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The advancement of self-driving cars has significantly improved transportation 
by enhancing safety, efficiency, and mobility. However, their operation in Arctic 
environments remains challenging due to snow, ice, and slush, which negatively 
impact traction and road surface perception. To address these challenges, this 
study integrates LiDAR-based reflected intensity measurements with environmental 
parameters such as humidity, temperature, and the coefficient of friction to detect 
road surface slipperiness and roughness. A Fuzzy Logic System is developed 
to process these features and classify the slipperiness levels. The analysis 
establishes a strong correlation between LiDAR intensity and the coefficient 
of friction, enabling reliable detection of surface conditions. The proposed 
method achieves a testing accuracy of 87% in classifying road slipperiness 
under Arctic conditions. These findings demonstrate the effectiveness of LiDAR 
and sensor fusion for real-time road condition monitoring and highlight their 
potential in enhancing the safety and performance of autonomous vehicles 
in extreme weather environments.
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1 Introduction

The Arctic region presents unique challenges for road safety and vehicle operations due 
to its extreme weather conditions, including persistent snowfall during winters (Padrtová, 
2020). During winters, when the temperature falls below freezing, snow becomes ice, due to 
which roads become hazardous. Snow, rain, and fog decrease driver visibility and vehicle 
control (Harith et al., 2019; Bellone et al., 2021). The performance of several sensors is also 
affected due to low temperatures, rain, fog, high wind, and snowstorms, particularly in the 
Arctic region (Kramar and Määttä, 2018). The Arctic environment, with its harsh temperatures 
and seasonal changes, can cause some challenges for road surface detection. During the winter, 
heavy snow and ice might mask road features, making it impossible for standard sensors to 
provide accurate information (Storsäter et al., 2021; Zhang et al., 2023). When the temperature 
fluctuates, slush and ice might form, which causes a slippery and unsafe road scenario. These 
factors significantly contribute to hazardous driving conditions, making it difficult to ensure 
road safety (Bardal, 2017).
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A major problem that is faced in the Arctic region is the 
slipperiness on the road; its detection is essential for maintaining safe 
and efficient transportation in the Arctic environment (Tennberg, 
2023). Arctic roads are subjected to severe weather conditions, 
including freeze–thaw cycles, permafrost degradation, and heavy 
snow and ice accumulation, all of which contribute to surface 
roughness and slipperiness and compromise safe driving (Golov et al., 
2022). Snow, ice, and slush create unique challenges for vehicle 
operation and road maintenance, significantly impacting both human-
driven and autonomous vehicles (Hamid et  al., 2019). In these 
environments, accurate and timely detection of road slipperiness and 
surface irregularities is crucial for preventing accidents, optimizing 
vehicle performance, and ensuring the longevity of road infrastructure. 
Traditional methods of road monitoring often struggle to adapt to the 
unpredictability and variability of Arctic Road conditions (Evtyukov 
et al., 2021). As a result, there is a growing need for more advanced 
detection and assessment technologies capable of providing accurate 
and timely information about road conditions and surface 
irregularities. These situations require more advanced technologies 
that can provide more accurate and reliable surface data.

Light detection and ranging (LiDAR) technology has been shown 
to be an extremely valuable approach for detecting road roughness 
and slipperiness, particularly in the harsh Arctic environment 
(Andersson and Chapman, 2011). The LiDAR intensity measures the 
reflectiveness rate of an item’s surface (Jutzi and Gross, 2009). These 
intensity levels are used to identify road elements like lane lines, signs, 
curbs, and pavement. Reflective materials, such as road paint, typically 
correspond to high intensity. Variations in intensity can be used to 
differentiate road surfaces from the surroundings (Guan et al., 2015). 
For example, the reflectance of concrete, grass, and soil is different. 
The mapping and maintenance of road surfaces may benefit from the 
intensity analysis as well. LiDAR provides a more accurate and 
effective method of providing information, which is extremely 
valuable in real-time road evaluation (Hata and Wolf, 2014). On the 
other hand, standard image processing algorithms are affected by 
weather conditions such as darkness, snow, and fog. Similarly, another 
important variable is the coefficient of friction, which also helps in 
determining surface roughness or slipperiness and can be applied to 
the assessment of various road conditions, such as roads covered with 
ice, snow, and slush (Han et al., 2016). It can measure the resistance of 
sliding between the automobile tire and the road surface, which is 
affected by minor defects (Ergun et al., 2005). A higher coefficient of 
friction indicates a rougher surface, which is thought to be necessary 
for safe driving in icy or snowy situations as it increases traction and 
lowers the risk of sliding (Lorenz et al., 2015). While smooth surfaces 
have a low coefficient of friction, they can generate reduced traction 
and unsafe driving conditions. Understanding the coefficient of 
friction is important for vehicle safety and road maintenance. 
Transportation institutes are improving winter driving conditions by 
accurately detecting and managing friction (Yu et al., 2023).

