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Introduction: Functional voice disorders are characterized by impaired voice 
production without primary organic changes, posing challenges for standardized 
assessment. Current diagnostic methods rely heavily on subjective evaluation, 
suffering from inter-rater variability. High-speed videoendoscopy (HSV) offers 
an objective alternative by capturing true intra-cycle vocal fold behavior. 
Integrating time-synchronized acoustic and HSV recordings could allow for an 
objective visual and acoustic assessment of vocal function based on a single 
HSV examination. This study investigates a machine learning-based approach 
for hoarseness severity assessment using synchronous HSV and acoustic 
recordings, alongside conventional voice examinations.

Methods: Three databases comprising 457 HSV recordings of the sustained 
vowel /i/, 634 HSV-synchronized acoustic recordings, and clinical parameters 
from 923 visits were analyzed. Subjects were classified into two hoarseness 
groups based on auditory-perceptual ratings, with predicted scores serving 
as continuous hoarseness severity ratings. A videoendoscopic model was 
developed by selecting a suitable classification algorithm and a minimal-
optimal subset of glottal parameters. This model was compared against an 
acoustic model based on HSV-synchronized recordings and a clinical model 
based on parameters from other examinations. Two ensemble models were 
constructed by combining the HSV-based models and all models, respectively. 
Model performance was evaluated on a shared test set based on classification 
accuracy, correlation with subjective ratings, and correlation between predicted 
and observed changes in hoarseness severity.

Results: The videoendoscopic, acoustic, and clinical model achieved 
correlations of 0.464, 0.512, and 0.638 with subjective hoarseness ratings. 
Integrating glottal and acoustic parameters into the HSV-based ensemble model 
improved correlation to 0.603, confirming the complementary nature of time-
synchronized HSV and acoustic recordings. The ensemble model incorporating 
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all modalities achieved the highest correlation of 0.752, underscoring the 
diagnostic value of multimodal objective assessments.

Discussion: This study highlights the potential of synchronous HSV and acoustic 
recordings for objective hoarseness severity assessment, offering a more 
comprehensive evaluation of vocal function. While practical challenges remain, 
the integration of these modalities led to notable improvements, supporting their 
complementary value in enhancing diagnostic accuracy. Future advancements 
could include flexible nasal endoscopy to enable more natural phonation and 
refinement of glottal parameter extraction to improve model robustness under 
variable recording conditions.

KEYWORDS

machine learning, deep learning, high-speed videoendoscopy, voice disorders, 
hoarseness, image processing, signal processing, feature selection

1 Introduction

Functional or malregulative dysphonia (FD) refers to an 
impairment of voice production, characterized by limitations in vocal 
capacity and acute or persistent changes in voice quality. Its diverse 
genesis in the absence of primary morphological changes poses a 
challenge for standardized assessment, resulting in a lack of consensus 
on diagnostic criteria (Altman et al., 2005; Schneider-Stickler and 
Bigenzahn, 2013).

In contrast to organic dysphonia, which can typically be diagnosed 
based on characteristic structural changes of the vocal folds, functional 
voice disorders are assumed to result solely from pathologically altered 
vibration patterns of the vocal folds. Therefore, the visual evaluation 
of functional voice disorders requires a detailed examination of vocal 
fold behavior. However, since structural abnormalities are absent, a 
key step in the comprehensive assessment of FD is voice quality 
evaluation, where perceptual characteristics such as hoarseness serve 
as essential indicators of vocal impairment (Schneider-Stickler and 
Bigenzahn, 2013; Voigt et al., 2010).

According to the European Laryngological Society (ELS) and the 
American Speech-Language-Hearing Association (ASHA), a 
comprehensive clinical assessment of the voice typically includes 
acoustic and aerodynamic measurements, auditory-perceptual 
evaluation, subjective self-assessment, and videolaryngoscopy 
(Dejonckere et al., 2001; Patel et al., 2018).

Acoustic and aerodynamic measurements are usually performed 
by a speech therapist as part of a multidimensional voice examination. 
Several recordings of sustained vowels are analyzed to determine the 
voice range profile along with relevant acoustic and aerodynamic 
parameters such as jitter, shimmer, harmonics-to-noise ratio (HNR) 
and maximum phonation time.

Auditory-perceptual assessment of voice quality involves the use 
of standardized rating scales, such as the GRBAS or RBH scale. Here, 
an expert evaluates continuous speech (e.g., Rainbow Passage) 
according to several criteria: grade (G) or hoarseness (H), roughness 
(R), breathiness (B), asthenia (B), and strain (S). For each criterion, a 
score of 0 (normal), 1 (mild), 2 (moderate), or 3 (severe) is provided. 
The overall ratings are derived as ( )max , , , G R B A S=  for the GRBAS 
and ( )max , H R B=  for the RBH scale, respectively (Schneider-
Stickler and Bigenzahn, 2013).

Patients’ subjective self-assessment is conducted through 
questionnaires designed to measure their perceived quality of life 

concerning voice and voice disorders. Common questionnaires 
include the Voice Handicap Index (VHI ) and the Voice-Related 
Quality of Life (VRQOL) (Hogikyan et al., 2000; Jacobson et al., 1997).

Finally, visual examination of the vocal folds at rest and during 
phonation facilitates the etiologic diagnosis of voice disorders and 
allows for the observation of vocal fold behavior. Currently, the most 
widely used laryngeal imaging technique is videostroboscopy, which 
artificially reconstructs the glottal cycle by compiling images captured 
at different phases across consecutive cycles (Deliyski, 2016).

Current voice diagnostic methods rely heavily on subjective 
assessment criteria (Voigt et al., 2010). While objective parameters are 
incorporated into acoustic analysis to support diagnosis, auditory-
perceptual evaluation by trained experts remains the gold standard for 
assessing acoustic voice quality (Schneider-Stickler and Bigenzahn, 
2013). The same subjectivity applies to visual assessment, where 
physicians evaluate features such as glottal closure, regularity, and 
symmetry (Dejonckere et al., 2001). However, this process especially 
demands considerable expertise and is time-consuming, labor-
intensive, and prone to inaccuracies due to the high volume of visual 
data. Subjective evaluations are also influenced by factors like the 
rater’s experience, fatigue, and perceptual bias, all of which have been 
shown to negatively affect both inter- and intra-rater reliability (Lu 
and Matteson, 2014). To address these limitations, researchers are 
seeking an objective, standardized procedure for voice assessment 
through quantitative analysis of video and audio data.

Beyond subjectivity, a key limiting factor in visual assessment lies 
in the nature of videostroboscopy, which reconstructs the glottal cycle 
under the assumption of periodic vocal fold vibration, making it 
unsuitable for analyzing intra- or inter-cycle variations. Consequently, 
videostroboscopy cannot provide a reliable assessment for dysphonic 
patients with unstable phonatory characteristics (Deliyski, 2016).

High-speed videoendoscopy (HSV) is a promising laryngeal 
imaging technique with the potential to supersede videostroboscopy. 
With its high frame rates (≥4,000 Hz), HSV does not rely on the 
assumption of periodicity, but instead captures the true intra-cycle 
vibratory behavior of the vocal folds. This enables the measurement 
of intra-cycle characteristics such as vocal fold regularity, symmetry, 
and glottal closure, as well as cycle-to-cycle variations of these features 
(Deliyski, 2016).

HSV allows for the reliable quantification and objective analysis 
of vocal fold behavior. Additionally, many HSV systems enable the 
simultaneous recording of the acoustic signal. Integrating 

https://doi.org/10.3389/frai.2025.1601716
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Schraut et al. 10.3389/frai.2025.1601716

Frontiers in Artificial Intelligence 03 frontiersin.org

time-synchronized acoustic and HSV recordings offers the potential 
for an objective visual and acoustic assessment of vocal function based 
on a single HSV examination (Deliyski and Hillman, 2010; Mehta 
et al., 2010).

In recent years, machine learning (ML) and deep learning 
(DL)-based approaches have gained attention in the pursuit of 
objective, standardized voice assessment. While many of these 
methods focus on conventional acoustic recordings, HSV recordings 
have received comparatively little attention. Most studies utilizing ML 
on HSV data have focused on detecting structural changes in the vocal 
folds (i.e., organic voice disorders) rather than quantitatively analyzing 
vocal fold behavior (Barlow et al., 2024).

