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Lung cancer remains the leading cause of cancer-related deaths worldwide, 
making early and precise diagnosis is critical for improving the patient survival 
rates. Machine learning has shown promising results in predictive analysis for 
lung cancer prediction. However, class imbalance in clinical datasets negatively 
impacts the performance of Machine Learning classifiers, leading to biased 
predictions and reduced accuracy. In an attempt to address this issue, various 
data augmentation techniques were applied alongside classification models 
to enhance predictive performance. This study evaluates data augmentation 
techniques paired with machine learning classifiers to address class imbalance 
in a small lung cancer dataset. A comparative analysis was conducted to assess 
the impact of different augmentation techniques with classification models. 
Experimental findings demonstrate that K-Means SMOTE, combined with a 
Multi-Layer Perceptron classifier, achieves the highest accuracy of 93.55% 
and an AUC-ROC score of 96.76%, surpassing other augmentation-classifier 
combinations. These results underscore the importance of selecting optimal 
augmentation methods to improve classification performance. Furthermore, to 
ensure model interpretability and transparency in medical decision-making, LIME 
is utilized to provide insights into model predictions. The study highlights the 
significance of advanced augmentation techniques in addressing data imbalance, 
ultimately enhancing lung cancer risk prediction through machine learning. The 
findings contribute to the growing field of AI-driven healthcare by emphasizing 
the necessity of selecting effective augmentation-classifier pairs to develop 
more accurate and reliable diagnostic models. Due to the dataset’s high cancer 
prevalence (87.45%) and limited size, this work is a preliminary methodological 
comparison, not a clinical tool. Findings emphasize the importance of augmentation 
for imbalanced data and lay the groundwork for future validation with larger, 
representative datasets.
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1 Introduction

Lung cancer is one of the most prevalent causes of cancer deaths worldwide, accounting 
for approximately 1.8 million deaths annually. Irrespective of the advances in medicine and 
treatment procedures, early detection is a significant concern. The five-year survival rate of 
lung cancer is significantly high in the initial stage of detection, but most of the cases are 
diagnosed in late stages due to the reason that the disease does not show any apparent sign in 
the initial stage. Thus, advanced and accurate prediction of lung cancer risk is vital to improve 
the outcome of patients and reduce mortality.
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Conventional diagnosis techniques of lung cancer, including 
biopsy, imaging modalities (CT scans, PET scans, and X-rays), and 
molecular screening, are very effective yet costly, invasive, and require 
specialized medical skills. Further, most of the people at risk of 
developing lung cancer are not screened periodically, resulting in 
delayed diagnosis and fewer treatment options. This lacuna requires 
the building of new methods, particularly machine learning-based 
prediction models that can understand patient history, behavior, 
symptoms, and other risk factors and provide an early warning system 
for the identification of lung cancer. When learned over large datasets, 
machine learning models are capable of capturing latent patterns 
among patient data and giving risk scores for lung cancer. But one 
major problem with medical datasets is class imbalance, where 
cancer-positive instances are outnumbered significantly by 
non-cancerous instances. The class imbalance typically results in 
models biased toward the majority class, and thus low sensitivity and 
recall rates, so most of the cancer-positive instances go undetected. 
Data augmentation methods are used to solve this problem by 
creating synthetic minority samples, hence enhancing the 
model performance.

There has been a lot of research on applying machine learning 
and deep learning for the diagnosis of lung cancer. The major 
emphasis has been placed on image-based methods, including 
CNNs for CT scan analysis, and tabular model-based approaches 
involving patient demographics, symptoms, and lifestyle variables. 
For example, deep learning-based radiomics techniques have 
shown promise in the detection of lung cancer by image 
segmentation and feature extraction. These methods, however, 
require substantial, high-quality labeled datasets, which are often 
scarce in real-world clinical environments. Moreover, despite their 
accuracy, deep learning models lack interpretability, making it 
challenging for healthcare professionals to rely on their decisions. 
In contrast, machine learning-based classification models have 
been effectively applied to structured patient data. These models 
evaluate information such as smoking history, genetic 
predisposition, occupational exposure, and existing symptoms to 
determine lung cancer risk. Nevertheless, as previously noted, class 
imbalance remains a significant obstacle in achieving 
reliable predictions.

This work fills that gap by systematically evaluating multiple data 
augmentation techniques paired with various machine learning 
classifiers, providing a comparative analysis of their effectiveness in 
predicting lung cancer risk. Additionally, LIME is used to ensure 
model transparency and explainability. This study is driven by three 
key research questions: (1) How do different data augmentation 
techniques impact the performance of machine learning classifiers in 
lung cancer risk prediction? (2) Which augmentation-classifier 
combinations yield the most accurate and balanced predictions? (3) 
Can explainable AI methods like LIME provide transparent insights 
into prediction rationale across models? These questions frame the 
core of our study, which aims to contribute to the development of 
accurate and interpretable machine learning models for early lung 
cancer risk assessment.

This paper is organized as follows: Section 2 summarizes the 
existing research relevant to this work. Section 3 describes the dataset 
and the methodology employed in this work. Section 4 reports and 
discusses the experimental results. The conclusions are finally 
summarized in Section 5.