The relationship between surface roughness and the coefficient of 
friction is complex and can vary depending on the materials involved 
and the environmental conditions, such as the presence of lubrication 
or moisture (Guinea et al., 2024). Casassa et al. (1989) discuss the 
friction coefficients of snow blocks sliding on snow slopes and how 
they vary under different conditions. The values of the dry friction 
coefficients ranged from 0.57 to 0.84 and were higher than those 
typically used in avalanche dynamics. The friction was separated into 

Coulomb friction and adhesion, which is proportional to the contact 
area of the blocks. The author compares its findings with past research, 
noting that the friction coefficients obtained are consistent with 
previous measurements for snow blocks sliding over snow. The paper 
also highlights that in loose-snow avalanches, high degrees of 
fluidization can lead to lower friction coefficients. The friction 
coefficient for snow and icy surfaces was noted; it was seen that the 
coefficient of friction is high (in case of dry friction and sinking 
behavior) and low (in cases of high fluidization in loose-snow 
avalanches) (Casassa et al., 1989).

The aim of this study is to combine advanced sensing technology 
with LiDAR and coefficients of friction to measure road slipperiness 
produced by ice, snow, and slush in the Arctic environment. It can 
address some important challenges, such as evaluating the accuracy 
and dependability of LiDAR for detecting surface abnormalities under 
various Arctic weather situations to improve vehicle safety and 
navigation. The paper makes the following contributions:

 • The study targets Arctic conditions, emphasizing the importance 
of detecting rapidly changing road slipperiness affected by factors 
such as freeze–thaw cycles, permafrost degradation, and 
persistent snow accumulation to enhance the safety and reliability 
of autonomous vehicles.

 • A custom real-world dataset was collected in Tromsø, Norway, 
integrating LiDAR intensity, environmental parameters, and 
experimentally measured friction coefficients that reflect road 
slipperiness for the roads covered with black ice, gritted ice, fresh 
snow, crusted snow, and Wet Slush.

 • A Fuzzy Logic-based classifier is developed, enabling explainable 
and adaptive slipperiness detection suitable for uncertain Arctic 
conditions. The proposed approach can be a valuable solution for 
integration in autonomous driving systems, enhancing safety in 
extreme environments.

The paper is organized as follows. Section 1 provides a concise 
literature review and motivation; Section 2 presents the materials and 
equipment that includes the equipment details and data collection 
steps. Section 3 includes the pre-processing stage, discusses the 
exploratory data analysis and Fuzzy Logic system that is used in this 
research. Section 4 includes the Results and Discussion, followed by 
the Conclusion in Section 5.

2 Materials and equipment

The main steps of the proposed slipperiness detection approach 
are shown in Figure 1. The dataset was collected using Lidar and IoT 
sensors that give humidity, temperature, reflective intensity, distance 
and time at which data was collected. In addition to this, the coefficient 
of friction was also calculated by performing an experiment that used 
a friction sensor. After data collection, the raw data was processed to 
remove noise from the data and select important features to reduce 
the computational complexity by eliminating irrelevant features. 
Exploratory data analysis was conducted for the selected features to 
check the dependency of features on each other and with respect to 
the slipperiness level. Finally, Fuzzy classifier was used to predict 
slipperiness level on the road using the proposed features. The 
following sub-sections outline the entire procedure for data collection 
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while section 3 includes the details of preprocessing, exploratory data 
analysis and slipperiness level detection.

An experiment was performed to collect data. The experiment 
was conducted for a duration of 4 months, from January to April when 
the temperature was ranging from −15°C to 5°C. The dataset was 
collected in the capital of the Arctic Circle in Tromso, Norway. The 
experiment was conducted at 25 different locations in Tromso, majorly 
including the roads in the residential area, university area, and city 
center, some of the main locations are shown in Figure 2. During the 
data collection, the roads were covered with black ice, gritted ice, fresh 
snow, crusted snow and Wet Slush, as shown in Figure 3. For each 
surface type, the data was collected for more than 1 h at different 
locations to include diverse samples in the dataset, as shown in 
Table 1. To further increase the diversity of the dataset, different kinds 
of roads, including normal roads that do not have any slope and roads 
that have some slope and zigzag nature, were considered in data 
collection. The dataset was collected in different weather conditions, 
including sunny days, rainy days and snowy days; both the day and 
night lighting conditions were also included while collecting the data.

