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Focal cortical dysplasia (FCD) type II is a common cause of epilepsy and is 
challenging to detect due to its similarities with other brain conditions. Finding 
these lesions accurately is essential for successful surgery and seizure control. 
Manual detection is slow and challenging because the MRI features are subtle. 
Deep learning, especially convolutional neural networks, has shown great potential 
in automating image classification and segmentation by learning and extracting 
features. The nnU-Net framework is known for its ability to adapt its settings, 
including preprocessing, network design, training, and post-processing, to any 
new medical imaging task. This study employs an automated slice selection 
approach that ranks axial FLAIR slices by their peak voxel intensity and retains 
the five highest-ranked slices per scan, thereby focusing the network on lesion-
rich slices and uses nnU-Net to automate the segmentation of FCD type II 
lesions on 3D FLAIR MRI images. The study was conducted on 85 FCD type 
II subjects and results are evaluated through 5-fold cross-validation. Using 
nnU-Net’s flexible and robust design, this study aims to improve the accuracy 
and speed of lesion detection, helping with better presurgical evaluations and 
outcomes for epilepsy patients.
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1 Introduction

Focal cortical dysplasia (FCD) is one of the major causes of epilepsy that poses a significant 
challenge to detect due to its type, location and characteristics overlapping with other 
neurological conditions such as low-grade tumours and different kinds of cortical 
abnormalities. The surgical resection of the epileptic zones in the FCDs leads to reasonable 
seizure control. However, the success of surgery depends on accurately detecting the 
epileptogenic lesions during the presurgical evaluations. Therefore, precise detection of FCD 
lesions is of paramount importance for effective surgical intervention (Radiopaedia, 2024). 
Among the FCDs, the most common type of epilepsy seen in children is FCD type II, in which 
most changes occur outside the temporal lobe with predilection for the frontal lobes. FCD 
type II abnormalities are generally more discernible on brain MRI scans, particularly in fluid-
attenuated inversion recovery (FLAIR) MRI imaging, which has high sensitivity in detecting 
subtle structural abnormalities. Figure 1 displays the FCD type IIb lesion in the left frontal 
cortex of a 9-year-old female.

Neuroradiologists search for specific imaging markers to identify the focal lesion 
responsible for a patient’s intractable epilepsy. Commonly, epilepsy detection employs 
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an imaging regimen consisting of FLAIR, T2-weighted, and 
T1-weighted scans. Moreover, some radiologists might incorporate 
various imaging techniques such as fluorodeoxyglucose positron 
emission tomography (FDG-PET), single-photon emission 
computed tomography (SPECT), and diffusion imaging. Higher 
field imaging can enhance the identification of crucial imaging 
features in FCD. However, the manual identification of FCD type 
II is time-consuming and laborious for clinicians due to very 
challenging MRI features (Kabat and Król, 2012).

In recent years, deep learning techniques, particularly 
convolutional neural networks (CNN), have shown significant 
potential in image classification and segmentation problems since 
they could learn optimal features automatically (Tiwari et  al., 
2020). Recent progress in deep-learning-based medical image 
segmentation has introduced architectures that go beyond 
classical CNNs. Transformer-based models, such as TransUNet 
and UNETR, combine self-attention mechanisms with 
convolutional encoders to capture global context effectively. 
Hybrid architectures like Swin-UNETR and SegFormer offer 
efficient hierarchical representation learning while maintaining 
resolution-specific detail. Lightweight segmentation models, 
including MobileNetV3-UNet and Fast-SCNN, have also been 
explored to meet the computational constraints in clinical settings. 
These models have achieved promising results across modalities 
like MRI, CT, and PET for segmentation tasks in neuroimaging 
including brain tumor segmentation, stroke detection, and 
Alzheimer’s classification, laying the foundation for their 
application to challenging disorders like FCD. These algorithms 
enable automated, optimal feature extraction, surpassing the 
capabilities of traditional manual methods.

While these novel architectures offer competitive performance, 
they often require substantial manual tuning, architecture 
customization, and may not generalize well without extensive 
task-specific adaptation. In contrast, nnU-Net distinguishes itself 
by being self-configuring, requiring no manual modification for 
new segmentation problems. This makes nnU-Net not only 

powerful but also highly practical and reproducible for 
clinical research.