2 Literature survey

The evolution of machine learning and deep learning has 
largely played a crucial role in the early detection and diagnosis of 
illnesses, especially lung cancer. Research papers on different 
methodologies such as machine learning classifiers, deep learning 
architectures, data enhancement methods, and explainable AI 
models are discussed in this literature review. The hybrid models, 
quantum computing methods, and attention mechanisms have 
been identified to improve predictive accuracy in studies. Moreover, 
synthetic data generation, multi-omics integration, and risk 
prediction models research reveal cutting-edge solutions for 
medical diagnostics. This review highlights upcoming trends and 
challenges of AI-based healthcare applications with a focus on 
precision and efficiency. Maurya et al. (2024) have explored the 
results of various classification models by balancing the classes with 
the help of SMOTE. In our proposed research, various 
augmentation techniques combined with classification models with 
their justification were used to find the best strategy for lung cancer 
risk prediction. Limited attention has been paid to how 
augmentation methods interact differently with various classifiers 
in terms of predictive performance. This gap forms the basis of our 
research, which systematically evaluates multiple augmentation-
classifier combinations and integrates interpretability using LIME 
to ensure transparency in medical decision-making. Table  1 
presents the summary of existing research pertaining to 
this research.

2.1 Contributions of the research

This work presents a holistic method for lung cancer risk 
prediction through the combination of data augmentation methods 
with machine learning algorithms. Class imbalance is addressed and 
predictive accuracy is improved by rigorous experimentation across 
different preprocessing and classification approaches. The 
contributions of this work are as follows:

	•	 Fine-tuned Augmentation Combinations: Unlike previous 
studies that apply a single resampling method, we experiment 
with multiple augmentation strategies to systematically evaluate 
their impact when paired with different classifiers. This directly 
addresses the lack of comparative analysis in prior research.

	•	 Model-Specific Performance Evaluation: We demonstrate how each 
augmentation technique interacts with specific models, revealing 
that no single combination universally outperforms the rest. This 
adds critical nuance to the model selection process, extending 
beyond the one-size-fits-all approaches common in existing work.

	•	 Explainability Focus with LIME Interpretability: While many 
studies prioritise accuracy, few incorporate model explainability. 
We  use LIME to interpret predictions across all combinations, 
making our models more transparent and clinically trustworthy.

	•	 Comprehensive Evaluation Framework: In addition to standard 
metrics like accuracy and F1-score, we incorporate AUC-ROC 
curves, confusion matrices, and LIME-based insights to give a 
holistic view of each method’s strengths and weaknesses. This 
multi-layered evaluation is lacking in prior literature and bridges 
the gap between performance and interpretability.
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TABLE 1  Summary of previous research on lung cancer prediction.

References Title Findings Inference

Maurya et al. (2024) Performance of Machine Learning Algorithms for 

Lung Cancer Prediction: A Comparative 

Approach

The most effective techniques for forecasting 

lung cancer in the early stages were Bernoulli 

Naive Bayes and K-Nearest Neighbor.

Machine learning algorithms can 

contribute substantially to early detection 

of lung cancer based on clinical 

information.

Sathe et al. (2024) End-to-End Fully Automated Lung Cancer 

Screening System

Designed an automated system which has 

92.09% segmentation accuracy, 94.18% volume 

estimation accuracy, and 96.4% grading 

accuracy.

AI-based automation enhances efficiency 

and accuracy in lung cancer screening.

Pellicer et al. (2023) Data Augmentation Techniques in Natural 

Language Processing

Different augmentation methods were tested; 

back-translation was found useful.

Data augmentation enhances the 

generalization capability of models in NLP 

but needs to be better suited for NLP tasks.

Sinjanka et al. (2024) ML-Based Early Detection of Lung Cancer: An 

Integrated and In-Depth Analytical Framework

Random Forest obtained 97.9% accuracy in early 

detection.

Machine learning has the potential to 

facilitate early detection of lung cancer, and 

hence timely intervention.

Kanber et al. (2024) LightGBM: A Leading Force in Breast Cancer 

Diagnosis Through Machine Learning and Image 

Processing

LightGBM classified breast cancer with more 

than 99% accuracy.

LightGBM performs very well for cancer 

classification and can be utilized for lung 

cancer.

Chen et al. (2023) Lung Cancer Prediction Using Electronic Claims 

Records: A Transformer-Based Approach

Transformer model obtained 0.668 AUC for 

all-stage lung cancer prediction.

Transformers are useful for lung cancer 

prediction with electronic health records.

Mohamed and 

Ezugwu (2024)

Enhancing Lung Cancer Classification and 

Prediction With Deep Learning and Multi-Omics 

Data

Achieved a 97% accuracy by considering mRNA, 

miRNA, and DNA methylation data.

Multi-omics data improves lung cancer 

classification accuracy.

Li et al. (2022) A Novel Deep Learning Framework Based Mask-

Guided Attention Mechanism for Distant 

Metastasis Prediction of Lung Cancer

Achieved an AUC of 0.822 on a mask-guided 

attention network.

Deep learning enhances metastasis 

prediction by considering tumor and lung 

regions.

Alsinglawi et al. 

(2022)

An Explainable Machine Learning Framework for 

Lung Cancer Hospital Length of Stay Prediction

Random Forest with SMOTE achieved 98% 

AUC for hospital stay prediction.

Explainable AI assists in interpreting 

patient hospital stay predictions.

Kesiku and Garcia-

Zapirain (2024)

AI-Enhanced Lung Cancer Prediction: A Hybrid 

Model’s Precision Triumph

Lung cancer from clinical notes obtained 98.1% 

with a CNN-Bi-LSTM hybrid model

Hybrid deep learning models enhance 

text-based lung cancer detection.

Khalsan et al. (2022) A Survey of Machine Learning Approaches 

Applied to Gene Expression Analysis for Cancer 

Prediction

Machine learning method was discussed over 

gene expression-based cancer prediction

Gene expression analysis with ML 

enhances biomarker discovery and cancer 

prediction.

Khanna et al. (2025) Volatile Organic Compounds for the Prediction 

of Lung Cancer Using Ensemble Machine 

Learning

Proposed Ensemble models achieved a 100% 

accuracy for prediction of breath VOCs

VOCs are potential biomarkers for non-

invasive lung cancer detection.