The experiment was performed to collect the features including 
humidity, temperature, wind, distance, time, and reflective intensity 
for different surfaces including black ice, gritted ice, fresh snow, 
crusted snow and wet Slush. The friction coefficient is also calculated 
for the same surface. The values of reflective intensity, distance, and 
time were collected by TFmini-S12m LiDAR Ranging Module. For 
the temperature and humidity, DHT temperature and humidity 
sensor was used. Hotwire anemometer was used for collection of wind 
data. Figure 4 shows the sensors used for data collection. The sensors 
were integrated with LiDAR to give the values for the respective 
surface simultaneously. During the collection of the dataset, the 
incident angle of the sensor was also calculated. The dataset was 

collected at the incident angle of 84 degrees, and the distance between 
the sensor and the surface was normally kept at 90 cm. After every 
15 min, the friction coefficient was also calculated for the respective 
surface to improve the credibility of the dataset. Two additional 
columns of friction coefficient and slipperiness level were added to the 
existing data file. Slipperiness level acts as a target variable and based 
on that, it can be decided how slippery the road is (5 being the most 
slippery and 1 being the least slippery). The total number of samples 
that were collected was 206,766. Table 2 summarizes the reflective 
intensity, coefficient of friction and level of slipperiness against 
each class.

The frictional force should be known to measure the coefficient of 
friction. To get the frictional force, the experiment utilized a 2 kg solid 
block with a rubber-coated base to ensure consistent material 
properties and simulate typical tire-road interactions, the block was 
placed on the road surface where the friction coefficient needed to 
be calculated. Attach the friction sensor to the block, while placing the 
block make sure it is parallel to the surface that is under consideration. 
The friction sensor was calibrated using a standard weight set, 
ensuring an error margin of ±0.05 N. A motorized pulley system 
applied force horizontally at a consistent speed of 0.05 m/s to maintain 
uniformity in the transition from static to kinetic friction. Gradual 
force was applied until the block began to move, with the friction 
sensor recording the maximum force as static friction and the 
stabilized lower force during motion as kinetic friction. Five trials 
were conducted to ensure repeatability, with average values and 
standard deviations calculated to validate the results. It is illustrated 
in Figure 5.

After getting the Frictional force, the normal force should 
be calculated to find the coefficient of friction (Leidich and Reiß, 
2018) by using Equation 1.

FIGURE 1

Flow of proposed slipperiness detection method.
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µ =

FrictionalForce
NormalForce  

(1)

In Equation 1, the frictional force is the amount of force required 
to move an object from its original position, and it is parallel to the 
surface. While the normal force is perpendicular force exerted by a 
surface to support the weight of an object resting on it and is 
perpendicular to the surface. The normal force can be calculated using 
Newton’s second law stated in Equation 2.

 =Force mass x accleration  (2)

Where a mass of 2 kg is considered (as per experiment) and using 
acceleration as 9.8 m/s, the value for normal force was calculated. After 
getting both the values for normal force and frictional force, the values of 

friction coefficient (μ) can be calculated. All of this was for flat roads, but 
when the road was not flat, the slope for the road was calculated using a 
slope measuring application, which was used in measuring the coefficient 
of friction for slopy roads. Equation 3 was used in the case of sloppy roads 
for measuring the normal force (Pendrill, 2020).

FIGURE 2

Locations for the collection of data.

FIGURE 3

Various road conditions during data collection (a) road condition with black ice (b) road with fresh snow (c) road with crusted snow (d) road with 
gritted ice (e) road with wet slush.

TABLE 1 Details for data collection.

Surface 
type

Number of 
samples

Number of 
hours

Location

Black ice 19,221 4 4

Fresh snow 88,469 9 7

Crusted snow 1,732 3 3

Gritted ice 57,938 8 6

Wet slush 39,406 6 5
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 ( )θ=Force mgCos  (3)

The other important variable is LiDAR intensity, which refers to 
the return reflective intensity of a laser beam in LiDAR data (Barsan 
et al., 2020). The value of intensities with their friction coefficient for 
different types of surfaces is given in Table 2. When LiDAR sensors 
emit laser pulses and receive their reflections, the intensity value 
represents the energy that is returned from the surface as shown in 
Figure 6. The intensity varies based on the composition of the surface 
reflecting the laser beam. A low-intensity value indicates low 
reflectivity, while a high-intensity value indicates high reflectivity. The 
intensity of the laser beam can also be affected by the incident angle, 
range, surface composition, roughness, and moisture content (Yoon 
et al., 2008). The LiDAR intensity can be calculated using Equation 4 
(Tatoglu and Pochiraju, 2012):

 
( )

λ

λ θ= = +att d s
p

lR z k Cos k
l  

(4)