Voigt et al. (2010) explored the use of HSV data by extracting two 
feature sets from 75 HSV recordings (25 healthy, 50 FD) of the 
sustained vowel /a/ to distinguish between normal and pathological 
voices. The first set consisted of 10 features derived from the glottal 
area waveform (GAW) – a function describing the glottal area over 
time – capturing glottal dynamics and perturbation. The second set 
comprised 12 features based on the contours of the phonovibrogram 
(PVG), an image capturing the spatio-temporal movement patterns of 
vocal fold activity. Using a support vector machine (SVM) with 
ten-fold cross-validation (CV), they obtained accuracies of up to 0.809 
and 0.817 for GAW- and PVG-based features, respectively.

Schlegel et  al. (2020b) combined 91 GAW- and PVG-based 
features describing pitch, perturbation, noise, glottal dynamics and 
symmetry, and PVG contours into a feature set. A subset of 13 relevant 
parameters was determined using correlation analysis and feature 
importance measures based on boosted decision stumps. Applying 
LogitBoost on 358 HSV recordings (225 healthy, 133 FD) of the 
sustained vowel /i/, they achieved an accuracy of 0.757  in a 
ten-fold CV.

Arias-Vergara et al. (2023) investigated the use of novel features 
derived from the Nyquist plot representation of the GAW. Using 66 
HSV recordings (33 healthy, 33 FD) of the sustained vowel /i/, they 
extracted 20 Nyquist plot-based features and 110 GAW-based features 
describing pitch, perturbation, noise, glottal dynamics, mechanics, 
and symmetry. A subset of 30 relevant parameters was selected using 
perturbation feature importance. Classification with an SVM in an 
11-fold CV achieved an accuracy of 0.820 in distinguishing normal 
from FD voices.

Döllinger et al. (2012) classified sustained phonations recorded 
during HSV into normal and pathological voices using linear 
discriminative analysis based on 10 acoustic perturbation and noise 
parameters. They achieved accuracies of 0.900 for males (30 healthy, 
30 disordered) and 0.730 for females (43 healthy, 43 disordered), 
respectively.

In Schraut et  al. (2025), we  developed an acoustic model for 
hoarseness severity estimation using 617 sustained phonations 
recorded during HSV. A combination of filter and wrapper selection 
methods reduced 490 acoustic parameters to a subset of five relevant 
features. Logistic regression (LR) applied to this feature set yielded a 
classification accuracy of 0.742 and a correlation of 0.637 between 
model predictions and hoarseness rating on a hold-out test set of 
124 recordings.

So far, the use of HSV and acoustic recordings for ML-based voice 
assessment has only been explored independently. Studies 
investigating the relationship between acoustic and HSV-derived 
parameters reveal minimal redundancy between these modalities, 

suggesting that their integration could provide complementary 
insights into vocal function (Deliyski and Hillman, 2010; Mehta et al., 
2010; Schlegel et  al., 2021). Therefore, the combination of time-
synchronized acoustic and HSV recordings holds considerable 
potential to enhance voice analysis.

Apart from our work in Schraut et al. (2025), previous studies 
have primarily focused on distinguishing between normal and 
pathological voices. However, the severity of voice disorders and 
associated characteristics (e.g., hoarseness) is typically continuous in 
nature. While auditory-perceptual assessments attempt to capture this 
continuum through coarse grading scales, a more fine-grained 
evaluation could be achieved through quantitative analysis, allowing 
for tracking subtle changes in vocal function over time.

Integrating ML-based analysis of HSV and acoustic recordings 
into clinical workflows will enhance the objectivity, consistency, and 
efficiency of voice assessments. By providing quantitative and 
reproducible estimates of hoarseness severity, such tools can support 
clinical decision making, facilitate early detection of functional voice 
impairments, and enable detailed monitoring of treatment outcomes. 
This would reduce dependence on subjective ratings, help standardize 
diagnostic procedures across institutions, and ultimately improve the 
quality of care for patients with voice disorders.

This study investigates a ML-based approach for assessing 
hoarseness severity in functional dysphonia based on synchronous 
HSV and acoustic recordings. Specifically, a classification model is 
developed using quantitative parameters extracted from HSV 
recordings. This includes identifying an appropriate classification 
algorithm and determining a minimal-optimal subset of features.

Subsequently, the proposed videoendoscopic model will 
be combined with the acoustic model previously developed in Schraut 
et al. (2025) to form an ensemble model based on time-synchronized 
HSV and acoustic recordings. The models will be evaluated based on 
their ability to quantify hoarseness severity H  and detect relative 
changes in severity over time.

In addition to the HSV-based ensemble model, this study will 
explore an ensemble model that integrates data from all commonly 
performed voice examinations. For this purpose, the results from 
Schlegel et al. (2020a) will be considered, where questionnaires and 
acoustic/aerodynamic parameters commonly acquired in clinical 
practice were reduced to a relevant subset of four parameters.

2 Materials and methods

2.1 Database

The data used in this study were obtained from patient 
consultations and studies conducted at the Division of Phoniatrics and 
Pediatric Audiology at the University Hospital Erlangen. All studies 
were approved by the ethics committee at the Faculty of Medicine at 
Friedrich-Alexander-Universität Erlangen-Nürnberg (reference 
numbers 290_13 B, 61_18 B, 219_19 B and 139_20 B). All methods 
were carried out in accordance with relevant guidelines and 
regulations. Written informed consent was obtained by the subjects.

Three databases comprising different modalities and examinations 
are used in this study: a database of HSV recordings ( VD ), a database 
of HSV-synchronized acoustic recordings ( AD ), and a database of 
clinical parameters obtained in separate functional voice assessments 
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( CD ). In this section, the acquisition and pre-processing of these data 
are described.

2.1.1 Data acquisition
In the HSV examination, subjects were instructed to phonate the 

sustained vowel /i/ at a habitual pitch and loudness level, while the 
rigid endoscope was positioned in their oral cavity and held slightly 
above the vocal folds. During sustained phonation, a high-speed video 
recording of the vocal fold movement and a synchronous acoustic 
recording were captured.

The HSV recordings were acquired using two imaging setups: (A) 
the KayPENTAX system (camera: Photron FASTCAM MC2; light 
source: Model 7152B Xenon; endoscope: 70°, rigid; frame rate: 4000 
fps; resolution: 512 × 256 pixel) from PENTAX Medical (Montvale, 
NJ) and (B) the OpenHSV system (camera: IDT CCM-1540; light 
source: Karl Storz Power LED 300; endoscope: 70°, rigid; frame rate: 
4000 fps; resolution: 1024 × 1,024 pixel) by Kist et al. (2021a). Both 
systems include a clip microphone, which was located near the base 
of the camera with a distance of approximately 30 cm from the 
subject’s mouth. The KayPENTAX system employs the Audio Technica 
ASP-0091 (PENTAX model #7175–6,000) lavalier microphone with a 
sampling rate of 40 kHz, while the OpenHSV system uses the DPA 
4060 lavalier microphone with a sampling rate of 80 kHz (Kist et al., 
2021a). The acoustic recordings of both HSV systems were down-
sampled to 22.05 kHz, which was found to be  sufficient for voice 
quality assessment (Schraut et al., 2025).

The clinical parameters defined by Schlegel et al. (2020a) were 
acquired in a separate phoniatric examination. Here, several voice 
recordings were captured to determine the voice range profile of the 
subject, from which the maximum achievable frequency ( maxF ) and 
intensity ( maxI ) could be derived. Furthermore, a recording of the 
sustained vowel /a/ at a comfortable pitch and intensity was obtained 
to determine acoustic jitter percent ( %Jit ). The recordings were 
captured and analyzed using the lingWAVES Voice Diagnostic Center 
system, placing the lingWAVES SPL Meter II microphone at a distance 
of 30 cm from the subjects’ mouth. The recorded signals were sampled 
at 22.05 kHz with a resolution of 16 bit/sample. Finally, the subjects 
were asked to complete questionnaires regarding the self-assessment 
of their voice. This includes the relevant VRQOL and/or the VHI.