Ravindran and 

Gunavathi (2024)

Cancer Disease Prediction Using Integrated 

Smart Data Augmentation and Capsule Neural 

Network

Achieved over 98% by smart data augmentation 

and CapsNet in classification tasks.

Deep learning and data augmentation 

improve cancer prediction models.

Mohanty et al. (2025) A Quantum Approach to Synthetic Minority 

Oversampling Technique

Proposed Quantum-SMOTE using quantum 

computing for data augmentation, improving 

class balance.

Quantum methods enhance traditional 

SMOTE techniques, making oversampling 

more effective in imbalanced datasets.

Amin et al. (2024) Multimodal Non-Small Cell Lung Cancer 

Classification Using Convolutional Neural 

Networks

CNN-based multi-omics model attained high 

classification accuracy for NSCLC subtypes.

Multi-omics deep learning improves 

NSCLC subtype classification and 

treatment.

Javed et al. (2024) Deep Learning for Lung Cancer Detection: A 

Review

Deep learning methods were discussed, with 

CNN having the highest accuracy.

CNN-based deep learning is still the best 

method for lung cancer detection.

Ahmed et al. (2024) A Comparative Analysis of LIME and SHAP 

Interpreters With Explainable ML-Based Diabetes 

Predictions

Compared SHAP and LIME in interpreting ML 

models for diabetic prediction with 86% 

accuracy.

Explainable AI methods enhance model 

interpretability and can be applied to 

cancer predictions.

(Continued)
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TABLE 1  (Continued)

References Title Findings Inference

Modak et al. (2024) GPD-Nodule: A Lightweight Lung Nodule 

Detection and Segmentation Framework

Proposed a lightweight framework using super-

pixel generation for accurate lung nodule 

detection.

Effective lung nodule detection minimizes 

misdiagnosis and enhances early cancer 

detection.

Flyckt et al. (2024) Pulmonologists-Level Lung Cancer Detection 

Using an Explainable ML Approach

ML model using routine blood tests and 

smoking history outperformed pulmonologists 

in LC detection.

ML models based on blood tests can 

facilitate early lung cancer detection.

Shaheen et al. (2025) New AI Explained and Validated Deep Learning 

Approaches

Introduced LeDNet and HiDenNet deep 

learning models, achieving up to 86% accuracy 

for diabetes prediction.

Explainable AI improves model 

interpretability and enhances decision-

making in medical diagnosis.

Wei et al. (2024) ML for Early Discrimination Between Lung 

Cancer and Benign Nodules

Logistic Regression and XGBoost models 

achieved AUC of 0.716 and 0.913, respectively.

ML-based risk models increase early 

screening and staging accuracy for lung 

cancer.

Meeradevi et al. 

(2025)

Lung Cancer Detection with Machine Learning 

Classifiers and Deep Learning Model

Inception v3 deep learning model achieved 

97.05% accuracy in classifying lung diseases.

Deep learning models outperform 

traditional ML classifiers for lung cancer 

detection.

Nazir et al. (2023) ML-Based Lung Cancer Detection Using 

Multiview Image Registration and Fusion

Integrated multiple image views for improved 

cancer classification accuracy.

Multiview image fusion improves ML-

based lung cancer detection.

Rao and Arshad 

(2023)

Early Detection of Lung Cancer Using ML 

Technique

Deep learning methods improved early-stage 

lung cancer detection.

AI-based methods help in efficient and 

precise early lung cancer diagnosis.

Thakur et al. (2023) RNN-CNN Based Cancer Prediction Model for 

Gene Expression

Hybrid RNN-CNN model improved 

classification of gene expression for multiple 

cancer types.

Deep learning improves accuracy in cancer 

classification through gene expression data.

Murthy and 

Thippeswamy (2025)

TPOT with SVM Hybrid Model for Lung Cancer 

Classification

TPOT-SVM hybrid achieved 91.77% accuracy 

for lung cancer classification using CT images.

Automated ML pipeline optimization 

enhances lung cancer classification 

performance.

Alzahrani (2025) Early Detection of Lung Cancer Using Predictive 

Modeling Incorporating CTGAN Features and 

Tree-Based Learning

CTGAN-generated synthetic data combined 

with a Random Forest classifier improved 

prediction accuracy to 98.93%.

Synthetic data augmentation improves 

lung cancer detection accuracy and 

manages class imbalance well.

Almahasneh et al. 

(2024)

AttentNet: Fully Convolutional 3D Attention for 

Lung Nodule Detection

Proposed AttentNet, improving lung nodule 

detection accuracy with 3D convolutional 

attention.

3D attention mechanisms enhance lung 

nodule detection in medical imaging.

Al-Jamimi et al. 

(2025)

Integrating Advanced Techniques: RFE-SVM 

Feature Engineering and Nelder–Mead Optimized 

XGBoost for Accurate Lung Cancer Prediction

Recursive Feature Elimination (RFE) with SVM 

improved feature selection, and Nelder–Mead 

optimized XGBoost achieved 100% accuracy.

Sophisticated feature engineering and 

hyperparameter tuning improve lung 

cancer classification.

Rahmanian and 

Mansoori (2024)

MoVAE: Multi-Omics Variational Auto-Encoder 

for Cancer Subtype Detection

MoVAE extracted and integrated multi-omics 

features for subtype classification, achieving 

superior accuracy.

Variational auto-encoders better classify 

cancer subtype using multi-omics data.

Chen et al. (2024) Development of Lung Cancer Risk Prediction ML 

Models for an Equitable Learning Health System

XGBoost model with 29 features had 82% 

accuracy for risk-based lung cancer screening.

ML-based risk models improve access and 

accuracy for early lung cancer screening.

Liang (2025) Using Synthetic Gaussian Noise to Explore 

Stochastic Resonance in Cancer Subtype 

Classification

Weak feature detection was enhanced by 

stochastic resonance to improve cancer subtype 

classification accuracy.

