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Introduction: Researchers in biomedicine and public health often spend weeks 
locating, cleansing, and integrating data from disparate sources before analysis 
can begin. This redundancy slows discovery and leads to inconsistent pipelines.

Methods: We created BioBricks.ai, an open, centralized repository that packages 
public biological and chemical datasets as modular “bricks.” Each brick is a Data 
Version Control (DVC) Git repository containing an extract‑transform‑load (ETL) 
pipeline. A package‑manager–like interface handles installation, dependency 
resolution, and updates, while data are delivered through a unified backend 
(https://biobricks.ai).

Results: The current release provides >90 curated datasets spanning genomics, 
proteomics, cheminformatics, and epidemiology. Bricks can be combined 
programmatically to build composite resources; benchmark use‑cases show 
that assembling multi‑dataset analytic cohorts is reduced from days to minutes 
compared with bespoke scripts.

Discussion: BioBricks.ai accelerates data access, promotes reproducible 
workflows, and lowers the barrier for integrating heterogeneous public datasets. 
By treating data as version‑controlled software, the platform encourages 
community contributions and reduces redundant engineering effort. Continued 
expansion of brick coverage and automated provenance tracking will further 
enhance FAIR (Findable, Accessible, Interoperable, Reusable) data practices 
across the life‑science community.
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1 Introduction

The integration of artificial intelligence (AI) into toxicology and 
biochemistry is revolutionizing these fields, enhancing data analysis 
capabilities and contributing to more efficient and accurate insights. AI 
methods excel at processing large, diverse datasets, which are increasingly 
valuable for modern toxicology and biochemistry research (Lin and Chou, 
2022; Hartung, 2023). In toxicology, AI-powered predictive tools like 
Read-Across Structure–Activity Relationships (RASAR) have achieved 
87% balanced accuracy across nine Organisation for Economic 
Co-operation and Development (OECD) tests and 190,000 chemicals, 
surpassing traditional methods in predicting chemical toxicity 
(Luechtefeld et al., 2018). Large language models are making a growing 
impact on chemistry, with the capacity to predict chemical properties, 
evaluate synthesis pathways, and generate compounds optimized to 
reduce toxicity (Ramos et al., 2024). These models require and benefit 
from large amounts of data, but many of the same datasets used for these 
assets are laboriously collected repeatedly from different research groups 
(Fabian et al., 2020; Lee et al., 2020; Yüksel et al., 2023). The power of AI 
in fields such as toxicology and biochemistry depends heavily on the 
quality, quantity, and accessibility of data. Standardized data access is 
essential for integrating diverse data types, ensuring reproducibility, and 
facilitating the training and validation of AI models. Standardization 
supports cross-disciplinary research, regulatory compliance, and efficiency 
by reducing the time researchers spend on data preparation. The lack of 
large, high-quality training datasets is a critical barrier to the broader 
application of AI models in fields such as public health (Jain et al., 2024). 
The demand for data often surpasses the pace at which new datasets are 
generated and made available, highlighting the need for better data 
collection, management, and sharing practices (Alzubaidi et al., 2023).

There are many independent databases for public health. The 
European Bioinformatics Institute’s identifiers.org, a registry for 
biomedical datasets, lists 838 such distinct data sources. This is by no 
means an exhaustive list, but illustrates the diverse landscape of 
available public health information (NIH LIBRARY, n.d.; Centers for 
Disease Control and Prevention, 2021). A survey of data scientists 
performed in 2022 reported that about 38% of developer effort is spent 
on accessing and cleaning data, rather than modeling and analyzing it 
(ANACONDA, 2022, Proto-OKN, n.d.), thus wasting valuable 
resources and working hours.

BioBricks solves the problem by providing a package manager for 
data. It provides a standardized format that works well with developer 
tools and allows users to have a single location to search for and install 
data assets. By streamlining data management and distribution, 
BioBricks.ai has the potential to accelerate the pace of progress in the life 
sciences. It reduces barriers to data access, collaboration, and 
distribution, allowing researchers to focus on analysis and innovation 
rather than data preparation and management. Herein, we provide a 
detailed overview of BioBricks and describe several application use cases.

2 Methods

2.1 BioBricks.ai overview

BioBricks.ai aims to simplify the provisioning of this training and 
evaluation data. With a few lines of code, datasets can be loaded into 
a computation environment. BioBricks.ai provides a public, 

centralized Data Version Control (DVC)1 data registry for public 
health data assets (Data Version Control, n.d.-a; Data Version 
Control, n.d.-b). While built on DVC for data science projects, 
BioBricks.ai enhances this foundation with a specialized command-
line tool and web portal focused on installing and managing data 
dependencies in a manner akin to package managers like the 
Comprehensive R Archive Network (CRAN), Bioconductor and PyPI 
(Bommarito and Bommarito, 2019; Dong et al., 2021).