In addition to the HSV and phoniatric examinations, a recording 
of continuous speech (Der Nordwind und die Sonne (Schneider-
Stickler and Bigenzahn, 2013)) was obtained from each subject using 
the phoniatric setting. Subsequently, this recording was evaluated 
auditory-perceptively by an expert according to the RBH scale, 
resulting in a corresponding RBH rating for each patient visit. If 
patients underwent both the HSV and voice therapy examination 
during a single visit, the resulting recordings and parameters share the 
same RBH score. This overlap is taken into consideration when 
dividing the data as explained in Section 2.1.4.

Overall, 1,641 visits from 1,110 subjects (725 females, 385 males) 
were considered for this study. Visits were removed from the 
respective HSV database if the quality of the underlying recording was 
found to be  insufficient. Likewise, visits were excluded if not all 
clinical parameters were available, with an exception of VRQOL (see 
Section 2.1.3.3).

In total, the HSV database ( VD ) includes 457 recordings from 377 
subjects (242 females, 135 males). Subjects consist of 193 healthy 
controls and 184 patients with voice impairment. The HSV-based 

acoustic database ( AD ) contains 634 recordings from 505 subjects 
(321 females, 184 males). Subjects included 288 healthy controls and 
266 patients with voice impairment. The clinical database ( CD ) 
includes 923 examinations from 729 subjects (453 females, 276 males). 
Here, subjects comprise 400 healthy controls and 329 patients with 
voice impairment.

All voice disorders within databases VD  and CD  are caused by 
functional dysphonia. However, within database AD , 109 of the 266 
voice impairments are caused by different voice disorders such as 
vocal fold polyps, nodules, recurrent paresis, laryngitis, vocal 
insufficiency, atrophy, Reinke’s edema, etc. These were added to 
account for more recordings with increased hoarseness, as auditory 
assessment, unlike visual assessment, can be performed independently 
of the underlying voice disorder.

2.1.2 Target labels
A supervised classification approach was chosen to derive a 

continuous hoarseness severity score from voice parameters. Each 
recording in VD , AD , and CD  was assigned a target label based on the 
clinical RBH rating, using the overall hoarseness score { }0, 1, 2, 3H ∈ .

Since this is a retrospective study, most recordings were obtained 
from routine clinical practice, where assessments were conducted by 
a single voice therapist. These evaluations were primarily based on 
continuous speech samples. Given the inherent inter- and intra-rater 
variability in subjective voice assessments as well as potential 
differences in voice characteristics between continuous speech and 
sustained phonation, a perfect alignment between ratings and 
recordings cannot be assumed (Lu and Matteson, 2014).

To account for this, recordings were grouped into two hoarseness 
levels: < 2H  (normal / mild hoarseness) and ≥ 2H  (moderate / severe 
hoarseness), giving classification models some leeway for minor 
adjustments. While this frames the task as binary classification, the 
estimated posterior probability [ ]ˆ 0, 1y ∈  is treated as a continuous 
(i.e., interval-scaled) measure of hoarseness severity, where =ˆ 0y  
corresponds to a normal voice and =ˆ 1y  represents severe hoarseness.

2.1.3 Feature extraction
All HSV video and audio recordings were cut to a duration of 

250 ms (i.e., 1,000 frames) of sustained phonation, which meets the 
minimum requirement of 20 phonation cycles for the analysis of HSV 
data (Schlegel et al., 2018). This restriction of the signal length was 
necessary because many subjects, in particular patients with voice 
disorders, were not able to sustain phonation for a longer period 
of time.

2.1.3.1 Glottal parameters (HSV)
The extraction of glottal parameters from high-speed endoscopic 

videos was based on total and partial GAWs. Figure 1 illustrates the 
process of obtaining these signals. For each video frame, a DL model 
automatically identifies the glottal area between the vocal folds. 
Specifically, a convolutional neural network architecture based on 
U-Net segments the image to determine which pixels belong to the 
glottal area (Döllinger et  al., 2022; Gómez et  al., 2020). Principal 
component analysis (PCA) is then applied to define a midline that 
bisects this area, assigning it to the left and right vocal folds (Kist et al., 
2021b). Finally, summing the partial and total glottal areas per frame 
yields the left, right, and total GAWs, which serve as proxies for vocal 
fold motion.
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Table 1 summarizes the parameters extracted from the GAWs. 
These parameters were computed based on either the full signal, 
windowed analysis, or phonation cycles. Phonation cycles were 
determined for each recording through fundamental frequency 
analysis (Kist et al., 2021b).

A total of 48 features were considered based on previous work, 
capturing various aspects of vocal fold behavior (Arias-Vergara et al., 
2023; Schlegel, 2020; Schlegel et al., 2020b). Perturbation measures 
included cycle-to-cycle variability in period, amplitude, and signal 
energy (e.g., mJit , mShim), quantifying the periodicity of vocal fold 
oscillations associated with vocal roughness (Horii, 1980). Glottal 
dynamics were characterized by parameters such as OQ  (proportion 
of each cycle the glottis remains open), CQ  (duration of the glottis 
closing phase), SQ (ratio between opening and closing durations), and 
the GGI  (degree of incomplete closure), which relates to breathiness 
and vocal efficiency (Holmberg et  al., 1988; Kunduk et  al., 2010; 
Timcke et  al., 1958). Mechanical features included ALR and AQ , 
reflecting the extent and velocity of vocal fold deflections (Schlegel 
et al., 2019; Titze, 2000). Symmetry measures such as the PAI , which 
quantifies the synchronicity of vocal fold motion by measuring the 
phase shift between left and right fold oscillations, have been 
associated with a rough voice (de Jesus Goncalves, 2015). Noise 
measures, including HI, NNE, and HNR, assessed the proportion of 
periodic versus aperiodic components in the signal and are relevant 
to perceived roughness and breathiness (Hiraoka et al., 1984; Kasuya 
et al., 1986; Yumoto et al., 1982). Nyquist plot-based features, like 
WTV , analyzed the overall consistency of glottal cycles using 
amplitude-phase representations of the GAW (Arias-Vergara et al., 
2023). Parameters highly dependent on the camera angle, such as 
glottal spatial symmetry measures and those derived from the 
phonovibrogram (PVG), were excluded from the analysis based on the 
findings in Veltrup et  al. (2023). Additionally, redundant or 
ill-designed parameters were omitted (Schlegel et al., 2020b; Schlegel 
et al., 2019).

All processing steps described were carried out using our publicly 
available software, Glottis Analysis Tools (GAT) (Kist et al., 2021b).

2.1.3.2 Acoustic parameters (HSV)
Based on our previous work in Schraut et al. (2024) and Schraut 

et  al. (2025), the following parameters were extracted from the 
acoustic signal recorded during HSV: mean smoothed cepstral peak 
prominence ( meanCPPS ), harmonics intensity (HI), std. spectral 
centroid ( std

centroidS ), mean jitter (mJit ), and mean peak-to-peak 

amplitude ( meanA ). These features quantify the harmonicity, frequency 
variability, and intensity of the acoustic signal.

2.1.3.3 Clinical parameters
The clinical parameters include the final set determined in 

Schlegel et  al. (2020a): VRQOL, maxF , maxI , %Jit . For 226 visits, 
the VRQOL  was not available, but the VHI  was recorded instead. 
Based on 518 visits, where both the VRQOL and VHI  were available, 
a Pearson correlation of −0.949 was found between the two 
questionnaires, reflecting the results of related studies (Portone et al., 
2007). Consequently, where applicable, the VRQOL was imputed using 
linear regression on the VHI .

2.1.4 Data split
The databases were split into training and hold-out test sets to 

guarantee an unbiased evaluation of the classification models. This 
was done separately for the development of the video model (Section 
2.2) and the evaluation of the multi-sensor approach (Section 2.3), as 
the latter required an overlap of visits from all three databases. The test 
data was selected as follows.

First, all visits originating from the same patient taken at different 
points in time were reserved for the test set. These visits will be used 
for evaluating the models’ capability to quantify relative change in 
hoarseness. Next, further visits were randomly selected in order to 
balance out the resulting hoarseness distribution as evenly as possible. 
As there were too few visits with hoarseness level = 3H  to achieve a 
uniform distribution (without impacting model training), missing 
visits were filled with hoarseness level = 2H  to achieve an even 
distribution for binary classification. It was ensured that there was no 
overlap of subjects between the training and test set.