AI-based cancer diagnosis can be made 

better using controlled noise application.

Yang et al. (2022) Machine Learning Application in Personalized 

Lung Cancer Recurrence and Survivability 

Prediction

Decision trees, neural networks, and SVMs were 

applied to predict recurrence and survival and 

identified genomic markers of importance.

ML can facilitate better personalized 

treatment planning and prognosis for lung 

cancer patients.

Yang et al. (2025) Utilizing SMOTE-TomekLink and Machine 

Learning for Predictive Modeling

Applied SMOTE-Tomek Link with machine 

learning to improve prediction accuracy in 

elderly medical care demand.

Hybrid oversampling and undersampling 

techniques enhance ML-based predictive 

modeling for healthcare applications.

Dwivedi et al. (2023) An Explainable AI-Driven Biomarker Discovery 

Framework for Non-Small Cell Lung Cancer 

Classification

Identified 52 key biomarkers using deep 

learning-based AI with 95.74% classification 

accuracy.

Explainable AI increases biomarker 

identification for targeted treatment of 

lung cancer.

(Continued)
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These nuances strengthen the research by making it not just a 
performance comparison but a systematic and interpretable 
framework for lung cancer risk prediction.

3 Proposed methodology

The proposed methodology enhanced lung cancer risk prediction 
by integrating data augmentation, classification, and explainability. The 
process starts with a lung cancer dataset, in which synthetic samples are 
generated using various techniques to balance the class distribution. 
Augmented data are then fed into the classification models to improve 
prediction accuracy. A performance evaluation was conducted using 
various performance metrics, AUC-ROC curves, and confusion 
matrices. Finally, LIME was applied for interpretability and provided 
insights into feature importance. This architecture ensures robust 
predictions, mitigates bias from imbalanced data, and enhances model 
transparency for medical decision-making, as outlined in Figure  1. 
Figure 2 shows the combination of augmentation-classification methods 
used for lung cancer risk prediction.

3.1 Dataset overview

Lung cancer is a significant health issue worldwide and is often 
linked to risk factors, such as smoking, age, and various respiratory 

conditions. The dataset taken from Kaggle for analysis contained 309 
records and 16 attributes, providing information on different symptoms, 
habits, and patient demographics. The dataset included both categorical 
and numerical variables. The target variable, LUNG_CANCER, was 
labeled as YES/NO. Other variables included demographic factors such 
as GENDER, AGE, and lifestyle-related factors such as SMOKING, 
ALCOHOL CONSUMING, YELLOW_FINGERS, and PEER_
PRESSURE; and health conditions such as COUGHING, SHORTNESS 
OF BREATH, FATIGUE, SWALLOWING DIFFICULTY, CHEST 
PAIN, ANXIETY, CHRONIC DISEASE, WHEEZING, and 
ALLERGY. The dataset is imbalanced, with more instances of lung 
cancer cases than non-cancer cases, as shown in Table  2. A closer 
examination of the gender distribution revealed that the dataset 
contained more male patients than female patients. Since smoking habits 
and lung cancer rates differ between genders, this imbalance might 
impact the predictive power of certain features. Additionally, the age 
distribution plot shows that most individuals in the dataset were middle-
aged or older, which aligns with real-world data, as lung cancer is more 
prevalent in older populations. Figure 3 show the gender- and age-wise 
distributions of patients in the dataset. To identify the relationships 
between the features, a correlation heatmap was plotted, as depicted in 
Figure 4. The stacked bar charts in Figure 5 visualize the relationship 
between lung cancer and various features, including demographics, 
habits, and symptoms. They highlight the distribution of lung cancer 
cases across different feature categories, helping to identify strong 
influencing factors.

TABLE 1  (Continued)

References Title Findings Inference

Shadman et al. 

(2025)

A machine learning-based investigation of 

integrin expression patterns in cancer and 

metastasis

Machine learning algorithms were used for 

integrin expression patterns to investigate cancer 

development and metastasis.

Integrin expression is pivotal in cancer 

metastasis, and ML can contribute to 

pattern recognition for diagnosis.

Zhu et al. (2023) Progressively Helical Multi-Omics Data Fusion 

GCN and Its Application in Lung 

Adenocarcinoma

Proposed a new GCN-based model to integrate 

multi-omics data for lung adenocarcinoma 

progression prediction.

Multi-omics integration improves accuracy 

of cancer classification and enhances 

patient stratification.

Jopek et al. (2024) Deep Learning-Based Multiclass Approach to 

Cancer Classification on Liquid Biopsy Data

Used deep learning models to classify various 

types of cancer from liquid biopsy data with 

high accuracy.

Liquid biopsy-based classification via deep 

learning is an upcoming non-invasive 

cancer detection strategy.

McDowell et al. 

(2022)

Machine-learning algorithms for asthma, COPD, 

and lung cancer risk assessment using circulating 

microbial extracellular vesicle data

Formulated ML-based predictive models for 

lung diseases with high AUC scores (0.93–0.99).

Microbial extracellular vesicles can be used 

as biomarkers for lung disease risk 

prediction.

Wani et al. (2024) DeepXplainer: An interpretable deep learning-

based approach for lung cancer detection using 

explainable artificial intelligence

Proposed a hybrid CNN-XGBoost model for 

lung cancer detection with 97.43% accuracy.

Explainable AI improves lung cancer 

prediction confidence and facilitates 

clinical decisions.

Datta (2025) Comparative investigation of lung 

adenocarcinoma and squamous cell carcinoma 

transcriptome to reveal potential candidate 

biomarkers

Identified key gene expressions differentiating 

LUAD and LUSC using XAI-based SHAP 

framework.