In Equation 4, λl  is the incident intensity of the light, 
λpl is the 

intensity observed by the lidar photodetector. While zatt represents 
the attenuation of the reflection intensity due to the distance 
between the LiDAR and the scanned surface, and kd is the diffuse 
reflectivity coefficient, and its value depends on the material’s 
properties and how it scatters light. For example, a smooth and 
dark surface would have a low kd, while a rough and light-colored 
surface would have a higher kd. ks is the specular reflectivity 
coefficient, and its value depends on the smoothness of the surface. 
Smoother surfaces have a higher ks value, and θ is the incident 

angle. By the Blinn-Phong Lighting Equation (Gao et al., 2019), 
the total intensity I at a point on the surface is the sum of the 
ambient, diffuse, and specular components, as mentioned in the 
Equation 5:

 = + +ambient specular diffuseI I I I  (5)

3 Methodology

The collected data was in the raw form, so pre-preprocessing was 
done to prepare data in a clean and usable format. Feature selection was 
also performed to select the most important features needed to detect 
the slipperiness level, which helps to reduce the computational 
complexity by reducing the number of features as described in section 
3.1. The exploratory data analysis was done to see the correlation of 
features with each other as described in section 3.2. The features that 
were selected were than used to detect the slipperiness level by using 
Fuzzy logic system as given in section 3.3.

3.1 Data pre-processing

The dataset was checked for possible outliers using the histogram. 
The histogram for wind shows a right-skewed distribution with a long 
tail toward higher values. Most of the wind values are concentrated at 
the lower end of the scale. There were some extreme values (outliers) 
at the higher end. The temperature values were normally distributed, 
forming a bell-shaped curve. There were no significant outliers, and 
the values were symmetrically distributed around the mean. The 
humidity, reflective intensity, and friction coefficient values showed a 
normal distribution. The values are symmetrically distributed with no 
significant outliers. The slippery level showed a right-skewed 
distribution. Most of the values were concentrated at the lower end, 
with a few higher values acting as an outlier, as shown in Figure 7. The 
outliers were detected and removed using the interquartile range to 
clean the data for better understanding.

To reduce the computational complexity of the model, the irrelevant 
features should be removed, for that feature importance technique was 
used. It calculates the importance of every feature by using the decision 

FIGURE 4

Sensors used for collection of data (a) DHT temperature and humidity sensor (b) TFmini-S12m LiDAR ranging module (c) hotwire anemometer.

TABLE 2 Intensity ranges across the class.

Type of 
surface

Reflected 
intensity

Friction 
coefficient (μ)

Slipperiness 
level

Black ice 1900–2,700 0.1–0.15 5

Fresh snow 12,600–20,000 0.21–0.22 4

Crusted snow 12,000–12,500 0.26–0.27 3

Gritted ice 3,000–6,500 0.35–0.38 2

Wet slush 7,000–10,000 0.41–0.42 1
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tree and random forest. The importance of every feature is derived from 
how often and how effectively each feature splits the data to reduce 
impurity. In this case, impurity is calculated by using Gini impurity 
(Manokaran and Vairavel, 2023). The importance of feature j is measured 
as the total decrease in Gini impurity brought by that feature over all trees 
in the forest. Let G be the Gini impurity before the split, and Gl and GR 
be the Gini impurities for the left and right child nodes after splitting on 
feature j, according to Equation 6:

 
∆ = − −l l R RG G PG p G

 (6)

Where pl and pR are the proportions of samples in the left and 
right child nodes. The feature importance for feature j is the sum of all 
ΔG values for the splits made using j across all trees. From Figure 8, 
the importance of features can be  seen and then select the most 
relevant ones. When a feature is chosen for a split, the resulting 
reduction in impurity is recorded as the feature’s contribution. 
Features that reduce impurity more, especially at the higher levels of 
the tree, receive higher importance scores. The importance of each 
feature is computed as the average of its contribution across all trees 

in the model. The selected features were reflective intensity, friction 
coefficient, temperature and humidity. The fragment of the dataset by 
slippery level with selected features is shown in Table 3.

3.2 Exploratory data analysis (EDA)

To gain deeper insights into the relationships between collected 
features and their impact on road slipperiness, an exploratory data 
analysis (EDA) was conducted. This analysis focuses on feature 
distributions, correlation analysis, and statistical validation to identify key 
predictors for classification. A Pearson correlation matrix showed strong 
relationships between key variables as shown in Figure  9. Notably, 
reflective intensity and humidity showed a high positive correlation 
(r = 0.90), indicating that increased humidity enhances LiDAR reflectivity. 
Reflective intensity also correlated positively with slipperiness level 
(r = 0.82), suggesting that more reflective surfaces are typically more 
slippery. Conversely, temperature exhibited a strong negative correlation 
with reflective intensity (r = −0.72), as higher temperatures may cause 
surface melting, thereby reducing reflectivity. Additionally, the friction 
coefficient was moderately negatively correlated with slipperiness level 
(r = −0.42), meaning that lower friction values are associated with 
increased slipperiness. These findings highlight the potential of reflective 
intensity, humidity, temperature, and friction coefficient as key indicators 
in predicting road surface slipperiness.