Adapting AI-assisted algorithms for clinical use faces several 
hurdles, such as variations in MRI scan quality, inconsistencies in 
lesion detection results, and particular difficulties with FLAIR 
MRI images (Gill et al., 2021; Spitzer et al., 2022). Additionally, 
many slices in NIfTI files lack relevant lesion information, further 
complicating the detection process.

This study addresses these challenges by proposing an 
automated FCD type II lesion segmentation approach in 3D 
FLAIR MRI scans. The main contributions of this work are 
as follows:

 (1) We have used an automated and heuristic slice selection 
approach that rank each slice by its maximum FLAIR 
intensity and keeps the five highest-ranked slices per scan, 
thereby concentrating training on lesion-rich slices while 
cutting the execution time.

 (2) This study seeks to employ the nnU-Net (Isensee et  al., 
2021) biomedical image segmentation framework, which 
automatically adapts its configuration including 
preprocessing, network architecture, training, and post-
processing to any new task within the biomedical field.

 (3) This study introduces a preprocessing pipeline for 3D 
FLAIR MRI images, which includes spatial interpolation, 
skull stripping, intensity normalization, and strategic slice 
selection to maximize the visibility of epileptogenic lesions. 
By integrating this pipeline with the nnU-Net framework, 
we  validate its effectiveness on a complex and variable 
dataset, demonstrating significant improvements 
particularly in context of FCD type II segmentation.

Apart from the introduction, the remainder of this paper is 
structured as follows: Section 2 reviews recent advancements and 
related works in the field. Section 3 details the materials and 
methods employed in this research. Section 4 presents the results 

FIGURE 1

MRI images of FCD type II.
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and provides an in-depth discussion. Finally, Section 5 offers 
concluding remarks and outlines potential directions for 
future work.

2 Recent works

Detecting FCD lesions remains a challenging task, even for 
experienced radiologists. Studies indicate that approximately 34% 
of MRI scans from pathologically confirmed FCD cases are 
reported as MRI-negative, meaning the lesions are not visually 
apparent on standard scans. However, advancements in automated 
FCD detection have significantly evolved, incorporating 
techniques such as image processing, feature extraction, deep 
learning, statistical analysis, and morphometric analysis (Ganji 
et al., 2024).

Ganji et al. (2021) extracted morphological and intensity-based 
features from regions of interest in a cohort of 58 participants. A 
machine learning-based classification approach was then employed to 
identify and localise FCD lesions, achieving an impressive sensitivity 
of 96.7% and specificity of 100%. Similarly, Simozo et  al. (2020) 
developed an automated classification method for FCD lesions using 
85 MRI T1-weighted and FLAIR images. They computed 10 cortical 
features for each subject and utilised a Random Forest classifier, 
evaluated through Leave-One-Patient-Out (LOPO) cross-validation.

House et al. (2021) introduced a 3D CNN architecture enhanced 
with autoencoder regularisation to improve FCD detection and 
segmentation across various FCD subtypes. Their study, conducted on 
a cohort of 158 patients, yielded a sensitivity of 70.1% and precision 
of 54.3% for FCD detection. When trained on a dataset that included 
100 regular MRI scans, the model achieved a dice score of 0.341.

Wang et al. (2023) proposed a classification model integrating a 
multiscale receptive field module and a squeeze- and-excitation 
module to predict FCD type III refractory epilepsy outcomes using 
T2-weighted FLAIR images. Applied to MRI scans from 260 patients, 
this model achieved an AUC of 96.22%, sensitivity of 84.47%, and 
specificity of 97.21%. In another study, Lee et al. (2020) analysed 46 
patients with confirmed FCD type II and 35 age and sex-matched 
healthy controls. Using 3 T multi-contrast MRI imaging, they 
processed surface-based metrics and employed consensus clustering, 
an unsupervised learning approach, to identify stable cortical patterns 
associated with FCD lesions.