BioBricks.ai manages data assets organized into ‘brick’s. Each 
brick is a git repository adhering to a standardized protocol outlined 
in the BioBricks.ai template repository.2 Bricks can be created with or 
without dependencies on other bricks. For independent bricks, which 
often represent primary data sources, BioBricks.ai’s policy is to 
replicate the original data without modifications, ensuring data 
integrity and fidelity, with full attribution and citation. Examples 
include the HUGO Gene Nomenclature Committee brick3 and the 
ClinVar brick,4 a database of clinical variants and their relationship to 
human health, (Bruford et al., 2007; Landrum et al., 2016).

Bricks can also be built with dependencies on other bricks, like 
these primary sources, allowing for more complex data structures that 
might restructure data, combine multiple sources, or generate derived 
products like machine learning models. This flexible structure enables 
BioBricks.ai to maintain a hierarchy of data resources, from raw 
datasets to sophisticated, integrated products. A prime example is the 
ChemHarmony brick, which combines and simplifies data from over 
fifteen chemical-safety–related databases into a single, unified schema 
using unique, curated chemical identifiers. By providing standardized 
access to consistent versions of datasets, BioBricks.ai significantly 
reduces data acquisition time, facilitates collaboration among 
researchers, and simplifies the process of building downstream assets 
that depend on multiple upstream data sources.

With a straightforward installation process, the BioBricks.ai tool 
offers a unified interface to discover and utilize numerous data 
sources. Instead of navigating multiple databases, APIs, packages, or 
specialized data tools for each new source, researchers only need to 
learn one straightforward system. The accompanying web application, 
https://biobricks.ai, enables tracking of asset usage, potentially 
facilitating future features like bandwidth cost allocation and 
enhanced tooling around constructed data sources.

BioBricks.ai can be used to quickly install ‘bricks’, which are git 
repositories with code for building databases (or other data assets). 
Getting set up involves installing the command line tool, configuring 
the tool, and then installing bricks (see Code 1):

BioBricks.ai recommends using pipx to install the command line 
tool in an isolated environment. Pipx is a command-line utility that 
enables users to install Python packages into isolated environments. 
By using pipx to install the BioBricks command line tool, users can run 
commands such as biobricks install without the need to manage 
dependency conflicts with other Python environments. Alternatively, 
users can install BioBricks.ai using pip install biobricks if preferred. 
The tool is designed to be lightweight, with minimal dependencies, 
ensuring a simple and efficient installation process. Importantly, while 

1 https://dvc.org/doc/use‑cases/data‑registry

2 https://github.com/biobricks‑ai/brick‑template

3 https://github.com/biobricks‑ai/hgnc

4 https://github.com/biobricks‑ai/clinvar
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DVC is used in the development of bricks, it is not required for 
end-users of the BioBricks.ai tool, further streamlining the user 
experience for researchers who need only to access and utilize the data.

Researchers can find all available bricks developed by the 
BioBricks.ai team on GitHub at https://github.com/biobricks-ai and on 
the official website at https://biobricks.ai. To use the tool, users create 
an account at BioBricks.ai, which provides them with a token that 
enables asset downloads. Although brick downloads are free today, 
each user must register for a token so that the platform can (i) record 
anonymized usage statistics, (ii) enforce fair-use limits that deter 
scraping/abuse, and (iii) keep open the option of cost-recovery (pay-as-
you-go for multi-terabyte transfers) should future bandwidth bills 
demand it. The login layer is therefore a governance safeguard, not a 
paywall, ensuring BioBricks.ai remains sustainable while remaining 
free for the community. Several example bricks are shown in Table 1. 
Bricks are categorized based on the data they contain: Chemical 
Informatics, Cancer Research, Genomics & Genetics, Proteomics, 

Pharmacology and Drug Discovery, Toxicology and Environmental 
Science, Medical and Clinical Sciences, Ontology and Terminology, 
and Systems Biology and Pathways. A knowledge graph visualization 
of each brick and their associated category is shown below in.

Documentation for building, installing, and configuring 
BioBricks.ai is available at https://docs.biobricks.ai. In the following 
sections, we provide some details on how BioBricks.ai functions, but 
we refer active users to the documentation for complete details.