A hypothesis was defined to verify whether each category of 
coefficient value has a different mean value for reflective intensity or 
not. H0 represents the null hypothesis and H1 is the alternative 
hypothesis, as defined below:

 =0   H Each category has a same mean

 =1   H Each category has a different mean

As per the insights from the dataset, every category of slippery 
levels has different values of mean for reflective intensity. For example, 
5’s mean lies around 2,600, 4’s mean in the range of 18,000–18,900, 3’s 

FIGURE 5

Illustration of calculation of frictional force.

FIGURE 6

LiDAR working principle.
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mean lies in 12,500, 2’s mean lies between 4,500–5,000, and 1’s mean 
is approximately 7,600. To statistically verify that reflective intensity 
varies significantly across different slipperiness levels, an Analysis of 
Variance (ANOVA) test (Rayat and Rayat, 2018) was performed. The 
results showed that slipperiness levels have significantly different 
mean values for reflective intensity (p < 0.05). Post-hoc Tukey’s test 
confirmed that each surface category has distinct reflective intensity 
values, supporting its role as a key predictive feature (as shown in 
Figure 10). Table 4 presents the results of the ANOVA test.

The key findings are that reflective intensity and friction coefficient 
are the most significant predictors of road slipperiness. Humidity 
strongly influences LiDAR intensity, particularly in wet and slushy 
conditions. Temperature affects both friction and reflectivity, 
influencing road traction. ANOVA confirms significant differences in 

intensity across slipperiness levels, justifying its inclusion in 
classification models. These findings provide a scientific foundation 
for the Fuzzy Logic classifier, as discussed in the upcoming section.

3.3 Fuzzy system for detection of 
slipperiness level

The selected features, including humidity, reflective intensity, 
temperature, and friction coefficient, were used to detect the level of 
slipperiness on the road. Fuzzy logic is particularly effective in this 
study because it allows the system to handle varying conditions and 
uncertainties in a more adaptive and human-like way (Zadeh, 1975). 
In fuzzy sets, an element can partially belong to a set, with a 

FIGURE 7

Visualization of feature distribution.
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membership degree ranging from 0 to 1. The membership function 
( )µA x  defines the degree of membership of an element x in a fuzzy 

set A, where ( )µ ∈   0,1A x  (Jurado et al., 2002). These functions map 
each input value to a corresponding degree of membership. In this 
case, a triangular membership function is used, which is calculated by 
using Equation 7, where a, b, and c define the shape and position of 
the triangular function (Azam et al., 2020).

 

( )µ


≤ ∨ ≥

 −= ≤ ≤
−
− ≤ ≤ −

0,

,

,

A

if x a x c
x ax ifa x b
b a
c x ifb x c
c b  

(7)

Fuzzy rules describe the relationship between the input and 
output variables. Rules combine the fuzzy sets using logical operators 
like AND, OR, and NOT. Fuzzy inference is the process of mapping 
inputs to outputs using fuzzy logic rules. After that, fuzzy inputs are 
converted into fuzzy values using membership functions. Then, fuzzy 
rules are applied to compute the truth value for each rule. The results 
of all rules are combined to form a fuzzy output. After that the fuzzy 
set obtained from aggregation is converted into an output using 
Equation 8, where ( )µB y  is the membership function of the fuzzy 
output set (LaCasse et al., 2018).

 

( )
( )

µ
µ

∫
=

∫

.B

B

y ydy
y

y dy  
(8)

FIGURE 8

Importance of every feature.

TABLE 3 A representative fragment of the dataset showing environmental and road surface parameters by slippery levels.

Temperature Humidity Reflective intensity Friction coefficient Slippery levels

2.2 31.3 1,927 0.1 5

2.2 31.3 1,922 0.1 5

2.2 31.3 1,927 0.1 5

−4.3 73.4 15,602 0.21 4

−4.3 73.4 15,762 0.21 4

−4.3 73.4 16,297 0.21 4

13.4 15.3 12,499 0.27 3

13.4 15.4 12,490 0.27 3

13.4 15.6 12,395 0.27 3

−1.2 32.4 4,485 0.36 2

−1.2 32.4 4,477 0.36 2

−1.2 32.4 4,486 0.36 2

8.2 29.6 7,250 0.41 1

8.2 29.6 7,256 0.41 1

8.2 29.6 7,265 0.41 1
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FIGURE 9

Correlation matrix.

FIGURE 10

Boxplot of coefficient vs. reflective intensity.

TABLE 4 Results of ANOVA test.