Niyas et al. (2021) developed a U-Net-based 3D CNN model that 
captures inter-slice information from MRI volumes. Their approach 
incorporated BM3D-based denoising algorithm before training a 3D 
U-Net model with residual blocks in the encoder. This model achieved 
a precision of 69.58% and a recall of 61.86% for FCD segmentation. 
David et  al. (2021) performed morphometric analysis on 3D 
T1-weighted MRI scans to generate 3D morphometric maps. They 
trained an artificial neural network (ANN) on data from 113 patients 
with manually segmented FCDs and 362 healthy controls collected 
from 13 MRI scanners. Their model demonstrated a sensitivity of 
87.4%, specificity of 85.4%, and overall accuracy of 85.9% on the 
testing dataset.

Zheng et al. (2024) introduced a 3D CNN-based model integrating 
multimodal data using a 3D U-Net backbone. Their study utilised 
MRI and PET images from 82 patients, achieving a mean sensitivity 
of 90.3% on the test set. Additional ablation studies were conducted 

by selectively removing imaging modalities to analyse modality-
specific contributions. Feng et al. (2020) introduced a six-layer CNN 
architecture called NetPos for detecting and segmenting FCD lesions. 
They utilized the Activation Maximization Convolutional Localization 
(ACML) algorithm to identify pattern image blocks resembling 
lesions, which were trained on NetPos. The method was tested on 34 
FLAIR MRI images, resulting in a dice coefficient of 52.68.

In addition to these studies, there have been many other attempts 
to improve the detection and segmentation of FCD using deep 
learning and machine learning techniques. Despite these 
advancements, significant opportunities remain to enhance FCD 
segmentation performance. The study aims to test how well the 
nnU-Net framework can handle this complicated dataset and 
automate the segmentation of FCDs.

3 Materials and methods

In this section, we outline the nnU-Net architecture, describe the 
dataset, detail our methodology, discuss the training schedule and 
parameters, introduce evaluation metrics, and provide 
implementation details.

3.1 Overview of nnU-Net architecture

The nnU-Net (Isensee et  al., 2021), or no-new-Net, is an 
automated segmentation method that optimizes the U-Net 
architecture for any given dataset without the need for manual 
adjustments. It is designed to offer a highly adaptive, robust, and 
generalizable approach to medical image segmentation tasks. At its 
core, nnU-Net retains the fundamental structure of the U-Net, a CNN 
architecture known for its efficacy in biomedical image segmentation. 
The U-Net architecture features an encoder-decoder structure 
enhanced by skip connections, allowing the network to capture high-
level semantic information while retaining low-level spatial details. 
The architecture of the adapted 3D ResU-Net in the nnU-Net 
framework is shown in Figure 2. The nnU-Net architecture adapts 
itself based on the specific dataset’s properties, including input image 
size, voxel spacing, and the number of training samples. It 
systematically tunes various hyperparameters, such as the depth of the 
network, the number of feature maps, batch size, and patch size, to 
achieve optimal performance.

The authors of the nnU-Net have validated its performance across 
23 public datasets, demonstrating its versatility and effectiveness. This 
paper extends this evaluation to a novel application, the automatic 
segmentation of FCD type II lesions on 3D FLAIR MRI images. This 
exploration aims to not only verify the nnU-Net’s robustness in a new 
clinical context but also to contribute valuable insights into its 
potential for enhancing epilepsy diagnosis and treatment planning.

3.2 Dataset description

The dataset used in this study is an open-access MRI dataset 
available on OpenNeuro.org, which was initially collected by the 
Department of Epileptology at University Hospital Bonn, Germany 
(Schuch et al., 2023). It comprises high-resolution MRI scans in NIfTI 
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format, including T1-weighted and FLAIR-weighted images from 85 
individuals with epilepsy caused by FCD type II and 85 healthy 
controls. All participants included in the dataset were over 18 years 
old at the time of data collection. Among the 85 epilepsy patients, 35 
(41.2%) were female, and 50 (58.8%) were male. Two experienced 
neurologists using 3D FLAIR-weighted sequences to ensure precise 
lesion localisation manually annotate ground truth lesion masks for 
dysplastic cortical regions. Approximately 62.4% of the identified 
epileptogenic lesions were located in the frontal lobe of the brain. The 
University of Bonn ethics committee, ensuring compliance with 
ethical standards for human research, approves the dataset collection 
and usage.