For model development (Section 2.2), the database VD  was split 
into 365 training visits ( train

devD ) and 92 test visits ( test
devD ), representing 

approximately 20% of VD . Figure  2A shows the hoarseness 
distributions of the resulting training and test set.

For evaluation of the multi-sensor approach (Section 2.3), the 
previously determined test set was reduced to visits recorded in all 
three databases. Consequently, 46 visits were reserved for the test set 

= =test test test
V A CD D D . The remaining visits were used for model 

training, resulting in 402 visits in train
VD , 588 visits in train

AD , and 877 
visits in train

CD . Figure 2B shows the hoarseness distributions of the 
resulting training and test sets.

The age and sex distributions of each respective training and test 
set are available in Supplementary Figures 1, 2.

FIGURE 1

Illustration of the processing of HSV image data into total and partial GAWs using DL-based glottis segmentation and PCA-based midline detection.
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2.2 HSV model development

This section describes the development of a classification model 
for hoarseness severity estimation based on high-speed endoscopic 
video data. The model and parameter selection methodology builds 
upon our previous work on hoarseness classification using HSV audio 
data (Schraut et al., 2025). Here, train

devD  and test
devD  were used as training 

and test datasets (see Figure 2A).

2.2.1 Model selection
A model selection was performed to identify suitable 

classification algorithms for hoarseness severity estimation based on 
HSV data. Since hoarseness severity is treated as a continuous 
variable, only classification models that provide a probabilistic output 
were considered. Based on prior research and best practices for 
classification of tabular data, a range of linear, non-linear, ensemble- 
and neural network-based classification algorithms were evaluated 

TABLE 1 Summary of the 48 glottal features extracted from the GAW.

Parameter Abbreviation Unit Statistics Source

Fundamental frequency measures

Fundamental frequency F0 Hz mean, std.

Perturbation measures

Mean jitter mJit s - Horii (1980)

Period variability index PVI a.u. - Deal and Emanuel (1978)

Time periodicity TP a.u. mean, std. Qiu et al. (2003)

Mean shimmer mShim a.u. - Horii (1980)

Amplitude variability index AVI a.u. - Deal and Emanuel (1978)

Amplitude periodicity AP a.u. mean, std. Qiu et al. (2003)

Energy perturbation factor EPF a.u. - Kasuya et al. (1993)

Glottal dynamic characteristics

Closing quotient CQ a.u. mean, std. Holmberg et al. (1988)

Open quotient OQ a.u. mean, std. Timcke et al. (1958)

Plateau quotient PQ a.u. mean, std. Mehta et al. (2011)

Speed quotient SQ a.u. mean, std. Timcke et al. (1958)

Glottal area index GAI a.u. mean, std. Chen et al. (2013)

Glottal gap index GGI a.u. mean, std. Kunduk et al. (2010)

Mechanical measures

Amplitude-length ratio ALR a.u. mean, std. Titze (2000)

Stiffness STF a.u. mean, std. Munhall et al. (1985)

Amplitude quotient AQ a.u. mean, std. Schlegel et al. (2019)

Symmetry measures

Phase asymmetry PA a.u. mean, std. de Jesus Goncalves (2015)

Phase asymmetry index PAI a.u. mean, std. de Jesus Goncalves (2015)

Noise measures

Cepstral peak magnitude CPM dB - Kasuya et al. (1993)

Smoothed cepstral peak prominence CPPS dB - Kasuya et al. (1993)

Harmonics intensity HI a.u. - Hiraoka et al. (1984)

Harmonics-to-noise ratio HNR dB - Yumoto et al. (1982)

Waveform matching coefficient WMC a.u. mean, max. Lessing (2007)

Normalized noise energy NNE dB mean, std. Kasuya et al. (1986)

Signal-to-noise ratio SNR dB mean, std. Klingholz (1987)

Spectral flatness SF a.u. - Lessing (2007)

Nyquist plot measures

Trajectory consistency TC a.u. mean, std. Arias-Vergara et al. (2023)

Within trajectory variability WTV a.u. mean, std. Arias-Vergara et al. (2023)

The 10 most relevant features as determined by the relevance score defined in Section 2.2.2 are highlighted in bold type.
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(Schraut et al., 2025; Schraut et al., 2024). These included logistic 
regression (LR) (Hosmer et  al., 2013), support vector machines 
(SVM) with linear and radial basis function (RBF) kernels 
(Cristianini and Shawe-Taylor, 2000), decision tree (DT) (Rokach 
and Maimon, 2005), adaptive boosting (AdaBoost) (Schapire, 2013), 
LogitBoost (Friedman et  al., 2000), extreme gradient boosting 
(XGBoost) (Chen and Guestrin, 2016), light gradient boosting 
machine (LGBM) (Ke et al., 2017), category boosting (CatBoost) 
(Prokhorenkova et  al., 2018), and a deep tabular data learning 
architecture (TabNet) (Arik and Pfister, 2021).

For each model, a five-fold cross-validation (CV) was performed 
on the training set. In each fold, 80% of the training data was allocated 
for training, while the remaining 20% served as validation set. 
Hyperparameter selection was conducted exclusively on the training 
data, i.e., excluding the respective validation set of each fold. Here, an 
exhaustive grid search was conducted based on a separate three-fold 
CV on the training data, using a pre-defined hyperparameter grid for 
each classification model (see Supplementary Table  1). 
Hyperparameters were selected so that the mean logarithmic loss was 
minimized. Feature standardization was performed using the mean 
and standard deviation of the training data. To address the class 
imbalance between < 2H  and ≥ 2H , class weights were assigned 
inversely proportional to class frequencies. Model performance was 
assessed on the validation sets using accuracy, sensitivity, and 
specificity as evaluation metrics.

2.2.2 Feature selection
In this study, feature selection was performed to identify a 

minimal-optimal subset of HSV parameters. Our approach aimed 
to reduce the number of features while maintaining sufficient 
model performance, prioritizing the clinical relevance and 
interpretability of selected parameters over purely maximizing 
predictive accuracy.

Non-parametric statistical methods were applied to all features, as 
the Shapiro–Wilk test indicated that most features did not follow a 
normal distribution across all hoarseness levels (Shapiro and 
Wilk, 1965).

First, the Kruskal-Wallis test was used to assess all parameters for 
significant differences across hoarseness levels H . Parameters that did 

not show significant differences between any hoarseness levels 
( > 0.05p ) were excluded from the feature set (McKight and 
Najab, 2010).

The remaining features were ranked by relevance using a 
combination of four feature selection methods. In addition to the 
Kruskal-Wallis test, the ReliefF algorithm was used to assess the ability 
of features to distinguish between instances with similar and dissimilar 
hoarseness levels (Urbanowicz et  al., 2018). Spearman’s rank 
correlation coefficient ρ  was calculated to evaluate the strength of the 
monotonic relationship between each feature and hoarseness H  (Zar, 
2005). Mutual information was also considered to capture non-linear 
relationships (Kraskov et al., 2004). The final relevance score of each 
feature was derived by averaging the normalized scores from these 
methods. By incorporating multiple measures of class separability and 
statistical dependence, this approach enhances robustness of results 
against the limitations of the individual methods (Gómez-García 
et al., 2019).

Subsequently, Spearman’s rank correlation coefficient was 
computed between features to eliminate redundancy. Features with a 
strong correlation ρ ≥ 0.9 were grouped, and the feature with the 
highest relevance score in each group was retained, while the others 
were discarded (Ding and Peng, 2005).

Afterwards, the remaining feature set was reduced to the 10 most 
important features based on their previously determined relevance 
score. A five-fold CV was performed to ensure these features 
adequately capture the hoarseness-related information of the full 
feature set.

Finally, the feature set was fine-tuned using the embedded 
methods of the previously selected classification models. 
Specifically, the remaining features were ranked using the 
embedded feature importance scores, i.e., model coefficients (LR) 
or information gain-based feature importance values (XGBoost) 
(Chen and Guestrin, 2016; Guyon and Elisseeff, 2003; Jovic et al., 
2015). Going from highest to lowest ranked feature, a greedy 
forward selection was performed for each classification model. At 
each iteration, the feature subset was evaluated in a five-fold 
CV. A feature set was selected, if the addition of the subsequent 
feature did not lead to an increase in the model’s objective 
function (i.e., negative logarithmic loss).

