machine learning models are more accurate in outcome prediction, 
particularly XGBoost, with consistently lower error rates and higher 
R2 values across all scenarios. This performance gain is especially 
evident in dynamic and complex urban environments, where the 
conventional models are likely to fail to capture the non-linear and 
non-stationary characteristics of radio wave propagation. These 
findings point out the potential of data-driven approaches for 
enhancing the accuracy and robustness of V2I channel modeling in 
future wireless systems.

4.1 Case study 1: open area

Figure 4 illustrates the path loss behavior in an open area with 
minimal obstructions and compares the performance of machine 
learning models with traditional approaches. XGBoost performed 
exceptionally well, achieving an RMSE of just 0.25 dB and an R2 of 
0.94, outperforming all other models. The MLP model performed 
well, accurately identifying subtle propagation effects, including 

TABLE 2 Performance metrics comparison: case studies.

Case study Model MSE (dB) MAE (dB) RMSE (db) R2

1 3GPP (TR 38.901) 261.71 13.05 16.18 −3.47

Dual slope 21.86 3.70 4.68 0.61

MLP 0.19 0.34 0.43 0.83

XGBoost 0.06 0.19 0.25 0.94

2 3GPP (TR 38.901) 150.97 11.11 12.29 −1.32

Dual slope 30.83 4.51 5.55 0.52

XGBoost 0.09 0.20 0.29 0.92

MLP 0.17 0.30 0.41 0.83

3 3GPP (TR 38.901) 220.25 12.85 14.84 −0.72

Dual slope 46.13 5.53 6.79 0.64

XGBoost 0.05 0.16 0.22 0.95

MLP 0.14 0.28 0.37 0.86

FIGURE 4

Path loss vs. distance for different prediction models in open urban 
environment.
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ground reflections, with an RMSE of 0.43 dB and an R2 of 0.83. In 
contrast, the traditional models lagged considerably: the Dual Slope 
model achieved an RMSE of 4.68 dB and an R2 of 0.61, whereas the 
3GPP TR 38.901 model performed much worse, with an RMSE of 
16.18 dB and an R2 of −3.47, indicating performance worse than a 
naive mean-value prediction. These results highlight the shortcomings 
of static, rule-based models for use in open settings where complicated 
and multidimensional signal propagation dynamics are the 
main concern

4.2 Case study 2: suburban area

Figure  5 illustrates the path loss patterns in a suburban 
environment with moderate building density and partial obstructions. 
XGBoost demonstrated the highest accuracy, achieving an RMSE of 
0.29 dB and an R2 of 0.92, while the MLP model also performed well, 
with an RMSE of 0.41 dB and an R2 of 0.83. In contrast, traditional 
models showed significantly lower accuracy: the Dual Slope model 
had an RMSE of 5.55 dB and an R2 of 0.52, and the 3GPP TR 38.901 
model performed poorly, with an RMSE of 12.29 dB and a negative R2 
of −1.32. These results highlight the superior adaptability of machine 
learning models in handling the variability of suburban 
environments—such as the presence of trees and mid-rise buildings—
compared to the static nature of traditional, formula-based models.

4.3 Case study 3: dense urban area

Figure  6 illustrates path loss behavior in dense urban areas 
characterized by tall buildings and pronounced multipath effects. 
XGBoost delivered outstanding performance, achieving an RMSE of 

0.22 dB and an R2 of 0.95, while the MLP model also performed well, 
with an RMSE of 0.37 dB and an R2 of 0.86. In contrast, traditional 
models struggled to represent the complexity of the environment: the 
Dual Slope model recorded an RMSE of 6.79 dB and an R2 of 0.64, 
while the 3GPP TR 38.901 model fared the worst, with an RMSE of 
14.84 dB and a negative R2 of −0.72. These results underscore 
XGBoost’s ability to capture nonlinear propagation effects such as 
shadowing and diffraction and clearly reveal the limitations of static, 
formula-based models like 3GPP in accurately modeling signal 
behavior in complex urban settings.

4.4 Environmental impact on path loss

Our analysis indicates that environmental factors significantly 
influence path loss characteristics. Table 3 summarizes the critical 
variables affecting signal reliability in different urban environments 
and proposes specific actions for improving connectivity. Gozalvez 
et al. (2012) similarly observed that environmental context awareness 
is crucial for optimizing V2I communication systems, particularly in 
heterogeneous urban settings. In open urban environments, 
transmission power optimization can significantly improve 
connectivity. However, in dense urban environments with sharp road 
curves, increasing transmission power provides minimal benefits, 
and strategic RSU placement becomes more critical.

5 Conclusion

This study demonstrates that machine learning approaches, 
particularly XGBoost, consistently outperform traditional path loss 
prediction models in urban V2I communication systems. The superior 

FIGURE 5

Predicted vs. measured path loss for different models in suburban 
environment.

FIGURE 6

Predicted vs. measured path loss for different models in dense urban.

TABLE 3 Critical variables and recommended actions for different urban environments.

Environment Critical variables Recommended actions

Open urban Transmission power, antenna height Optimize transmission power, adjust antenna height based on coverage requirements

Suburban Vegetation density, road curvature Increase antenna height above vegetation, strategic RSU placement at road curves

Dense urban Building density, street width Deploy multiple RSUs with overlapping coverage, position RSUs at street intersections
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performance of ML models is attributed to their ability to learn 
non-linear signal fluctuations and environmental factors directly from 
empirical data.

Future work could explore hybrid models combining physics-
based and data-driven approaches, investigate alternative coordinate 
systems for feature representation, and extend the analysis to additional 
frequency bands relevant to emerging V2I communication standards.
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