2.2 Architecture and design considerations

BioBricks.ai was designed to address key challenges in life-science 
data management, such as handling very large datasets, preserving 
version history for reproducibility, and simplifying data integration 
from diverse sources. The system architecture centers on a local “brick 
library” directory (specified by the user) within which each installed 
dataset (or “brick”) is stored in a structured manner. To avoid 
duplicating large files, BioBricks.ai employs a content-addressable 
storage strategy: all data files are identified by an MD5 hash and stored 
in a central cache subdirectory. This hashing mechanism ensures that 
each unique file is downloaded only once, even if required by multiple 
bricks, thus minimizing disk usage and download time. Each brick 
itself is implemented as a Git repository conforming to a standard 
template, enabling version control of both the dataset contents and its 
build pipeline. The repository’s path in the library encodes the brick’s 
source organization, name, and commit hash (version)—for example, 
a path ./biobricks-ai/chemharmony/4f060 corresponds to version 
4f060 of the “chemharmony” brick under the biobricks-ai organization. 
This hierarchical structure allows multiple versions of a dataset to 
coexist and ensures that every brick installation is precisely reproducible.

A key architectural decision was to build BioBricks.ai on top of Data 
Version Control (DVC) and Git. Each brick repository includes a DVC 
pipeline that automates the extract-transform-load (ETL) steps for 
constructing the dataset from its original source(s). This approach 
captures provenance and enables automated rebuilding of bricks when 
source data are updated. We chose to standardize on a small set of 
optimized data formats—Parquet tables for structured tabular data, 
SQLite databases for smaller or indexed data, and HDT for semantic 
triple stores. These formats were selected for their balance of efficiency, 
interoperability, and support in common data science tools. For example, 
Parquet provides compression and partitioning that are advantageous 
for big data analytics (enabling faster parallel downloads and distributed 
processing), while SQLite offers a lightweight, self-contained database 
with robust indexing for fast queries on medium-sized datasets. By 
narrowing to these formats (without precluding others if needed), the 
design simplifies downstream use of BioBricks data in AI/ML workflows.

From the outset, we emphasized usability and minimal setup as 
design goals. BioBricks.ai’s command-line interface (CLI) provides a 
unified way to search and install data assets in a manner analogous to 
package managers like CRAN or pip. A user can install a brick with a 
single command, and behind the scenes the system handles locating 
the repository (defaulting to the central BioBricks.ai registry on 
GitHub), cloning it, retrieving the data files from cloud storage, and 
linking them into the local brick directory. The installation and 
configuration instructions (originally included in the Methods) have 
been moved to Appendix A. In place of those technical steps, we now 
focus on design rationale. For instance, by caching files and linking 

TABLE 1 Examples of databases in BioBricks.ai.

Repository Description

ice

Integrated Chemical Environment–High quality 

in vitro and in vivo toxicology data.

biogrid Data from BioGRID.

ctgov Data from ClinicalTrials.gov.

mirbase Data from miRBase.

skinsensdb Skin sensitization database.

ctdbase Data from Comparative Toxicogenomics Database.

tox21

Tox21 quantitative high throughput screening 

(qHTS) 10 K library data.

targetscan Data from TargetScan.

USPTO_ChemReaction Data from USPTO Chemical Reaction Database.

moleculenet Molecular datasets for machine learning.

pubchem PubChem data.

ToxValDB Toxicity endpoint data.

dbgap Genotype–phenotype interaction data.

zinc ZINC purchasable compound database.

toxcast EPA in vitro toxicity data.

pdb Protein Data Bank 3D structure data.

geneontology Gene Ontology knowledgebase.

cpdat Consumer Product Data.

cpcat Chemical Product Categories.

chembl Bioactive molecule data.

bash

pipx install biobricks

biobricks configure

biobricks install <brickname> # eg `biobricks install hgnc`

CODE 1

Configuring BioBricks and installing a brick can be done in 3 steps.
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them to brick directories, and by leveraging DVC’s incremental 
updates, BioBricks.ai can manage multi-terabyte datasets more 
practically. We recognize that downloading an entire multi-terabyte 
asset is impractical for many users; thus, a planned enhancement is to 
support cloud-based queries and partial dataset retrieval (so that users 
can work with subsets of data without full downloads—see 
Limitations). Nonetheless, the current architecture lays the 
groundwork by eliminating redundant transfers and enabling content-
based updates.