Anova test results Sum of squares Degrees of freedom F-value p-value

Slippery level 2.177639e+12 1.0 70981.79 0.0

Residuals 6.295329e+12 205201.0 – –
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For every feature, unique values were identified and sorted. 
The range for each fuzzy variable is defined by generating an 
array of values starting from start, up to (but not including) stop, 
with a specified increment (step size). This approach allows for 
creating a detailed and continuous range of values for each fuzzy 
variable, which is essential in fuzzy logic systems to accurately 
model the input space (Macaulay and Zhou, 2018). In the same 
way, the fuzzy variable for the output variable (slippery level) is 
defined. The ranges of input and output variables were defined 
according to Table 5.

After defining the ranges, the membership function for all the 
features was defined to get the ranges for all variables in terms of 
low, medium, and high. In this case, a triangular membership 
function was defined. A triangular membership function is 
shaped like a triangle and is defined by three points: the start, 
peak, and end. It is essential that the entire set of possible input 
values for fuzzy variables are defined to make sure it handles the 
full scope of data (Karatayev et  al., 2024). Table  6 gives the 
member ranges for all the features.

The correlation matrix was used to check the correlation of 
variables with one another, as shown in Figure 9. The correlations 
among the variables reveal complex relationships; temperature 
has a strong negative correlation with humidity (−0.89), reflective 
intensity (−0.72), and slipperiness levels (−0.72), but it is 
positively correlated with the coefficient value (0.62). Humidity 
exhibits a strong positive correlation with reflective intensity 
(0.90), and slipperiness levels (0.82), and a negative correlation 
with the coefficient value (−0.66) and temperature (−0.89). 
Reflective intensity is positively correlated with humidity (0.90), 
and slipperiness levels (0.90) and negatively correlated with the 
coefficient value (−0.49) and temperature (−0.72). The 
coefficient value itself shows a strong positive correlation with 
temperature (0.62) while being negatively correlated with 
humidity (−0.66), reflective intensity (−0.49), and slipperiness 
levels (−0.42). Lastly, slipperiness levels are strongly positively 
correlated with humidity (0.82) and reflective intensity (0.90), 
while negatively correlated with temperature (−0.72) and the 
coefficient value (−0.42). These correlations indicate significant 
interdependencies among the variables, affecting the dynamics 
of the system. The fuzzy rule base was constructed using four key 
input parameters, temperature, humidity, reflective intensity, and 
friction coefficient. Each parameter was divided into three fuzzy 
sets Low, Medium, and High based on the membership functions 
defined in Table 6. These inputs were used to formulate fuzzy 
IF-THEN rules that infer the output, i.e., the Slipperiness Level. 
These rules were formulated based on empirical relationships 
observed during data analysis and expert interpretation of Arctic 

Road conditions. The following rules were defined based on the 
correlation analysis:

 

( ) ( )
( ) ( )

↑ ∧ ↑

∧ ↓ ⇒ ↑

1:  
 

Rule IF HUMIDITY REFLECTIVE INTENSITY
FRICTION COEFFICIENT SLIPPERYLEVEL

 

( ) ( )
( ) ( )

↓ ∧ ↑

∧ ↓ ⇒ ↑

2 :  
 

Rule IF TEMPERATURE REFLECTIVE INTENSITY
FRICTION COEFFICIENT SLIPPERYLEVEL

 

( )
( ) ( )↓ ⇒ ↑

3 :  
 

Rule IF REFLECTIVE INTENSITY MED
FRICTION COEFFICIENT SLIPPERYLEVEL

 

( ) ( )
( ) ( )

( )
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4 :
  

Rule IF TEMPERATURE HUMIDITY
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( ) ( )
( )

↓ ∧

⇒ ↓

5 :  Rule IF HUMIDITY FRICTION COEFFICIENT MED
SLIPPERYLEVEL

 

( ) ( )
( )

∧
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6 :  Rule IF TEMPERATURE MED FRICTION COEFFICIENT MED
SLIPPERYLEVEL

 

( ) ( )
( ) ( )

∧

∧ ⇒ ↑

7 :  
 

Rule IF TEMPERATURE MED REFLECTIVE INTENSITY MED
FRICTION COEFFICIENT MED SLIPPERYLEVEL

 

( )
( )⇒

8 :  Rule IF FRICTION COEFFICIENT MED
SLIPPERYLEVEL MED

These rules are encoded in the fuzzy control system using a 
Mamdani-type inference mechanism. Each rule evaluates the degree 
of truth for its antecedents and contributes to the final fuzzy output, 
which is then defuzzified to obtain a crisp value for the predicted 
slipperiness level. The complete rule base includes rules covering all 
combinations of input states (Low, Medium, High) across the selected 
parameters. Here, only a representative subset is shown for clarity. 
Finally, based on these rules, a control system provides the output. A 
representative subset of the fuzzy rules and their structure is included 
in Table 7 to enhance clarity and explainability of the rule base (Phu 
et al., 2020).