3.3 Overview of methodology

This study utilises an automated segmentation approach to detect 
FCD type II lesions, classifying each voxel in the MRI scan as either 
lesional or non-lesional. The segmentation pipeline is built upon 
nnU-Net, a self-adapting deep-learning framework designed explicitly 
for medical image segmentation tasks. The process begins with 
loading FLAIR-weighted MRI scans in NIfTI format, as dysplastic 
cortical regions are most prominently visible in FLAIR sequences. 
Given that the MRI images in the dataset vary in size, spatial 

interpolation is applied to standardise dimensions across all samples. 
Following preprocessing steps are performed to enhance image quality 
before feeding the data into the deep learning model:

 • Spatial interpolation: Adjusts voxel spacing to ensure consistency 
across all scans.

 • Skull stripping: Removes non-brain structures to focus solely on 
the cerebral cortex.

 • Intensity normalization: Standardizes voxel intensity values 
across different MRI scans for improved feature extraction.

After preprocessing, binary masks are generated for regions of 
interest (ROI). In these masks, lesional pixels are assigned a value 
of 1, while all other pixels are set to 0, enhancing lesion visibility 
in epileptic images. Since an MRI volume consists of multiple 
slices, but only a subset contains maximally visible lesion regions, 
an automated slice selection strategy is implemented. The pipeline 
tracks the indices of slices containing lesions and identifies the 
slice with the highest lesion visibility. The top five ranked slices 
with the most visible ROIs are then extracted and compiled into a 
new 3D NIfTI file, ensuring that the input data contains the most 
relevant information for training.

The 3D full-resolution (3D fullres) architecture of nnU-Net is 
employed for model training, as it is specifically designed to handle 

FIGURE 2

Architecture of 3D ResUNet employed in nnU-Net framework.
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high-resolution 3D datasets. It operates on the full resolution of the 
input images, unlike the 3D cascade architecture which processes 
downsampled images first. The 3D fullres nnU-Net typically involves 
a U-Net-like structure with multiple encoder and decoder layers, 
incorporating skip connections to preserve spatial information. The 
input to the model consists of the preprocessed 3D FLAIR MRI scans, 
along with their corresponding ground truth masks, which 
experienced neurologists manually segmented. To ensure statistical 
reliability and mitigate bias, a 5-fold cross-validation strategy 
is adopted.

A detailed workflow diagram illustrating the segmentation process 
from initial MRI input to final lesion segmentation output is provided in 
Figure 3.

3.4 Training schedule

For the training of our 3D segmentation model, we utilized 
the nnU-Net framework with a focus on the 3d_fullres 
configuration. The model was trained for 100 epochs using a 
batch size of 4, with a learning rate set at 0.01 and an SGD 
optimizer configured with a momentum of 0.99 and Nesterov 
acceleration. The training data augmentation pipeline 
incorporated a variety of transformations, including spatial 
transformations, Gaussian noise, and intensity adjustments, to 
enhance model robustness.

3.5 Evaluation metrics

To evaluate the segmentation performance, we  adopt two 
complementary metrics: the dice similarity coefficient (DSC) and the 
pseudo dice score (PDS). These metrics provide insights into the 
overlap and stability of lesion predictions, particularly relevant in 
cases of small or imbalanced lesion representations such as FCD 
type II.

3.5.1 Dice score
Dice similarity coefficient (DSC) (Eelbode et al., 2020) is a standard 

metric that measures the overlap between the predicted segmentation and 
the ground truth. The DSC is calculated from Equation 1 as:

 

× ∩
=

+

2
DSC

A B
A B  

(1)

where A  represents the set of voxels in the predicted 
segmentation, B  represents the set of voxels in the ground truth and 
∩A B  is the number of overlapping voxels, and A  and B  are the 

total number of voxels in the predicted and ground truth 
segmentations, respectively. A DSC score of 1 indicates perfect 
overlap, while a score of 0 implies no overlap.

3.5.2 Pseudo-dice score
While DSC is effective for many applications, it can become 

unstable when applied to datasets with highly imbalanced classes or 
very small lesion volumes.