Another design consideration was supporting complex data 
dependencies and community contributions. BioBricks.ai allows 
bricks to declare dependencies on other bricks, meaning one dataset 
can be  built using other bricks as inputs. This modular approach 
encourages reuse: for example, a derived brick can integrate data from 
several primary-source bricks without duplicating their content. All 
such relationships are explicitly recorded (each brick repository 
contains a .bb/dependencies.txt file listing required bricks by URL or 
identifier), and the BioBricks CLI automatically ensures that 
prerequisites are installed and up-to-date when a brick is installed. 
This hierarchy of bricks was a deliberate architectural choice to reduce 
redundant effort and to enable community-driven expansion of the 
registry. A contributor can focus on crafting a new integrated dataset 
or analysis, while BioBricks.ai takes care of fetching the correct 
versions of underlying data. Currently, new bricks are added to the 
official registry via an invitation and review process with the core team 
to ensure quality and compliance. To further open this process, we are 
developing a biobricks push workflow that will allow any authenticated 
user to submit a new brick for review. This submission pipeline will 
include automated quality assurance (e.g., schema validation, virus 
scan, license checks), after which approved bricks are merged into the 
central catalog and become searchable on the platform. By balancing 
open contribution with curation, the design aims to grow the 
BioBricks.ai dataset collection in a controlled yet community-driven 
manner (Technical details on installing and using the BioBricks.ai CLI 
are provided in Appendix A).

3 Data formats

Currently, BioBricks.ai supports three primary data types: 
Parquet, SQLite, and HDT (Header, Dictionary, Triples). These 
formats were chosen for their specific advantages in handling different 
types of data and supporting various use cases: We refer to Parquet 
and sqlite bricks as ‘tabular-bricks’ and HDT as ‘triple-bricks’. The 
system can distribute any serializable data format, but these formats 
are preferred; features specially built on these data types may 
be implemented in the future.

3.1 Parquet

BioBricks.ai supports Parquet for its compression capabilities, 
which significantly reduce the size of data files. Parquet also supports 
partitioning such that one large table can be partitioned into many 
smaller Parquet files. Compression and partitioning are important for 
network efficiency, as data can be partitioned into smaller files that are 
faster to download in parallel. Partitioning is also important for 
distributed computing systems like Spark and Dask, which are often 

used to process BioBricks.ai assets (Parquet Files, n.d.; Apache 
Parquet, n.d.).

3.2 SQLite

SQLite is used within BioBricks.ai for its robust indexing 
capabilities and self-contained nature. This simple, serverless database 
system makes it easy to manage. Its indexing features facilitate quick 
data retrieval, which is beneficial for operations that require fast access 
to data (SQLite, n.d.-a; SQLite, n.d.-b). SQLite’s portability and ability 
to handle complex queries make it an ideal choice for researchers who 
need to perform detailed data exploration without the overhead of a 
full database management system.

3.3 HDT (Header, Dictionary, Triples)

BioBricks.ai adopts HDT for managing semantic knowledge graphs. 
HDT optimizes the storage and querying of RDF (Resource Description 
Framework) datasets by compressing RDF data and organizing it 
effectively. This structure supports efficient graph operations and 
accelerates both data loading and complex querying (Fernández et al., 
2020; RDF HDT, n.d.). HDT is particularly valuable for projects that 
involve linked data or require semantic reasoning capabilities.

The Parquet, SQLite, and HDT formats were chosen over others 
due to their balance of efficiency, flexibility, and widespread support 
in data science tools and libraries. While BioBricks.ai can distribute 
any serializable data format, these three formats are preferred for their 
optimal performance in various data processing scenarios. The system 
may implement special features built on these data types in the future, 
further leveraging their unique strengths.

4 Results

4.1 Capabilities and performance

4.1.1 Registry content
BioBricks.ai has grown into a sizable data resource. As of this writing, 

the public registry hosts over ninety versioned datasets (“bricks”) 
encompassing a range of biological and chemical data sources. These 
bricks include genomic references, chemical toxicology databases, clinical 
datasets, and other public health data assets contributed by the 
community. Each brick can be installed on-demand via the CLI, providing 
researchers with a convenient “one-stop” data access mechanism.

4.1.2 Usage metrics
At present, we do not have usage statistics to report for the 

platform. BioBricks.ai does not yet track downloads or active usage 
of specific bricks—it operates as an open tool without built-in 
analytics. We acknowledge that understanding how the community 
uses the bricks is important for guiding future development. 
Therefore, we plan to implement anonymized tracking and user 
analytics in a future update. This will likely include opt-in metrics 
such as the number of times a given brick is installed or updated, 
which can help us identify popular assets and prioritize 
maintenance or improvements. In this paper, we  focus on the 
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features and content of BioBricks.ai, and we  state upfront that 
usage data is currently unavailable. Establishing a feedback loop 
with user metrics is part of our roadmap to ensure the platform 
continues to meet researchers’ needs.