4 Results and discussion

The findings from the experiment show that the friction 
coefficient is majorly dependent on the nature of the surface, 
surface roughness, and temperature. Different surfaces have 
different coefficients of friction. If the surface is rough, more 
force will be required, and it will give a higher friction coefficient. 
This is because rougher surfaces have more asperities or high 
points, which lead to greater interlocking between the two 
surfaces, thus requiring more force to move one over the other 

TABLE 5 Range for the input and output fuzzy variables.

Fuzzy variables Start End Increment

Temperature −4.9, 18.2, 0.1 18.2 0.1

Humidity 7.6 97.0 0.1

Coefficient value 0.1 0.42 0.001

Reflective intensity 1852 19,801 1

Level of slipperiness 0 5 1
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(Huang et al., 2024). It was also noticed that when temperature 
changes, it can bring changes in the properties of the material and 
hence, affect the friction coefficient.

In Table 2, the value for black ice and fresh snow is. 0.1–0.15 
and 0.21–0.22, respectively, which is low as compared to the other 
types of road surfaces. It is because the surface, in the case of 
μ = 0.1–0.15, was very slippery, as shown in Figure 3a. When an 
object slides on black ice, there is minimal resistance between the 
surfaces, which results in a low coefficient of friction. Similarly, 
in the case of fresh snow, the surface of the road becomes smooth, 
as shown in Figure  3b, and less frictional force is required to 
move the block on that surface, which causes a low value of μ. 
Fresh snow consists of loosely packed snowflakes with irregular 

shapes. Although it provides more traction than black ice, it still 
allows relatively easy movement due to its soft and granular 
texture (Kabore et  al., 2021). As snow ages, it compacts and 
becomes denser and crusted. The increased density leads to more 
surface roughness, resulting in higher friction. Crusted snow also 
undergoes partial melting and refreezing and, creating a textured 
surface that offers a better grip as shown in Figure  3c (Lever 
et al., 2019). The coefficient value for crusted snow, i.e., μ = 0.26–
0.27, is comparatively higher because this is old snow which has 
added some roughness on the surface due to which frictional 
force that is needed to move the block on the crusted snow 
increases and resulted in a higher value of μ when compared with 
the value of μ of fresh snow. Sand or grit provides additional 
surface roughness, improving traction on icy surfaces, as shown 
in Figure  3d. The sand particles create micro-asperities that 
improve grip, especially for walking or driving on icy roads 
(Lever et al., 2019). Slush contains a mixture of water and snow 
particles, as shown in Figure 3e. The presence of liquid water 
increases the friction between the surfaces. The partially melted 
snow grains create a rougher surface, contributing to the higher 
coefficient of friction. Table 8 summarizes the friction coefficient 
for each type of surface.

Snow generally has higher reflectivity compared to black ice. This 
property is known as albedo (Nolin and Stroeve, 1997), which is the 
measure of how much light or radiation is reflected by a surface. Fresh 
snow can reflect up to 90% of incoming solar radiation, making it one 
of the most reflective natural surfaces. In contrast, black ice, especially 
when it is not covered by snow and has become somewhat transparent 
or has meltwater on its surface, tends to have a lower albedo, reflecting 
only about 20–40% of incoming solar radiation. The high reflectivity 
of snow is due to its structure, which scatters light effectively. In 
contrast, black ice can absorb more light, especially if it is older, 
contains impurities, or has a smoother surface that can form melt 
pools, further reducing its albedo (Flanner et al., 2021). Therefore, 
fresh snow has a significantly higher reflectivity than black ice, as 
stated in Table 1.

It was observed that by changing the incident angle, there was 
no change in the intensity values. The validation of the statement 
that sensor distance and angle of incidence do not affect intensity 
values was conducted through a systematic approach. A series of 
controlled experiments were performed. The sensor was positioned 
at varying distances (ranging from 10 cm to 100 cm in increments 
of 5 cm) and at different angles of incidence (from 0° to 90° in 

TABLE 7 Fragment of the rule base.

Rule Temperature Humidity Reflective intensity Friction coefficient Slippery levels

1 Any High High Low High

2 Low Any High Low High

3 Any Any Med Low High

4 High Low Low High Low

5 Any Low Any Medium Low

6 Medium Any Any Medium Low

7 Medium Any Medium Medium Medium

8 Any Any Any Medium Medium

TABLE 6 Membership ranges for fuzzy variables.