To address this issue we use the pseudo dice score (PDS). The PDS 
modifies the DSC by adding a small constant, “ ”ε  to both the numerator 
and the denominator, which helps stabilize the score for small lesion 
volumes. The formula for the PDS is given by Equation 2 as:

 

( )2
PDS

A B
A B

× ∩ + ε
=

+ + ε
 

(2)

3.5.3 Mean pseudo-dice score
To obtain an overall assessment of the model’s performance 

across multiple test cases, we compute the Equation 3. This metric is 
the average of the PDS across all test samples and provides a single 
value summarizing the segmentation accuracy:

 =
= ∑

1

1Mean PDS PDS
N

i
iN  

(3)

FIGURE 3

Overview of the methodology.
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3.5.4 Moving average pseudo-dice
In addition to the mean PDS, we  calculate the pseudo-dice 

moving average as given in Equation 4 to observe the performance 
trend of the segmentation model over time or across iterations. The 
moving average is handy for monitoring training progress or 
evaluating model stability. It is calculated as follows:

 = − +
= ∑

1

1Moving average PDS PDS
t

t i
i t ww  

(4)

where t is the current epoch or iteration w is the window size 
(number of past scores to average).

3.6 Implementation details

We conducted our experiments on Google Colab Pro, utilizing 
NVIDIA L4, T4, and A100 Tensor Core GPUs. The experiments were 
implemented using Python, using the libraries, including PyTorch, 
NiBabel, NumPy, Pandas, and Matplotlib.

4 Results and discussions

In this section, we  have presented the performance of the 
employed model, and further, the statistical analysis has been 
performed for the experiments done in various folds to ensure that 
there is no bias in our method. Further, an in-depth discussion is 
provided of the obtained results in our experiments.

4.1 Model performance

The performance of the nnU-Net-based segmentation model 
was evaluated using 5-fold cross-validation. The predicted 
segmentation masks were compared against the ground truth 
labels, and performance metrics were computed accordingly. 
Table  1 summarizes the results of five different FCD type II 
segmentation configurations, assessed using internal 5-fold 
cross-validation. Figure  4 illustrates examples from the three 
patients from validation dataset, showing the segmented lesion 
detected by nnU-Net overlaid on the original MRI scan, 
compared to the ground truth. Figures 5 display the epochs vs. 
training and validation loss trend and moving average pseudo 
dice scores, across five training folds. Among the five folds the 

fold 5 achieved the best lesion segmentation performance, 
attaining an average PDS of 0.47, with a PDS of 0.52 after the 
100th epoch.

4.2 Statistical analysis

In this section, we present the results obtained from the 5-fold 
cross-validation and discuss the statistical analyses conducted to 
evaluate the performance of our nnU-Net based automatic 
segmentation model for FCD type II lesions on 3D FLAIR MRI images.

The descriptive statistics for the mean PDS across the five folds are 
as follows: mean 0.37, standard deviation 0.07, median 0.35. The 
descriptive statistics for the PDS at the 100th epoch are: mean: 0.45, 
standard deviation: 0.05, median: 0.42.

4.2.1 Confidence intervals
To further understand the reliability of these scores, 95% 

confidence intervals were calculated. The confidence interval is (0.28, 
0.46) for the mean PDS. This interval signifies 95% confidence that the 
mean PDS falls within this range. Similarly, for the PDS at the 100th 
epoch, the confidence interval is (0.39, 0.51), which measures the 
precision of our estimated mean.

4.2.2 Paired t-test
A paired t-test was conducted to determine if there is a statistically 

significant difference between the mean PDS and the PDS at the 
100th epoch. The test yielded a t-statistic of −3.06 with a p-value of 
0.04. Since the p-value is less than 0.05, we reject the null hypothesis 
and conclude that there is a statistically significant difference between 
the two sets of scores. This result suggests that the model’s 
performance improved over the course of training, as evidenced by 
the higher PDS at the 100th epoch compared to the mean PDS.

5 Discussion

The results indicate that the nnU-Net-based model achieved a 
mean PDS of 0.37 across the five folds, with a standard deviation of 
0.07. The PDS at the 100th epoch improved, with a mean of 0.45 and 
a standard deviation of 0.05. The confidence intervals provide further 
assurance of the reliability of these estimates.

Given the differences in dataset sizes and study subjects, directly 
comparing results from different methods may not provide a fair 
assessment. However, to understand the performance of our approach 
relative to other FCD segmentation studies, we conducted a comparison. 
The results show that the nnU-Net method we applied produces results 
that are on par with those of similar studies. Table 2 shows the comparison 
of FCD segmentation performance across the different datasets.