4.2 Use cases

4.2.1 Create novel data assets with dependencies 
on other assets

BioBricks.ai is useful for creating new assets that depend on one 
or more other bricks. The ChemHarmony brick, https://github.com/
biobricks-ai/chemharmony, combines many chemical-property data 
assets into a single, simplified asset primarily created for modeling 
chemical properties.

The ChemHarmony project is designed to integrate chemical-
property values from various databases into a unified system. The 
database is structured into three main tables: substances, properties, and 
activities. Each activity links a substance to a property with an assigned 
value, either binary (indicating positive or negative) or numerical (such 
as binding affinity or LD50 values), facilitating a quick assessment of 
chemical characteristics. As shown in Figure 1, the properties table 
contains the property ID (pid) column and a JSON column containing 
metadata describing the property. The substances table contains 
substance ID (sid) and a JSON column describing substance-metadata 
provided by the substance source. The activities table connects the sid 
and pid; it also provides structural information such as SMILES and 
InChi to make it easier to build downstream modeling bricks. The 
chemharmony code contains scripts to process every source database 

into the substances, properties, and activities tables thus reducing many 
complex heterogeneous tabular schemas into one simple schema.

BioBricks.ai supports ChemHarmony by providing the 
infrastructure and tools necessary to integrate chemical-property data 
from various sources into a unified database. The databases in 
ChemHarmony include ChemBL, eChemPortal, ToxValDB, Tox21, 
CPCat, CPDat, ToxCast, CompTox, CTDbase, PubChem, QSAR 
Toolbox, BindingDB, ToxRefDB, ICE, and REACH, with several more 
additions in progress, including RTECS, PubChem-annotations, and 
Clintox (COMPTOX_Public, n.d.; Gaulton et al., 2017; Zanzi and 
Wittwehr, 2017; Science inventory, n.d.; Xu et al., 2023; Dionisio et al., 
2015; Dionisio et al., 2018; Richard et al., 2016; Davis et al., 2023; Kim 
et al., 2016; Mombelli and Pandard, 2021; Gilson et al., 2016; Watford 
et al., 2019; Bell et al., 2017; Sweet et al., 1999; ClinTox, n.d.; Kim et al., 
2016). ChemHarmony includes 117 million chemicals and 254 million 
activities, with 4,026 major properties having over 1,000 activities 
each, including 246 million activities and 4.1 million chemicals in 
these major properties.

ChemHarmony has already gone through several revisions, 
with more to come. The BioBricks system made it easy for a team 
of people working on this asset to collaborate without worrying 
about synchronizing data dependencies between developer 
environments. This also means that releases of the ChemHarmony 
asset have unambiguous dependencies on upstream databases. This 
same system can be used to indicate when ChemHarmony needs 
updating and trigger a rebuild. Figure 1–Left shows a truncated 
version of the .bb/dependencies.txt ChemHarmony file. This file is 
built when a user runs biobricks init within a BioBricks.ai 
repository. It references the git repo and commit hash of each asset 

FIGURE 1

Left–truncated versions of the (1) .bb/dependencies.txt and (2) dvc.yaml file in the ChemHarmony BioBrick. Center, the 3‑table schema of 
ChemHarmony, a simple chemical activities dataset with a substances, properties, and activities table. Right shows how to count activities by source by 
installing the ChemHarmony brick and using it with Apache Spark with the resulting table in lower right.
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that the repository depends on. When a user runs biobricks pull 
within this repository, all of the bricks they need, but do not 
currently have, are installed. This allows all ChemHarmony 
developers to maintain a standardized environment.

When dependencies change, ChemHarmony can be  updated 
easily through manual modification of the .bb/dependencies.txt file or 
by running biobricks add <brick>, ensuring that all components are 
up-to-date without disrupting the workflow. All developers work with 
the same version of the data, thanks to the standardized management 
of dependencies and data integration provided by BioBricks.ai. This 
consistency improves collaboration and reduces errors.

4.2.2 BioBricks.ai accelerates the exploitation of 
existing knowledge

Scientific literature provides a valuable source of information 
about the relationships between biological and chemical entities, 
which can, for example, support drug repurposing or the discovery 
of unforeseen drug adverse events. A significant portion of this 
literature is gathered in PubMed through publicly available abstracts. 
However, regular changes to the API, as well as a rate-limiting 
process, make it challenging to analyze the entirety of the corpus. 
Downloads are possible in the form of FTP bulk transfers, but these 
need to be  stored in a dedicated platform, which might 
be disconnected from the analysis environment.