AI-powered biomarker discovery can 

enhance precision medicine for NSCLC 

subtypes.

Zhao et al. (2022) GMILT: A Novel Transformer Network That Can 

Noninvasively Predict EGFR Mutation Status

Developed a transformer-based network to 

predict EGFR mutation status from CT scans, 

achieving AUC 0.772.

Transformer models can predict non-

invasive mutations, supporting 

personalized therapy.

Mahum and Al-

Salman (2023)

Lung-RetinaNet: Lung Cancer Detection Using a 

RetinaNet With Multi-Scale Feature Fusion and 

Context Module

Proposed a RetinaNet-based model that 

achieved 99.8% accuracy in lung cancer 

detection.

Multi-scale feature fusion enhances the 

early detection of lung cancer tumors.

Fadel et al. (2022) A Fast Accurate Deep Learning Framework for 

Prediction of All Cancer Types

Developed an optimized LSTM model for 

predicting all cancer types with 100% accuracy.

Effective deep learning architectures can 

transform generalized cancer diagnosis.
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3.2 Data preprocessing

In machine learning, data preprocessing is an essential phase that 
converts raw data into a format suitable for model training and 
evaluation. This research’s preprocessing encompassed data cleaning, 
encoding, addressing class imbalance, feature scaling, and dataset 
division. These steps collectively enhance model performance and to 
promote fair learning.

The dataset was examined for inconsistencies, null values, and 
structural issues. Although no missing values were identified, relevant 
transformations were used on categorical variables to allow model 
training. A central transformation was encoding categorical variables. 
Two columns in the dataset were categorical: GENDER and LUNG_
CANCER. Since machine learning algorithms normally need 
numerical inputs, these variables were transformed into numerical 

representations. In particular, GENDER was encoded as 1 for Male 
and 0 for Female, whereas LUNG_CANCER was encoded as 1 for 
“YES” (cancer) and 0 for “NO” (no cancer). This encoding enables the 
model to handle these features precisely without being skewed by 
non-numeric values. After encoding, the dataset was split into features 
and target variables. Independent variables consisted of all the features 
except the target column, and the dependent variable is the LUNG_
CANCER class label. This division allows the model to learn patterns 
in the feature set that help in the prediction of lung cancer risk. The 

FIGURE 1

Proposed architecture of the methodology.

FIGURE 2

Combination of augmentation-classification methods used for lung cancer risk prediction.

TABLE 2  Class distribution in patients with lung cancer in percentage.

Class Yes [1] No [0]

Percentage 87.45 12.55
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FIGURE 3

Age and gender distribution of the patients. (a) Donut chart showing gender distribution, with 52.4% female and 47.6% male. (b) Histogram displaying 
age distribution of patients.

FIGURE 4

Feature correlation heatmap showing the relationships between different features.
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dataset was divided with the common 80:20 train-test set ratio. This 
partitioning ensures sufficient data for pattern learning while 
reserving an adequate portion for assessing generalization performance.

One of the most significant issues in medical datasets is class 
imbalance. In this study, lung cancer-negative samples were much 
smaller than positive samples, and this had a tendency to bias the model 
toward the majority class (cancer). To address this issue, data 
augmentation techniques were employed to balance the data. For tabular 
data, this is synthetic data generation techniques that create more 
samples for the minority class, resulting in a better balanced dataset. The 
effectiveness of these augmentation techniques was validated by 
comparing the class distributions before and after the augmentation. 
Balancing the data improves the model’s ability to identify lung cancer-
negative samples rather than overfitting on the majority class. After 
balancing the data, feature scaling was performed. Many machine 
learning methods, especially distance-based calculation-based 
algorithms, are improved by standardized input features. Standardization 
ensures numerical features have a mean of 0 and a standard deviation of 
1, preventing features with larger numerical ranges from overpowering 
others. Scaling the data enhances model learning efficiency and avoids 
sensitivity to differences in numerical scales.

By these preprocessing steps, the data is converted to a form that 
is best suited for machine learning. These steps enable the model to 
generalize more to unseen data, enhance the accuracy of classification, 
and minimize bias, thus making the lung cancer risk prediction 
more accurate.

3.3 Augmentation and classification

Imbalanced datasets have a tendency to produce biased models 
that favor the majority class and thus generalize poorly for minority 

class samples. In a bid to solve this, numerous data augmentation 
techniques have been employed to counteract class imbalance in lung 
cancer risk prediction. By systematically augmenting techniques with 
classification models, the objective of this research is to improve the 
predictive accuracy without compromising a fair representation of 
both classes. This method gives an overall difference of the impact of 
various resampling methods in lung cancer risk estimation. Table 3 
presents the combinations of different augmentation methods and 
classification systems used in this research and their justification. 
Equations 1–16 represent the mathematical formulae employed in 
each method.

The augmentation techniques were selected based on their unique 
strengths in handling class imbalance in structured tabular datasets. 
SMOTE was used as a baseline due to its widespread applicability, 
while Borderline SMOTE was included to generate samples near 
decision boundaries, especially useful in medical datasets where 
minority instances are critical. SMOTENC was chosen to handle 
categorical features, which are common in clinical records. K-Means 
SMOTE enhances cluster-based generation of synthetic samples, and 
SMOTE-ENN combines oversampling with cleaning of noisy data for 
higher accuracy. These techniques offer a diverse range of behaviors 
in minority class modeling, allowing a thorough performance  
comparison.