The paired t-test results highlight a significant improvement in the 
model’s performance from the mean PDS to the scores at the 100th 
epoch. This improvement is critical for effectively segmenting FCD 
type II lesions, as it demonstrates the model’s ability to learn and adapt 
during training.

Qualitative inspection of three validation-set patients selected for 
their distinctly different lesion volumes and cortical locations shows 
that the network generalises well across this spectrum of presentations. 
In every case, the predicted mask aligns closely with the manual 

TABLE 1 Five-fold cross validation results on FCD dataset.

Fold Mean pseudo 
dice

Pseudo dice at 
100th epoch

1 0.42 0.42

2 0.29 0.40

3 0.33 0.47

4 0.35 0.42

5 0.47 0.52
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ground truth, regardless of lesion size or cortical lobe, and does so 
while avoiding spurious activations in healthy cortex. This consistency 
supports the model’s robustness and its potential clinical utility for 
reliably flagging FCD II lesions in heterogeneous real-world data.

The detection and segmentation of FCD is still a difficult issue 
with potential for dice score accuracy improvement, even with 
noteworthy advances in computer vision and segmentation 
architectures. It is believed that the segmentation performance 

will continue to improve as more data is acquired and training 
epochs are increased. Additional data will help the model better 
grasp the variability in FCD type II lesions, which will produce 
segmentation findings that are more reliable and accurate. The 
model’s performance can be  improved and its weights further 
refined by extending the training period to further epochs. To 
attain even greater segmentation accuracy, future research will 
concentrate on these factors.

FIGURE 4

Masks of ground truth, segmentation and overlay for three FCD subjects.

FIGURE 5

Epochs vs. training and validation loss trend and moving average pseudo dice scores, across five training folds.
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6 Conclusion

This study confirmed the effectiveness of the 3D full-
resolution nnU-Net in reliably segmenting FCD lesions from the 
3D FLAIR MRI images. The models achieved a maximum PDS of 
0.52 on the validation dataset. As the FCD lesions are very 
complex and frequently display subtle and heterogeneous traits, it 
is imperative to improve the segmentation models’ capacity to 
capture these differences appropriately. As a result, in the future, 
more advanced segmentation methods can be used to identify 
epileptogenic lesions in 3D FLAIR MRI images and other MRI 
modalities and the fusion of multimodal data can be adopted for 
the accurate segmentation.

To enhance feature extraction and lesion localization, future 
studies should create more sophisticated segmentation methods 
including transformer-based models, attention-based U-Nets, and 
hybrid architectures. Furthermore, combining FLAIR, 
T1-weighted, T2-weighted, PET, and diffusion MRI images with 
multimodal data fusion may offer a more thorough depiction of 
epileptogenic lesions, improving segmentation performance. In 
order to improve interpretability and give doctors clear insights 
into the model’s decision-making process, explainable AI (XAI) 
approaches such as Grad-CAM, SHAP, and LIME are being 
integrated. This is another critical area for improvement.

Furthermore, future research should concentrate on creating 
lightweight 3D segmentation architectures that can function 
effectively with constrained computational resources while 
preserving high segmentation accuracy, considering the hardware 
limitations in actual clinical settings. Model generalizability could 
be further improved by extending training strategies by expanding 
dataset size, refining cross-validation procedures, and 
investigating semi-supervised or self-supervised learning 
methodologies. By addressing these issues and implementing 
these developments, automated FCD lesion segmentation will 
be  enhanced, ultimately resulting in more accurate epilepsy 
diagnosis and better treatment planning. Neuroradiologists may 
be able to identify better epileptogenic lesions with the help of 
AI-driven segmentation techniques integrated into clinical 
processes, improving patient care and surgical results.
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TABLE 2 Comparison of FCD segmentation performance across different methods.

Dataset/Modality Architecture Dice score Reference

MRI (201 FCD subjects) Encoder decoder based CNN 0.341 House et al. (2021)

EPISURG dataset MATPR-UNet 0.42 ± 0.08 Zhang et al. (2024)

18 FLAIR negative MRI scans Net-Pos (CNN) 0.5268 Feng et al. (2020)

3D FLAIR MRI (85 subjects) nnU-Net 0.52 (best) This study

0.45 (mean)
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