A B

FIGURE 2

Distributions of auditory-perceptual hoarseness ratings H for all training and test sets used in (A) HSV model development (see Section 2.2) and 
(B) evaluation of multi-sensor approaches (see Section 2.3).
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The resulting model and feature set combinations were then 
compared based on the results of the five-fold CV to determine a 
final model.

2.2.3 Model evaluation
The selected classification model and feature set were trained on 

the complete training set ( train
devD ) and evaluated on the hold-out test 

set ( test
devD ). In addition to classification metrics, a more detailed 

analysis of the final approach was conducted.
First, the model’s ability to quantitatively represent hoarseness 

severity was examined by analyzing the correlation between predicted 
probability scores ŷ and subjectively determined hoarseness ratings 
H  for the test set.

Second, the model’s ability to capture relative changes in 
hoarseness severity (i.e., improvement, worsening, or no change) was 
evaluated. For 31 test subjects with multiple recordings taken at 
different time points (e.g., before and after voice therapy), the observed 
differences in hoarseness severity ∆ = −post preH H H  were compared 
to the corresponding differences in predicted scores ∆ = −ˆ ˆ ˆpost prey y y  
in terms of quantitative agreement.

2.3 Multi-sensor approach

This section describes the evaluation of the final models based on 
videoendoscopic data ( Vm ), HSV-based acoustic data ( Am ), and 
additional clinical parameters ( Cm ). Subsequently, two ensemble 
methods were constructed by combining the pre-trained HSV-based 
models ( VAm ) and all models ( VACm ), respectively.

2.3.1 Evaluation of individual models
The evaluation included the HSV model Vm  developed 

in Section 2.2, i.e., XGBoost and feature set 
{ }, , , , .mean std std std

V WTV NNE HI GGI CQ=X  The HSV-based 
audio model Am  defined in Schraut et al. (2025) uses LR and the 
acoustic features { }, , , , mean std mean

A centroidCPPS HI mJit S A=X . The 
clinical parameter model Cm  is based on the feature set 

{ }max max
%, , , C VRQOL F I Jit=X  defined in Schlegel et al. (2020b) 

and uses LR as classification algorithm, as determined in a model 
selection on the training set train

CD . The complete results of the model 
selection are provided in Supplementary Table 2.

Each model was evaluated using five-fold CV on the training sets 
defined in Figure  2B. Classification performance was assessed 
analogous to Section 2.2.2, considering accuracy, sensitivity, and 
specificity. In addition, the receiver operating characteristic (ROC) 
curve and the corresponding area under the curve (AUC) score were 
used for the evaluating the final models. Furthermore, the correlation 
between predicted probability scores ŷ and subjective hoarseness 
ratings H  was analyzed based on out-of-sample predictions from each 
validation set, providing comparable results to the relatively small 
hold-out test set.

Following CV, the models were trained on their respective full 
training sets and evaluated on the shared hold-out test set. The analysis 
of the test results includes classification metrics, the ROC curve, 
correlation between ŷ and H , and correlation between ∆ŷ  and ∆H . 
The latter was evaluated using 20 pre- and post-recordings from 14 
test subjects. Due to the relatively small size of the test set, 
bootstrapping (10,000 resamples) was performed to estimate 95% 

confidence intervals for the classification metrics, providing a more 
robust comparison of model performance on the test set.

In addition, the correlation between the parameters of the feature 
sets VX , AX , and CX  and hoarseness H  was examined based on the 
respective complete databases VD , AD , and CD .

2.3.2 Evaluation of ensemble models
Two ensemble models were investigated. The first, 

{ }, VA V Am m m= , combines the models Vm  and Am  based on time-
synchronous videoendoscopic and acoustic data. The second, 

{ }, , VAC V A Cm m m m= , extends this approach by incorporating the 
clinical parameter model Cm .

The ensemble models were constructed without additional model 
training. Instead, the individual models from Section 2.3.1 were used 
as-is, having been trained on their respective full training sets (see 
Figure 2B). Ensemble predictions were obtained by averaging the 
predictions of the individual models with equal weights. Alternative 
weighting schemes based on the classification performance of 
individual models in the five-fold cross-validation were investigated, 
but did not yield performance improvements.

Analogous to Section 2.3.1, all ensemble models were evaluated 
on the hold-out test set shared between the databases.

3 Results

3.1 HSV model development

3.1.1 Model selection
Table 2 shows the results of the five-fold CV for all classification 

models. Some models, particularly DT, LogitBoost, and CatBoost, tend 
to underestimate hoarseness severity, as indicated by low sensitivity and 
high specificity. XGBoost achieves a slight advantage over the remaining 
ensemble-based methods (AdaBoost, LGBM), while also outperforming 
TabNet. LR and SVM models show a similar performance to XGBoost, 
with LR providing a notable balance between sensitivity and specificity.

Based on these results, LR and XGBoost were selected for 
subsequent feature selection, representing both a linear and ensemble-
based model architecture.

TABLE 2 Classification results of the model selection using all features 
defined in Table 1.

Model Accuracy Sensitivity Specificity

LR 0.729 ± 0.062 0.638 ± 0.052 0.756 ± 0.074

SVM (linear) 0.781 ± 0.040 0.578 ± 0.062 0.841 ± 0.056

SVM (RBF) 0.781 ± 0.056 0.566 ± 0.065 0.844 ± 0.079

DT 0.767 ± 0.066 0.387 ± 0.064 0.879 ± 0.082

AdaBoost 0.753 ± 0.057 0.542 ± 0.068 0.816 ± 0.090

LogitBoost 0.805 ± 0.006 0.385 ± 0.101 0.929 ± 0.028

LGBM 0.751 ± 0.035 0.530 ± 0.086 0.816 ± 0.039

XGBoost 0.751 ± 0.059 0.565 ± 0.092 0.805 ± 0.072

CatBoost 0.822 ± 0.031 0.435 ± 0.117 0.936 ± 0.042

TabNet 0.701 ± 0.037 0.517 ± 0.163 0.755 ± 0.070

For each model, results are reported in terms of mean and standard deviation of the 5-fold 
CV. Selected models are highlighted in bold type.
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3.1.2 Feature selection
The Kruskal-Wallis test showed significant differences between 

hoarseness levels for 32 of the 48 extracted features. Features that did 
not show a significant difference were discarded. Next, using Spearman’s 
rank correlation coefficient, five very strongly correlated features were 
identified and removed, leaving 27 nonredundant features. The 10 most 
relevant features determined from the remaining subset by the 
relevance score described in Section 2.2.2 are marked in Table 1.

Table 3 summarizes the results of the five-fold CV using the full 
feature set, the 10 most relevant features, and the final feature sets 
determined by embedded methods for LR and XGBoost (see Section 
2.2.2). For both models, classification accuracy was maintained 
throughout feature selection, while a better balance between sensitivity 
and specificity was achieved. Overall, there is no notable difference in 
the models’ performance.

Due to the slightly better results and more consistent performance 
in the selection process, XGBoost and feature set 

{ }, , , , mean std std std
V WTV NNE HI GGI CQ=X  were chosen as the 

final model Vm .

3.1.3 Model evaluation
The final model, XGBoost and VX , was trained on the complete 

training set train
devD  and evaluated on the hold-out test set test

devD . An 
accuracy of 0.663, a sensitivity of 0.652 and a specificity of 0.674 were 
achieved on the test set, showing a slight decrease in performance 
compared to model validation (see Table 3).

Figure 3A shows the distributions of predicted probability scores 
ŷ over the auditory-perceptual hoarseness ratings H  for the test set. 
As indicated by the fitted regression line, the distributions show a clear 
positive trend between predictions and subjective ratings. Overall, the 
model achieves a moderate correlation of 0.439 between ŷ and H .

Using 49 pre- and post-recording pairs, Figure 3B compares the 
difference in subjective ratings ∆H  to the change in predicted scores 
∆ŷ. Here, a weak correlation of 0.358 is obtained between ∆ŷ and ∆H .

3.2 Multi-sensor approach

3.2.1 Evaluation of individual models
The videoendoscopic model Vm , acoustic model Am , and clinical 

model Cm  were first evaluated in a five-fold CV using the training sets 
train
VD , train

AD , and train
CD . Subsequently, all models were trained using 

the complete training sets and evaluated on the shared hold-out test 
set. The hyperparameters of each final model can be  found in 
Supplementary Table 1.