3.4 Cross validation and HYPERPARAMETER 
optimisation

To ensure statistical reliability, all experiments were conducted 
using 5-fold stratified cross-validation, preserving the original class 
imbalance within each fold. The reported performance metrics 
(accuracy, precision, recall, F1-score, and AUC-ROC) represent 

FIGURE 5

Stacked bar chart of each feature. (a) Gender, (b) Age, (c) Smoking, ((d) Yellow Fingers, (e) Anxiety, (f) Peer Pressure, (g) Chronic Disease, (h) Fatigue, (i) 
Allergy, (j) Wheezing, (k) Alcohol Consuming, (l) Coughing, (m) Shortness of Breath, (n) Swallowing Difficulty, (o) Chest Pain, with the target variable 
lung cancer.
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TABLE 3  Hybrid of different augmentation technique and classification model.

S No. Augmentation 
technique

Classification 
model

Mathematical equation Justification

1 SMOTE Logistic Regression Synthetic sample generation:

( )λ= + −·new min neighbor minX X X X  (1)

Equation 1 represents the synthetic sample generation process in SMOTE. In this approach, a new synthetic 

minority instance newX  is generated by interpolating between an actual minority sample minX  and one of 

its k-nearest neighbors neighborX , where [ ]λ ∈ 0,1  is a random scalar. This interpolation creates new data 

points that lie along the line segments joining each minority sample and its neighbors in feature space. This 

helps fill the sparse regions of the minority class, addressing class imbalance and allowing machine learning 

models to learn more generalizable decision boundaries.

SMOTE balances the dataset by generating synthetic minority 

samples, which is crucial for Logistic Regression. Without 

balancing, Logistic Regression, a linear model, would be heavily 

biased toward the majority class in an imbalanced medical dataset, 

leading to poor performance on identifying the rare, but critical, 

positive cases. SMOTE ensures unbiased predictions by providing 

the model with a more representative view of both classes.

2 SMOTE K-Nearest Neighbor KNN Distance Calculation:

( ) ( )= − ′

=
∑,

2

1
D W W w w

p
knn train k k

k
 (2)

Equation 2 represents the Euclidean distance used in the KNN classifier. For a given input vector Wknn , the 

distance is computed from all training instances Wtrain  using their feature differences across pp 

dimensions. The model then selects the k closest training instances based on this distance. In this study, 

KNN is applied after SMOTE-based augmentation to ensure that the nearest neighbors include a balanced 

representation of both classes. This enhances minority class recognition during classification by avoiding 

the majority class dominance that typically skews KNN performance in imbalanced datasets.

KNN is a distance-based algorithm. In imbalanced datasets, the 

minority class instances are sparse, and their neighbors are often 

from the majority class. This can cause KNN to misclassify minority 

instances. SMOTE directly addresses this by creating synthetic 

minority samples, thus increasing the density of the minority class 

and ensuring that KNN has enough minority samples nearby to 

make accurate classifications, preventing it from favoring the 

majority class.

3 SMOTE XGBoost XGBoost Additive Model Update:
( ) ( ) ( )= +

−
ˆ ˆ

1
y y f x
t t

t ii i  (3)

Equation 3 describes the boosting process in XGBoost, where predictions are updated iteratively. At each 

boosting round t, a new decision tree ft  is trained to predict the residual errors from the previous round −1t

. The new prediction ( )
ŷ
t
i  is obtained by adding the new tree’s output to the prior prediction. In this study, 

XGBoost is paired with SMOTE to reduce class imbalance, enabling each successive tree to focus more 

effectively on difficult minority class examples. This additive strategy improves model generalization and 

performance, particularly in noisy or skewed clinical datasets.

XGBoost is an ensemble tree-based algorithm known for its strong 

performance. While robust, it can still be affected by extreme class 

imbalance. SMOTE helps by providing a balanced dataset, allowing 

XGBoost to focus its learning on differentiating between the true 

patterns of both classes rather than being overwhelmed by the 

majority class. The combination helps XGBoost generalize better 

and reduce misclassifications of the minority class.

4 ADASYN Decision Tree ADASYN Sample Generation:

= ×G r Gi i  (4)

Equation 4 represents the adaptive sample generation strategy used in ADASYN. Unlike SMOTE, which 

generates a fixed number of synthetic samples for all minority instances, ADASYN uses a dynamic 

approach where Gi  depends on the local difficulty ri  of learning a specific minority instance. The higher the 

local class imbalance near a sample, the more synthetic samples it receives. This adaptiveness allows 

ADASYN to focus on the harder-to-classify regions of the decision boundary. In this study, ADASYN was 

combined with Decision Tree and Random Forest models to observe its effect on ensemble classifiers under 

high-variance conditions.

ADASYN generates synthetic samples for minority class instances 

that are harder to learn. Decision Trees can create complex, non-

linear decision boundaries. By generating samples in complex 

regions, ADASYN helps the Decision Tree build more robust and 

accurate splits, particularly for the minority class, improving its 

ability to classify those instances

(Continued)
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TABLE 3  (Continued)

S No. Augmentation 
technique

Classification 
model

Mathematical equation Justification

5 ADASYN Random Forest Random Forest Prediction:

( )=
=
∑1ˆ

1
z f W

N

N
j rf

j
 (5)

Equation 5 illustrates how Random Forest aggregates predictions from multiple decision trees. Each 

individual tree f j makes a prediction on the input Wrf , and the final output ẑ  is computed by averaging the 

outputs across all N  trees. In classification tasks, this often corresponds to majority voting, whereas in 

probabilistic outputs, it may represent the mean predicted probability. The averaging mechanism in 

Random Forest makes it robust to noise and overfitting, especially when augmented data introduces 

synthetic variability.

Random Forest, an ensemble of Decision Trees, can also struggle 

with imbalanced data, as each tree might be biased toward the 

majority class. ADASYN ensures that the Random Forest trains on a 

balanced dataset. This prevents individual trees from overfitting to 

the majority class and helps them learn more effectively from the 

minority class, leading to improved overall generalization.