Levels Start Peak End

Temperature

Low −4.9 −4.9 7.5

Medium 7.5 18.2 18.2

High 20 40 60

Humidity

Low 7.6 7.6 40

Medium 20 40 60

High 40 97 97

Reflective intensity

Low 1852 1852 9,000

Medium 9,000 12,500 16,000

High 16,000 19,801 19,801

Coefficient of friction

Low 0.1 0.1 0.25

Medium 0.25 0.27 0.34

High 0.34 0.42 0.42

Level of slipperiness

Low 1 1 2

Medium 3 4 4

High 4 5 5
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increments of 10°) relative to a uniform test surface with known 
reflectivity. Each configuration was tested multiple times to ensure 
repeatability. The intensity values were recorded for each 
configuration and analyzed statistically to identify any significant 
variations. A regression analysis confirmed that neither the 
distance nor the angle of incidence introduced measurable changes 
in the recorded intensity values.

For experimental verification of the proposed features, fuzzy 
classifier was used. The performance of the slipperiness detection model 
is evaluated on unseen data. The model processes unseen data by 
mapping continuous input variables into fuzzy sets using predefined 
membership functions. The system applies rule-based inference to 
determine the degree of slipperiness, allowing for more interpretable 
and human-like reasoning when handling uncertainty in input 
measurements. The evaluation is conducted using standard performance 
metrics such as accuracy, precision, recall, and F1-score by using 
Equations 9–12 (Khan et al., 2022) respectively, ensuring that the model 
can reliably differentiate between surface types as given in Table 9. 
K-fold cross-validation techniques was used to further assess 
generalization. The fuzzy classifier gave an accuracy of 87% based on 
the rules that were defined in Section 3.3.
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The proposed fuzzy logic-based slipperiness detection system 
offers several practical advantages for deployment in real-world 
Arctic driving environments. The use of LiDAR-reflected intensity 
in combination with temperature, humidity, and friction coefficient 

measurements allows the system to operate reliably under adverse 
weather conditions where traditional vision-based methods often 
fail. By providing timely and accurate assessments of slipperiness, 
the proposed system can be  used to improve vehicle control, 
support early warning systems, and reduce the risk of accidents, 
contributing to safer and more resilient transportation networks in 
extreme climates. Despite the promising results presented in this 
study, there are some limitations of this work as well. The dataset 
was collected in Tromsø, Norway, which limits the generalizability 
of the findings to other Arctic regions with different climate 
patterns and road treatment practices. The technique has not been 
evaluated for a real-time autonomous driving application, which is 
an area for further work. Testing these limitations in future 
research will improve the effectiveness of road slipperiness 
detection systems in Arctic environments.

5 Conclusion

This study addresses the challenge of detecting road slipperiness 
in Arctic regions by using a Fuzzy Logic method that incorporates 
LiDAR-reflected intensity with temperature, humidity, and friction 
coefficient. It was observed that slipperiness can be  effectively 
predicted by analyzing relationship among these features. The 
application of a Fuzzy Logic classifier enables robust handling of the 
ambiguities presented by the harsh Arctic conditions. The proposed 
system performs reliably incorporating different sensor inputs in 
extreme and uncertain environments achieving 87% accuracy in 
slipperiness levels classification. The main findings from this case 
study are presented below:

 • The coefficient of friction is important for determining the 
slipperiness of the road and is affected by the road surface texture 
and weather condition. A smooth surface will tend to have lower 
coefficients, and a rough surface will tend to have a 
higher coefficient.

 • The distance or angle that the sensor is positioned relative to the 
surface does not affect LiDAR based reflective intensity, making 
it a reliable indicator for road slipperiness as well as surface type.

 • Reflective intensity and friction coefficient of surfaces are 
indirectly affected by temperature and humidity, which also 
contributes to the surface slipperiness.

 • Each road surface type exhibits a distinct profile of friction and 
reflectivity, justifying their use in classification.

The proposed Fuzzy Logic model is explainable and 
adaptable, which allows for its real-time integration with 
autonomous driving systems working in the Arctic or other 
similarly difficult environments. Future work will target the 
deployment of the model with real-time autonomous driving 
systems and broaden the data set to cover other regions in the 
Arctic with varying road  infrastructures and maintenance 
approaches. The accuracy and reliability will also be improved by 
studying other additional parameters and by applying sensor data 
fusion techniques. The proposed model paves the way toward 
intelligent road condition monitoring systems that can increase 
vehicle safety and autonomy in harsh climates.

TABLE 8 Friction coefficient for different types of surfaces.

Type of surface μ Reason

Black ice 0.1–0.15 Very smooth and Slippery

Wet slush 0.41–0.42 Wet and partially melted

Gritted ice 0.35–0.38 Roughened by sand particles, 

increased grip, and traction

Crusted snow 0.26–0.27 Compacted and increased 

compaction

Fresh snow 0.21–0.22 Smooth, light, and fluffy

TABLE 9 Results for fuzzy system.

Accuracy Precision Recall F1-Score

87% 85% 83% 84.5%
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