Table 4 summarizes the results of the five-fold CV in terms of 
accuracy, sensitivity, and specificity. The ROC curve of each model is 

depicted in Figure 4A. Figure 5 shows the distributions of predicted 
scores ŷ over the subjective hoarseness ratings H  for the training sets. 
As mentioned in Section 2.3.1, the predicted scores represent the 
out-of-sample predictions for each validation split of the fivefold 
CV. The corresponding confusion matrices of all models can be found 
in Supplementary Figure 3.

The HSV-based models, Vm  and Am , achieve comparable 
performance regarding classification metrics. However, model Am  
shows more distinct differences between the prediction distributions 
for the hoarseness levels. This is reflected in particular by an increase 
in the correlation between ŷ and H  from Vm  (ρ = 0.384 ) to Am  
(ρ = 0.540 ). Model Cm , which is based on additional clinical 
parameters, clearly outperforms the two HSV-based models in terms 
of sensitivity, resulting in an increase in both classification accuracy 
and correlation toward hoarseness (ρ = 0.589 ). These trends are 
reflected by the ROC curves and the AUC scores achieved on the 
training sets.

Table 5 provides the classification results of Vm , Am , and Cm  on 
the shared test set. Figure 4B shows the ROC curves of the models. 
The distributions of predicted test scores ŷ over hoarseness levels H  
are shown in Figure 6. The confusion matrices for the test results can 
be found in Supplementary Figure 4.

While the test results of Vm  reflect model validation, there is an 
imbalance between sensitivity and specificity for Am  and Cm . The 
prediction distributions show that Am  underestimates hoarseness for the 
test data, especially regarding severe hoarseness = 3H . In turn, Cm  
overestimates hoarseness for mild hoarseness =1H . However, in both 
cases, the trend of distributions still indicates greater agreement with 
hoarseness than Vm . This is confirmed by the ROC curves in Figure 4B, 
as well as the correlation achieved for Am  (ρ = 0.512) and Cm  (ρ = 0.638) 
compared to Vm  (ρ = 0.464), which reflects the results of the five-fold 
CV. Overall, the results suggest a bias due to the small size of the test set.

Using 20 pre- and post-recording pairs, Figure 7 compares the 
difference in scores ∆ŷ  predicted by each model to the change in 
subjective ratings ∆H . There were no particular differences in quality 
between the models, which all achieve a weak correlation between 
∆ŷ  and ∆H .

Table 6 summarizes the correlation between VX , AX , and CX  and 
subjective hoarseness ratings H  based on the complete databases VD , 

AD , and CD . Overall, the degree of correlation of the feature sets 
reflects the resulting performance of the associated models.

3.2.2 Evaluation of ensemble models
The models Vm , Am , and Cm  were combined into ensemble 

models and evaluated on the shared test set. Specifically, the ensemble 
of the HSV-based models ( VAm ), and the ensemble of all three models 
( VACm ) were investigated.

TABLE 3 Classification results using the full feature set, the 10 most relevant features, and the final feature sets determined by embedded methods.

Set LR XGBoost

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Full 0.729 ± 0.062 0.638 ± 0.052 0.756 ± 0.074 0.751 ± 0.059 0.565 ± 0.092 0.805 ± 0.072

Top 10 (Filter) 0.710 ± 0.059 0.649 ± 0.090 0.727 ± 0.069 0.764 ± 0.067 0.588 ± 0.117 0.816 ± 0.061

Final (Embedded) 0.737 ± 0.055 0.649 ± 0.090 0.763 ± 0.062 0.751 ± 0.037 0.636 ± 0.137 0.784 ± 0.047

For each model and set, results are reported in terms of mean and standard deviation of the 5-fold CV. The results of the selected model and feature set combination are highlighted in bold 
type.
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Table 5 and Figure 4C compare the classification performance of 
the ensemble approaches to the individual models on the test set. 
Figure  8 shows the distributions of predicted test scores ŷ over 
subjective ratings H  for the two ensemble models. The confusion 
matrices of the ensemble models can be  found in 
Supplementary Figure 5.

The combination of the HSV-based models, VAm , achieves 
a classification performance similar to Cm  and thus shows a 
clear improvement compared to the individual models. 
Ensemble model VACm  achieves the best overall performance, 
with an ideal balance between sensitivity and specificity. 
Consequently, the ROC curves as well as the AUC scores show 
a clear successive increase in performance by combining the 
models. Compared to their components, both ensemble models 
show a better trend with regard to the distributions of the 
predicted probabilities ŷ , which is also reflected in a successive 
increase in correlation toward hoarseness H  for VAm  (ρ = 0.603
) and VACm  (ρ = 0.752).

Analogous to Section 3.2.1, Figure 9 compares the difference in 
scores ∆ŷ  to the change in subjective ratings ∆H  for both ensemble 
models. Again, a successive increase in correlation between ∆ŷ  and 
∆H  is achieved for VAm  (ρ = 0.440 ) and VACm  (ρ = 0.501), 
outperforming the individual models (see Figure 7).

4 Discussion

4.1 HSV model development

This study developed a model for estimating hoarseness severity 
based on glottal parameters extracted from high-speed endoscopic 
videos. Model development involved the identification of a suitable 
classification algorithm and the application of filter-, embedded-, and 
wrapper-based feature selection methods to determine a minimal-
optimal feature set.

Notably, the 10 most relevant features identified by filter 
methods were not confined to a specific subgroup of parameters, 
but included various characteristics describing perturbation, 
noise, glottal dynamics, and glottal symmetry (see Table 1). A 
common aspect of the selected features is their measurement of 
the irregularity or consistency of the underlying glottal 
characteristic. While perturbation, noise, and Nyquist plot 
measures inherently capture irregularity, the standard deviation 
was identified as a relevant statistic for most glottal dynamics and 
symmetry parameters.

These consistency-related features were selected for the final 
feature set { }, , , , mean std std std

V WTV NNE HI GGI CQ=X . 
meanWTV  holistically captures the consistency of vocal fold movement 

in both amplitude and phase. HI indicates the proportion of harmonic 
energy in the signal, which is generally associated with periodic, stable 
phonation. In contrast, stdNNE  reflects fluctuations in the noise-to-
signal ratio throughout phonation. stdCQ  describes the consistency in 
the duration of the vocal folds’ closing phase, and stdGGI  measures 
the variability of glottal closure across cycles. Overall, these features 
provide a complementary characterization of consistency of vocal fold 
movement, with increased irregularity across these measures generally 
reflecting greater hoarseness severity.

The parameters identified in this study are consistent with 
those reported by Arias-Vergara et al. (2023), with six of the ten 
most relevant features and four of the five features in VX  also 

(A) (B)

FIGURE 3

(A) Distributions of predicted scores ŷ over the subjectively determined hoarseness levels H for test set test
devD . (B) Change in predicted scores ∆ŷ over 

the change in hoarseness levels ∆H  for 49 pre- and post- recording pairs. A regression line was fitted to indicate the relationship between prediction 
and ground truth, respectively.

TABLE 4 Classification results using the respective model, feature set, 
and training set of each modality.

Model Training 
set

Accuracy Sensitivity Specificity

mV
train
VD

0.764 ± 0.038 0.600 ± 0.117 0.818 ± 0.072

mA
train
AD 0.757 ± 0.033 0.645 ± 0.101 0.801 ± 0.040

mC
train
CD

0.802 ± 0.031 0.761 ± 0.112 0.809 ± 0.036

Results are reported in terms of mean and standard deviation of the 5-fold CV.
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included in their final feature set. In contrast, there is no overlap 
with the findings of Schlegel et al. (2020b), whose selected features 
are predominantly PVG-based, which were not considered in 
this study.

The selected model, XGBoost and feature set VX , achieved a 
moderate correlation (0.439) between the predictions ŷ and the 

subjective hoarseness ratings H  across 92 test recordings, and a weak 
correlation (0.358) between the relative changes ∆ŷ and ∆H  in 49 pre- 
and post-recording pairs. The distributions of model predictions ŷ 
and ∆ŷ  showed a clear positive trend toward increasing hoarseness, 
supporting the relationship between glottal irregularities and 
hoarseness severity (see Figure 3).