6 ADASYN LightGBM Gradient-Based Learning:

( ) λ= +
= =
∑ ∑, ˆ 2

1 1
L l y y w

N M
i i j

i j
 (6)

Equation 6 represents the regularized loss function used in gradient-based learners like LightGBM. The first 

term ( )∑ ˆ,l y yi i  computes the loss between actual and predicted labels using a suitable function, while the 

second term λ ∑ 2w j  penalizes model complexity by discouraging overly large parameter weights through 

L2 regularization. This combination enables the model to fit the data effectively while avoiding overfitting. 

Regularization ensures that even when synthetic samples are added, the model maintains generalizability 

and robustness to noise.

LightGBM is a gradient-boosting framework known for its speed 

and efficiency. In imbalanced datasets, the gradients for the 

minority class might be small or overshadowed by the majority 

class. ADASYN’s focus on generating samples for hard-to-learn 

minority instances helps LightGBM assign more significant weight 

to these crucial samples, enabling it to recognize minority class 

patterns efficiently during its gradient-based learning process.

7 SVMSMOTE XGBoost Support Vector-Based Sample Generation: ( )λ= + −·new sv neighbor svX X X X  (7)

Equation 7 describes the sample generation process in SVMSMOTE, a technique that focuses on more 

informative regions of the decision boundary. Instead of randomly choosing any minority instance, 

SVMSMOTE identifies support vectors of the minority class using a support vector machine and generates 

synthetic samples by interpolating between those support vectors and their nearby minority neighbors. The 

generated points newX  are more likely to lie close to complex boundary regions, enhancing the model’s 

ability to distinguish between classes.

SVMSMOTE is a variant of SMOTE that focuses on generating 

synthetic samples in regions near the support vectors of a Support 

Vector Machine, which are often critical decision boundaries. By 

placing synthetic samples strategically near these boundaries, 

SVMSMOTE provides XGBoost with more informative data points. 

This helps XGBoost refine its decision boundaries, especially in the 

nuanced areas where the minority and majority classes are hard to 

distinguish.

8 SVMSMOTE AdaBoost Weight Update in AdaBoost:
( ) ( ) ( )α=
+ −1

t i t iw w e
t t y f X
i i  (8)

Equation 8 shows how instance weights are updated in the AdaBoost algorithm. After each round t, 

misclassified instances receive increased weights, while correctly classified ones are down-weighted, based 

on the classifier’s performance. The parameter αt  reflects the influence of the current weak learner, and the 

exponential term ensures that harder-to-classify instances become more influential in the next iteration. In 

this study, AdaBoost is combined with SVMSMOTE to focus on generating synthetic samples near the 

decision boundary while adaptively learning from difficult examples. This synergy helps the ensemble 

progressively reduce classification error, especially for underrepresented lung cancer-negative cases in an 

imbalanced dataset.

AdaBoost works by iteratively focusing on misclassified samples, 

weighting them more in subsequent iterations. When dealing with 

imbalanced data, AdaBoost might struggle to give enough attention 

to the minority class. SVMSMOTE, by generating synthetic samples 

near the decision boundaries, essentially provides AdaBoost with 

more misclassified minority instances. This allows AdaBoost to 

iteratively reduce errors in minority class predictions by focusing its 

boosting efforts more effectively on the minority class.

(Continued)
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TABLE 3  (Continued)

S No. Augmentation 
technique

Classification 
model

Mathematical equation Justification

9 Borderline SMOTE CatBoost Borderline SMOTE Sample Generation:

( )δ= + −X X X Xborder b near b  (9)

Equation 9 illustrates how Borderline SMOTE generates synthetic samples near the decision boundary, 

where misclassification is most likely to occur. It selects minority class instances that are surrounded by 

many majority class neighbors, these are considered at risk. New samples are then created by interpolating 

between these borderline instances Xb and their nearby minority neighbors nearX . This helps sharpen the 

class boundary by reinforcing decision-making in complex regions. In this study, Borderline SMOTE is 

paired with CatBoost, a gradient boosting classifier known for handling categorical variables, to evaluate 

how boundary-focused augmentation affects predictive precision in imbalanced lung cancer datasets.

Borderline SMOTE focuses on generating synthetic samples for 

minority instances that are borderline – meaning they are close to 

the decision boundary and thus more prone to misclassification. 

CatBoost is another powerful gradient-boosting algorithm. By 

providing CatBoost with these crucial borderline samples, 

Borderline SMOTE helps the model learn more precisely around 

the critical classification boundaries, thereby improving CatBoost’s 

classification by ensuring it does not overlook these ambiguous 

minority instances.

10 SMOTENC Logistic Regression SMOTENC Sample Generation:

( )λ= + −·new cat neighbor catX X X X  (10)

Equation 10 shows how SMOTENC generates synthetic samples when both numerical and categorical 

variables are present. For numerical features, interpolation is performed in the same way as SMOTE. 

However, for categorical features, SMOTENC selects values using a majority vote, ensuring logical 

consistency in the synthetic data. This is particularly important in medical datasets where features like 

gender or smoking status are categorical and should not be interpolated. In this study, SMOTENC is used 

with logistic regression to evaluate how well classical interpretable models perform when both balanced 

and semantically valid synthetic data are introduced.

SMOTENC is specifically designed for datasets with a mix of 

categorical and numerical features. The lung cancer dataset contains 

both. Logistic Regression needs its input features to be handled 

appropriately, especially categorical ones. SMOTENC ensures that 

when synthetic samples are generated, both the numerical and 

categorical features are augmented in a way that maintains their 

relationships and balance. This leads to fair logistic regression 

predictions by accurately representing both types of features and 

preventing bias.