The PubMed brick (≈ 66 GB) lets us apply a Spark- and spaCy-
based NLP workflow to every PubMed abstract to extract chemical 
entities, adverse effects, and their putative relationships. After 
installing the brick (~30 min), we initiated an Apache Spark session 
and loaded the parquet asset (instant). Titles and abstracts were 
concatenated into a single text column (~1 min) and processed with 
a custom pipeline—named-entity recognition followed by relation 
extraction—to append chemical–effect pairs to each record (~10 h). 
An optional final step, creating a knowledge graph from extracted 
relationships, is outlined in Figure 2 but was not run in this demo. 
The complete pipeline script is available at https://github.com/
ontox-hu/pubmed-entox; further methodological details are given in 
Pampel et al. (2023). Because the brick is distributed in an append-
only format, future installs retrieve only new data, keeping refresh 
times minimal.

5 Discussion

5.1 Comparison with existing technologies

The current landscape of public data asset management in the life 
sciences is highly fragmented, with numerous independent data sources 
each using their own ad-hoc distribution mechanisms (APIs, FTP 
servers, custom formats, bespoke packages, etc.). Data users often find 
themselves writing redundant extract-transform-load (ETL) code for 
each source. For example, a researcher studying drug interactions might 
need to navigate NCBI’s web interface for genomic data, use ChEMBL’s 
API for chemical information, and parse custom file formats from 
toxicology databases—each requiring separate scripts. Two common 
strategies have emerged to address these integration challenges: 
federated data networks and harmonization (integrated) data assets.

Federated data approaches (exemplified by the Semantic Web 
paradigm) rely on each data provider adopting shared standards and 
ontologies. In theory, this yields a distributed ecosystem where 
normalized queries can seamlessly span multiple datasets via 
technologies like SPARQL. In practice, however, the coordination 
overhead and technical complexity of enforcing a common ontology 
across diverse groups is a significant barrier. While resource-intensive, 
federation can succeed in specific domains. Federated discovery tools 
also exist: the re3data registry indexes over 3,000 research data 
repositories worldwide (Pampel et al., 2023), and the NIH’s DataMed 
initiative built an open-source Data Discovery Index that harvests and 
unifies metadata from dozens of biomedical data repositories (Chen 
et al., 2018). These efforts greatly improve the findability of datasets, 
but they do not actually unify data formats or eliminate the need for 
custom processing code—users still must retrieve data from each 
source and handle idiosyncratic formats.

Harmonization assets involve groups building new assets to simplify 
and reduce heterogeneity in the life-science data ecosystem. Examples 
include PharmacoDB (Feizi et al., 2022), Harmonizome (Rouillard et al., 
2016), ROBOKOP (Fecho et al., 2021), Hetionet (Himmelstein et al., 
2017) and SPOKE (Morris et al., 2023). These sources take upstream 
data sources and develop code to extract, transform, and load those 
sources into new data assets. While this approach reduces coordination 
costs by moving the burden of data transformation to the developer of 

FIGURE 2

Pipeline for scientific knowledge extraction using the PubMed brick. Light blue boxes show the approximate runtime of each stage.
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the new harmonized asset, it also adds complexity to the data ecosystem. 
Each new asset creates maintenance costs, and the proliferation of such 
assets often results in redundant efforts.

Table 2 provides a high-level comparison of these approaches 
(federated semantic-web initiatives, harmonization assets, and the 
traditional status quo of siloed repositories) versus BioBricks.ai. 
Traditional data repositories here refer to conventional static sources 
like journal supplement files, legacy FTP servers, or standalone 
databanks that offer data dumps with minimal tooling. These typically 
lack version control, have infrequent or manual updates, and require 
end-users to perform their own integration. For example, Gene 
Expression Omnibus (GEO) provides bulk data via FTP, and many 
journals still distribute datasets as static CSV/ZIP attachments—
convenient for sharing, but burdensome for reuse and prone to being 
out-of-sync. By contrast, BioBricks.ai is designed to enable continuous 
versioning, standardized access interfaces, and automated pipelines 
for data retrieval and processing.