A B C

FIGURE 4

(A) ROC curves for out-of-sample predictions determined in five-fold CV using mV and train
VD , mA and train

AD , and mC and train
CD . (B) ROC curves for 

test set predictions using mV, mA, and mC. (C) ROC curves for test set predictions using ensemble models mVA and mVAC.

(A) (B) (C)

FIGURE 5

Distributions of the out-of-sample predictions ŷ over the subjectively determined hoarseness levels H using (A) mV and train
VD , (B) mA and train

AD , and 
(C) mC and train

CD . A regression line was fitted to indicate the relationship between prediction and ground truth, respectively.

TABLE 5 Classification results on the shared test set using the respective model of each modality as well as the multi-sensor approaches.

Model Accuracy Sensitivity Specificity

mV
0.674 (0.543, 0.804) 0.609 (0.400, 0.800) 0.739 (0.550, 0.909)

mA
0.717 (0.587, 0.848) 0.435 (0.231, 0.640) 1.000 (1.000, 1.000)

mC
0.739 (0.609, 0.870) 0.826 (0.652, 0.960) 0.652 (0.450, 0.840)

mVA
0.761 (0.630, 0.870) 0.609 (0.400, 0.808) 0.913 (0.783, 1.000)

mVAC
0.783 (0.652, 0.891) 0.783 (0.593, 0.947) 0.783 (0.600, 0.947)

For each model and metric, the 95% confidence intervals determined via bootstrapping are shown in brackets.
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4.2 Model evaluation

4.2.1 Individual models
In this study, three models were evaluated using data commonly 

collected in voice examinations. The HSV model, Vm  (XGBoost, VX ), 
was based on glottal parameters extracted from high-speed endoscopic 
video recordings. The acoustic model, Am  (LR, AX ), used parameters 
extracted from HSV-synchronized acoustic recordings. The clinical 
model, Cm  (LR, CX ), incorporated a questionnaire score alongside 
acoustic parameters derived from separate voice samples recorded in 
a functional voice examination.

These models achieved correlations of 0.384 ( Vm ), 0.540 ( Am ), 
and 0.589 ( Cm ) between the out-of-sample predictions ŷ and the 
subjective hoarseness ratings H  on their respective training data, with 
similar correlations of 0.464 ( Vm ), 0.512 ( Am ), and 0.638 ( Cm ) 
observed on the shared test set. Both the HSV-based acoustic model 

Am  and the clinical model Cm , which relies heavily on acoustic 

parameters, outperformed the videoendoscopic model Vm . Given that 
the ground truth, hoarseness severity H , is determined through 
auditory-perceptual assessment, it is expected that models based on 
the acoustic signal exhibit stronger correlations with the 
subjective ratings.

While the performance of Vm  confirms a relationship between 
glottal function and perceived hoarseness, vocal fold irregularities do 
not appear to be sufficient to capture hoarseness severity. While HSV 
sheds light on the mechanical and dynamical behavior of the vocal 
folds, it does not account for supraglottic influences such as airflow 
turbulence, resonance, or articulation in the vocal tract, all of which 
shape the perceived voice quality. This limitation is further reflected 
in the correlation analyses of individual feature sets, as all reported 
acoustic features and most clinical features show stronger associations 
with hoarseness than video-based parameters (see Table 6). Although 
many glottal and acoustic features capture similar aspects of phonatory 
irregularity (e.g., signal perturbation and noise), acoustic parameters 

(A) (B) (C)

FIGURE 6

Distributions of predicted scores ŷ over the subjectively determined hoarseness levels H for the shared test set using (A) mV, (B) mA, and (C) mC. A 
regression line was fitted to indicate the relationship between prediction and ground truth, respectively.

(A) (B) (C)

FIGURE 7

Change in predicted scores ∆ŷ over the change in hoarseness levels ∆H  for 20 pre- and post- recording pairs in the shared test set using (A) mV, 
(B) mA, and (C) mC. For each degree of change, correct value ranges are indicated. A regression line was fitted to indicate the relationship between 
prediction and ground truth, respectively.
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reflect the perceived output signal, while glottal parameters describe 
only the source characteristics. This likely explains the stronger 
correlation of acoustic features with perceptual ratings. The superior 
performance of Cm  over Am  is likely driven by the subjective self-
assessment VRQOL, which shows the strongest correlation with H . 
Despite being derived from dedicated functional voice recordings, the 
acoustic parameters in CX  show no notable difference in quality 
compared to those in AX , which were extracted from a single 
HSV-synchronized recording. On average, parameters in CX  and AX  
display a comparable correlation with H , both of which exceed the 
correlation observed for glottal parameters in VX . However, it is 
important to note that the correlations between parameters and 
hoarseness severity were derived from different databases ( VD , AD , 
and CD ), thereby limiting the reliability of direct comparisons.

All models showed only weak correlations between the relative 
change in predictions ∆ŷ  and subjective hoarseness ratings ∆H  (see 
Figure 7). However, as these findings are based on only 20 pre- and 
post-recording pairs, potential bias in the results cannot be ruled out.

4.2.2 Ensemble models
Two ensemble models were evaluated. The first model, VAm , 

combined the videoendoscopic model Vm  and the acoustic model Am  
into an HSV-based ensemble. With a correlation of 0.603 between ŷ 
and H  on the shared test set, VAm  achieved accuracy comparable to 
the clinical model Cm , representing a notable improvement over the 
individual HSV-based models. This finding supports previous studies 
indicating low redundancy between HSV-based video and audio 

recordings, suggesting that parameters (and consequently models) 
derived from these modalities can complement each other (Deliyski 
and Hillman, 2010; Mehta et  al., 2010; Schlegel et  al., 2021). 
Additionally, the results demonstrate that objective hoarseness 
severity estimation comparable to Cm , which relies on three dedicated 
functional voice recordings and a questionnaire, can be achieved using 
a single HSV examination.

The second ensemble model, VACm , integrated all three 
models: Vm , Am , and Cm . This combination significantly 
improved classification performance, yielding a strong correlation 
of 0.752 between ŷ  and H . The improved accuracy compared to 

VAm  is reasonable, as CX  includes voice function-specific 
parameters that cannot be derived from a single HSV recording. 
This trend is also observed for the relative change in predictions 
∆ŷ  and hoarseness ∆H , where both ensemble models achieve only 
a moderate correlation.

Overall, the results show that a combination of models based on 
time-synchronized HSV video and audio recordings can achieve a 
moderate-to-strong correlation with subjective hoarseness ratings. 
However, current findings suggest that a clinically relevant 
performance in the objective assessment of functional dysphonia (i.e., 
hoarseness) cannot yet be  realized solely through a single HSV 
examination and requires further investigation.

A major limiting factor for the predictive accuracy of HSV-based 
models likely arises from the practical challenges associated with 
collecting HSV data. During laryngeal examination with a rigid 
endoscope, the subject’s head and body position must be adjusted 
according to the endoscope angle to ensure a clear view of the vocal 
folds. The examiner then anchors the subject’s tongue before the 
endoscope is inserted into the oral cavity.

However, this procedure can be  particularly challenging for 
patients with severe voice disorders or a pronounced gag reflex, 
limiting the feasibility of the examination. Many patients are unable 
to sustain phonation for the required duration, or cannot undergo the 
examination at all, contributing to the underrepresentation of 
moderate and severe hoarseness cases (see Figure 2).

Moreover, the examination procedure itself may interfere with the 
subject’s natural phonation. Studies have reported that rigid endoscopy 
can influence acoustic parameters, leading to elevated fundamental 
frequency as well as increased perturbation and noise components 
(Lim et al., 1998; Ng and Bailey, 2006). As a result, the quality of the 
recorded sustained vowels is influenced not only by the severity of the 
voice disorder but also by the subject’s ability to adapt to the 
procedural requirements (i.e., body and head positioning, tongue 
placement, rigid endoscope).

These challenging recording conditions hinder the standardized 
acquisition of HSV data. In the videoendoscopic recordings, this 
manifests as variations in the distance and angle of the endoscope 
relative to the vocal folds, camera movements during recording, 
insufficient lighting or contrast, and occasional obstruction of the 
glottal opening by surrounding anatomical structures. As 
demonstrated in previous studies, these inconsistencies can 
significantly impact subsequent processing steps, such as glottis 
segmentation and the extraction of glottal parameters (Schlegel et al., 
2019; Veltrup et al., 2023).

Additionally, synchronous acoustic recordings often contain 
noise artifacts from the cooling systems of the HSV camera and light 
source, as well as from verbal instructions provided by the physician 

TABLE 6 Spearman’s rank correlation coefficient ρ between the final 
parameters and subjective hoarseness ratings.

Parameter (statistic) Abbreviation Spearman’s ρ

Glottal parameters (HSV)

Within trajectory variability (mean) WTVmean 0.340

Normalized noise energy (std.) NNEstd 0.241

Harmonics intensity HI −0.339

Glottal gap index (std.)
GGIstd

0.322

Closing quotient (std.)
CQstd

0.253

Acoustic parameters (HSV)

Smoothed cepstral peak prominence 

(mean)
CPPSmean

−0.351

Harmonics intensity HI −0.393

Mean jitter mJit 0.434

Spectral centroid (std.) Sstdcentroid
0.446

Peak-to-peak amplitude (mean) Amean −0.360

Clinical parameters

Voice related quality of life VRQOL −0.541

Maximum achievable frequency maxF −0.451

Maximum achievable intensity maxI −0.338

Jitter percent
%Jit 0.336
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during recording (Schraut et  al., 2025). Such noise artifacts 
negatively affect audio quality, potentially rendering some recordings 
unsuitable for analysis. These challenges significantly contribute to 
the limited overlap between HSV and acoustic data in the 
current databases.

Despite these challenges, HSV has shown great potential in 
hoarseness severity estimation. Future studies should explore the use 
of flexible nasal endoscopes, which impose fewer restrictions on 
natural phonation compared to rigid oral endoscopes, making them 
potentially more suitable for capturing representative vocal fold 
behavior (Pietruszewska et al., 2021; Södersten and Lindestad, 1992). 
In addition, methods to compensate for varying recording conditions 
(e.g., endoscope distance and angle) should be  investigated. This 

concerns both the post-processing of underlying recordings and the 
verification of the robustness of glottal parameters.

4.3 Comparison to related work

In previous studies by Voigt et al. (2010), Schlegel et al. (2020b), 
and Arias-Vergara et  al. (2023), a maximum accuracy of 0.817, 
0.757, and 0.820 was achieved using 12, 13, and 30 features, 
respectively (see Introduction). However, it is important to note 
that these studies did not use a hold-out test set. Instead, they 
reported results based on n-fold CV. Additionally, these studies 
focused on differentiating normal from pathological voices. In the 

(A) (B)

FIGURE 8

Distributions of predicted scores ŷ over the subjectively determined hoarseness levels H for the shared test set using ensemble models (A) mVA, and 
(B) mVAC. A regression line was fitted to indicate the relationship between prediction and ground truth, respectively.

(A) (B)

FIGURE 9

Change in predicted scores ∆ŷ over the change in hoarseness levels ∆H  for 20 pre- and post- recording pairs in the shared test set using ensemble 
models (A) mVA, and (B) mVAC. For each degree of change, correct value ranges are indicated. A regression line was fitted to indicate the relationship 
between prediction and ground truth, respectively.
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case of Arias-Vergara et al. (2023), these groups were defined as 
= 0H  and { }∈ 2,3H . No detailed hoarseness distribution or related 

information is available for the other studies, making it unclear to 
what extent samples that are arguably more challenging to classify 
(i.e., { }∈ 1,2H ) were represented.

In comparison, for binary classification between < 2H  and ≥ 2H , 
our videoendoscopic model Vm  achieved comparable accuracy of 
0.764 in five-fold CV and 0.674 on the hold-out test set. Furthermore, 
by incorporating the acoustic and clinical models to the ensemble, test 
set accuracy improved successively to 0.761 ( VAm ) and 0.783 ( VACm ), 
emphasizing the value of combined time-synchronized HSV and 
acoustic recordings.

4.4 Limitations and future directions

For most patients and visits, only a single expert’s assessment was 
available. The limitations and adjustments related to the target labels 
in this study were discussed in Section 2.1.2. Future work should aim 
to incorporate ratings from multiple experts directly based on the 
voice recordings. Additionally, averaging multiple subjective ratings 
allows approaching hoarseness severity estimation as a regression task, 
which may be  better suited for estimating an interval-scaled 
hoarseness score.

In this study, auditory-perceptual hoarseness ratings served as the 
ground truth across all modalities. While the relationship between 
glottal characteristics and hoarseness was confirmed, acoustic-based 
models are inherently better equipped to capture acoustic 
characteristics. Therefore, future research should explore the use of a 
visual ground truth for HSV-based severity estimation models. This 
could be realized on the basis of the ELS protocol, which includes 
subjective visual assessments of glottal closure, regularity, and 
symmetry (Dejonckere et al., 2001).

Based on previous work, this study focused on GAW-based 
features, while other parameters, such as those derived from the PVG, 
were excluded due to their sensitivity to recording conditions (Veltrup 
et al., 2023). As noted in Section 4.2.2, future research should explore 
post-processing methods to compensate for variable recording 
conditions and thereby enable the inclusion of additional features. 
Furthermore, incorporating parameters derived from biomechanical 
models, such as subglottal pressure, could provide deeper insights into 
vocal function (Donhauser et al., 2024).

The hold-out test set for evaluating the individual and ensemble 
models (see Section 2.3) relied on the overlap between the databases 
of all modalities. Additionally, assessing the relative change in 
hoarseness required data from multiple visits per patient. 
Consequently, only a relatively small test set of 46 visits, including 
20 pre- and post-recording pairs, was available. This limited sample 
size can distort the obtained performance metrics, potentially 
increasing or reducing model accuracy compared to a larger, more 
diverse dataset. For instance, the acoustic model Am  exhibited a 
noticeable drop in performance between five-fold CV and the test 
set (see Tables 4, 5). Although the overall trends remained 
consistent across individual and ensemble models, the small test set 
reduces the statistical reliability of the results and may not fully 
reflect actual model capacity. Future work should include validation 
on larger datasets to derive more robust and clinically 
meaningful conclusions.

In addition to the limited test set size, the composition of the 
training data may have influenced classification results. Specifically, 
there was an overrepresentation of normal voices and mild hoarseness 
(see Figure 1), as well as a predominance of young adults (ages 18–30) 
within this subgroup (see Supplementary Figure 1). These imbalances 
could lead to biased model training, potentially limiting the model’s 
ability to generalize to older patients or those with more severe 
impairments. While the test sets used for model evaluation featured a 
more balanced distribution across hoarseness and age groups, the 
skewed training data may still affect model robustness. Future work 
should aim to incorporate more representative samples.

5 Conclusion

This study presents a ML-based approach for assessing hoarseness 
severity dysphonia using synchronous HSV and acoustic recordings, 
complemented by conventional voice assessments. Our results 
demonstrate that combining glottal and acoustic parameters from 
time-synchronized HSV and acoustic recordings offers a more 
comprehensive evaluation of vocal function, achieving a correlation 
of 0.603 with auditory-perceptual hoarseness ratings. Further 
integration of clinical parameters into the ensemble model improved 
performance, yielding the strongest correlation of 0.752 with 
subjective hoarseness ratings, underscoring the value of multimodal 
voice assessment.

Notably, a single HSV examination, when paired with acoustic 
analysis, can yield a performance comparable to multi-step functional 
voice assessments. This highlights the potential of HSV to facilitate 
voice diagnostics by reducing the number of examinations required 
for objective assessment.

However, practical challenges remain. The use of rigid oral 
endoscopy can interfere with natural phonation and increase 
variability in recording conditions (e.g., endoscope positioning), 
which limits the clinical utility of extracted parameters.

Future work should explore the use of flexible nasal endoscopy to 
enable more natural phonation and focus on refining glottal parameter 
extraction to improve model robustness under varying recording 
conditions. Integrating visual assessment criteria could further 
enhance objective evaluation based on HSV recordings. Moreover, 
expanding the available databases, particularly with longitudinal data 
from patients with functional dysphonia, will be crucial to further 
improve and validate the proposed models.
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