Importantly, neither federated networks nor one-off harmonized 
databases adequately solve the “long tail” problem of data integration: 
when researchers want to use a niche or new data source that is not yet 
supported, they must fall back on writing custom pipelines. BioBricks.ai 
aims to fill this gap by providing a package manager-like data layer that 
makes adding new data sources easier and promotes reuse of ETL efforts. 
BioBricks.ai is essentially a collection of Git repositories (each called a 
“brick”) that contain the code to download, parse, and transform a given 
data source into a standard format. This model dramatically reduces 
coordination costs—data publishers or community contributors can 
encapsulate their source in a brick without needing all providers to agree 
on global standards. Once a brick is created, its ETL pipeline can 

be reused by any number of downstream users. BioBricks thus turns what 
is typically days of ad-hoc data wrangling into minutes of installation. For 
example, one contributor spent roughly 1 week developing the PubMed 
brick, which produces a ~ 66 GB Parquet table of all PubMed metadata. 
Thereafter, any researcher can obtain that fully processed dataset with a 
single biobricks install pubmed command, instead of each user 
individually spending hours or days to locate, download, and clean the 
raw data. Because each brick is version-controlled and cached, heavy 
transformations (e.g., converting files to Parquet, normalizing fields) are 
performed only once by the brick maintainer and then shared—avoiding 
repeated CPU cycles and bandwidth costs across the community. In one 
hands-on scenario we encountered, switching from a custom script to a 
pre-built brick reduced data ingestion time from “an afternoon of coding” 
to under 5 min (the remaining time being almost entirely network 
download)—a concrete illustration of how BioBricks can accelerate 
research while saving effort. BioBricks.ai also employs continuous 
integration tests to automatically run and verify each brick’s pipeline for 
quality control. This ensures that bricks remain reproducible and 
functional as their upstream sources or code dependencies change.

An apt analogy is to think of BioBricks as a package manager for 
data. Just as language-specific package managers (npm for JavaScript, 
pip for Python, CRAN for R, etc.) revolutionized software development 
by making it easy to share and reuse code libraries, BioBricks aims to 
streamline the sharing and reuse of data pipelines. Each brick is like a 
“data package” that can be  installed on demand, bringing along 
metadata and dependency information. BioBricks.ai leverages open-
source collaboration tools (GitHub for code hosting, issue tracking, 
version control) to encourage community-driven contributions and 
rapid iteration. Rather than competing with existing semantic web or 

TABLE 2 Comparison of features of BioBricks.ai with other approaches to data distribution in life sciences.

Feature BioBricks.ai Federated data approaches 
(semantic web)

Harmonization 
assets

Traditional data 
repositories

Data integration Supports multiple data types 

and sources

When standards are adopted Within specific domains Often siloed

Standardization Standardized access, flexible 

data formats

Requires coordination on ontologies Within asset scope Varies widely

Ease of use Package manager-like system Requires specialized knowledge Depends on asset Often requires manual 

navigation

Reproducibility Version control built-in Depends on implementation Within asset scope Often lacks versioning

Scalability Designed for large datasets Depends on infrastructure Asset-dependent Often limited by original design

Community contribution Open-source model Depends on governance Often centrally managed Usually closed systems

Data update frequency (Not yet implemented)

Can be real-time in future

Depends on participants Often periodic releases Varies widely

Interoperability Common access method for 

diverse data

When standards are adopted Within asset scope Often requires custom 

integration

Learning curve New system, but designed 

for ease of use

Requires understanding of complex 

standards

Asset-specific knowledge 

needed

Varies - Often high for each 

new source

Cost efficiency Reduces redundant work High initial investment Reduces some redundancy Often leads to redundant work

Flexibility for new data 

sources

Can easily add new ‘bricks’ Requires adherence to existing standards Often limited to predefined 

scope

Can add, but often in isolation

Support for AI/ML 

applications

Designed with AI/ML needs 

in mind

Depends on data quality and format Often designed for specific 

AI/ML tasks

Often requires significant 

preprocessing

It provides a side-by-side feature comparison: cells are color-coded with Green for strong support, Yellow for moderate/partial support or issues, and Red for little to no support or significant 
limitations in that area. These general ratings may vary for specific implementations or use cases.
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integrative database efforts, BioBricks can be  viewed as a 
complementary layer: it provides readily accessible, versioned raw 
datasets that could accelerate the building of semantic-web applications 
or new harmonized assets. In fact, BioBricks.ai has been used as part 
of the NSF Prototype Open Knowledge Network initiative 
demonstrating that bricks can feed into larger knowledge graph 
frameworks. Likewise, our ChemHarmony case study shows how one 
can create a new integrated asset (combining ~15 source databases) by 
chaining BioBricks dependencies, thus reducing redundant ETL effort 
when developing domain-specific knowledge graphs.

5.2 Limitations and future work

While BioBricks.ai offers significant advantages for public health 
data management, it faces several practical limitations. Here, 
we discuss these limitations and propose potential solutions for future 
development (see Table 3).

6 Conclusion

BioBricks.ai represents a significant advancement in the 
management and distribution of biomedical research and public 
health data, offering a solution to the longstanding challenges of data 

fragmentation, accessibility, and reproducibility in the life sciences. By 
extending the principles of part reuse and standardization to public 
health data management, BioBricks.ai is poised to accelerate scientific 
discovery and innovation across various fields, including drug 
discovery, toxicology, biochemistry, and public health research.

Author’s note

CLI Package: BioBricks.ai command line interface is on PyPI pipx 
install biobricks.

Client Packages: The R and python packages can be installed from 
cran and PyPI.

Source Code: The BioBricks.ai command line interface is github.
com/biobricks-ai/biobricks.

Operating System: Biobricks.ai supports Windows, Mac, and Linux.
Usage Restrictions: BioBricks.ai is open source with an MIT license.
Please read more detailed used cases on https://insilica.co/posts/.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

TABLE 3 Limitation and future improvements.

Limitation Planned future improvements

Large datasets—some bricks produce very large outputs 

(multi-terabyte scale), which are impractical for users to 

download in full.

On-demand access: implement cloud-based query engines and data chunking so users can retrieve subsets of data 

without full downloads. Frequently accessed portions could be cached or summarized, and “lightweight” sample 

bricks could be offered for previewing gigantic datasets.

Data transfer costs—even with caching, repeatedly 

downloading big data files can incur high bandwidth 

costs for users or hosting providers.

Cost optimization: explore tiered storage/access solutions and collaborations with cloud providers to host popular 

bricks closer to users. We also plan to support distributed and mirror hosting of bricks to load-balance traffic and 

reduce single-point egress costs.

System complexity—new users face a learning curve in 

installing BioBricks.ai, setting up dependencies (DVC, 

Git, etc.), and understanding brick usage.

Improved onboarding: develop one-click remote development environments (e.g., cloud-based Jupyter or Docker 

images pre-loaded with BioBricks) so users can try bricks instantly without local setup. Enhanced documentation, 

tutorials, and community support (forums, chat) are also in progress to flatten the learning curve.

Data quality control—since bricks pull from diverse 

sources, ensuring consistent quality and format (and 

catching errors) across all bricks is challenging.

Automated QC and metadata: introduce automated data validation checks for each brick (e.g., schema 

conformance tests, basic sanity checks on values) to catch issues early. We are also formulating a standardized 

metadata schema (using LinkML, see below) for bricks to describe their contents, which will help in validating and 

comparing datasets. A community rating or review system for bricks could further incentivize high quality.

Real-time updates—keeping every brick up-to-date 

with changes in its upstream source can be labor-

intensive, and lags may occur.

Auto-update & versioning: develop monitoring tools that detect when source data has changed (new releases, etc.) 

and trigger automated pipeline runs. Improved versioning practices will be implemented so that users can 

be notified of important updates or breaking changes in bricks.

Usage tracking—currently, maintainers have limited 

insight into which bricks are used most or how they are 

being utilized. Such feedback could guide development 

priorities.

Telemetry (Opt-In): add an opt-in usage logging feature within the BioBricks client that can report anonymous 

statistics (e.g., which bricks were installed how often). This can help identify highly valuable bricks and also 

provide credit to contributors, while strictly respecting user privacy.

Integration with workflows—users may find it non-

trivial to integrate BioBricks data retrieval into their 

existing analysis pipelines or tools.

APIs and connectors: provide language-specific SDKs/APIs (for Python, R, etc.) to allow programmatic access to 

bricks in notebooks and scripts. Develop plug-ins or adapters for popular bioinformatics platforms (for example, 

integrating BioBricks with Galaxy workflows or RStudio projects). We will also seek compatibility with emerging 

data standards and formats to ease integration.

Scalability—as the number of bricks and users grows, 

performance bottlenecks could arise (whether in the 

central index, package registry, or data hosting).

Scalable architecture: invest in a more distributed architecture for the backend, including load-balanced servers 

and perhaps decentralized data storage (P2P or cloud CDN). Performance profiling and optimization of the client 

and DVC pipelines is ongoing to ensure the system scales to hundreds of bricks and large user bases.
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