11 K-Means SMOTE Multi Layer 

Perceptron

K-Means SMOTE Sample Generation:

( )α= + −X X X Xcluster c near c  (11)

Equation 11 shows how K-Means SMOTE enhances the standard SMOTE process by incorporating 

clustering before sample generation. Minority class samples are grouped into clusters using K-Means, and 

synthetic points are generated by interpolating between the cluster centroid Xc and neighboring minority 

instances within the same cluster. This approach ensures that new samples are created in dense, meaningful 

regions of the feature space, reducing the risk of generating outliers or noisy data.

K-Means SMOTE first clusters the minority class instances using 

K-Means and then applies SMOTE within these clusters, generating 

synthetic samples in more meaningful regions. By providing the 

Multi-Layer Perceptron with well-clustered and augmented 

minority samples, K-Means SMOTE enhances Multi-Layer 

Perceptron’s performance. This helps the Multi-Layer Perceptron to 

better distinguish between the classes, particularly in areas where 

minority samples might otherwise be scarce or outliers.

12 SMOTE-ENN Gradient Boosting SMOTE-ENN Sample Generation:

= −X X Xclean resampled noisy  (12)

Equation 12 captures the two-step process in SMOTE-ENN: oversampling followed by data cleaning. First, 

SMOTE is applied to generate synthetic minority class samples, resulting in resampledX . Then, ENN filters 

out both synthetic and original samples that are misclassified by their neighbors, these are labeled as 

noisyX . Subtracting these gives the final cleaned dataset cleanX , which is used to train the model. This 

hybrid approach improves both class balance and data quality. In this study, SMOTE-ENN is paired with 

Gradient Boosting to assess whether removing noisy data post-augmentation enhances the generalization 

ability of ensemble learners in lung cancer risk prediction.

SMOTE-ENN combines SMOTE with Edited Nearest Neighbors. 

After SMOTE generates synthetic samples, ENN removes instances 

that are misclassified by their neighbors, essentially cleaning up 

noisy or ambiguous data points. Gradient Boosting is a powerful 

ensemble method that builds models sequentially, correcting errors 

from previous models. By using SMOTE-ENN, the Gradient 

Boosting model is trained on a cleaner, balanced dataset, where 

noisy data that could hinder learning has been removed while 

balancing classes, thereby improving Gradient Boosting accuracy.

(Continued)
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TABLE 3  (Continued)

S No. Augmentation 
technique

Classification 
model

Mathematical equation Justification

13 Random 

Oversampling

Random Forest Random Oversampling Sample Generation:

= ∪ _X X Xover rand rand dup (13)

Equation 13 describes how Random Oversampling balances the dataset by randomly duplicating minority 

class instances. A subset of the existing minority samples randX  is selected and replicated to form 

_ dupXrand , and the two are combined to create an oversampled dataset overX . Although this method 

does not introduce new variability like SMOTE, it ensures that the classifier does not become biased toward 

the majority class.

Random Oversampling simply duplicates random instances of the 

minority class. While simpler than SMOTE, it directly increases the 

number of minority samples. Random Forest is an ensemble 

method that can benefit from a larger and more balanced training 

set. By increasing minority representation through Random 

Oversampling, the individual trees within the Random Forest are 

more likely to encounter minority samples during training, allowing 

the Random Forest to generalize better to both classes and reducing 

bias toward the majority.

14 Random 

Oversampling

Support Vector 

Machine

SVM Decision Function:

( ) = +f X w X bT  (14)

Equation 14 defines the linear decision function used in Support Vector Machines. The function ( )f X  

computes a score by projecting the input vector X  onto the learned weight vector ww and adding a bias 

term b. The sign of ( )f X  determines the class label. This formulation allows the SVM to find an optimal 

hyperplane that maximizes the margin between classes.

Support Vector Machines aim to find an optimal hyperplane that 

separates classes with the maximum margin. In imbalanced 

datasets, the SVM’s hyperplane can be skewed toward the majority 

class, as there are fewer minority samples to define its boundary. 

Random Oversampling increases the presence of minority samples, 

providing SVM with more data points from the minority class to 

establish a more robust and balanced decision boundary for both 

classes.

15 Random 

Undersampling

Support Vector 

Machine

Random Undersampling Sample Generation:

= − _X X Xunder rand rand del  (15)

Equation 15 illustrates how Random Undersampling creates a balanced dataset by removing excess majority 

class instances. From the original majority dataset randX , a subset _ delXrand  is randomly selected and 

discarded, leaving underX  for model training. While simple, this method reduces training time and bias 

toward the majority class but risks discarding potentially informative data.

Random Undersampling involves randomly removing instances 

from the majority class to balance the dataset. For SVMs, which are 

sensitive to the distribution of data points, reducing the 

overwhelming presence of the majority class can be beneficial. By 

balancing the dataset this way, Random Undersampling prevents 

SVM from being biased toward the majority class and enables it to 

learn a more effective decision boundary that considers both classes 

fairly.

16 Random 

Undersampling

LightGBM LightGBM Prediction:

( )β=
=
∑ˆ

1
z g W

S
s s lgb

s
 (16)

Equation 16 describes the prediction mechanism in LightGBM. The final output ẑ  is obtained by summing 

the predictions from multiple weak learners gs , each weighted by a learning rate βs. Each tree gs  is trained 

sequentially to correct the residuals of the previous trees, allowing the model to iteratively refine its 

predictions.

Similar to SVM, LightGBM can also benefit from a more balanced 

dataset, and for very large datasets, undersampling can also improve 

training efficiency. Random Undersampling reduces the size of the 

majority class, which can speed up LightGBM training by reducing 

the overall data volume, while still preserving essential class 

patterns needed for effective learning. This approach aims for both 

improved balance and computational efficiency.
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average values across all folds. Additionally, we report 95% confidence 
intervals for each metric to quantify the variability across folds. For 
reproducibility, all models were trained using the same random seed, 
and train-test splits were stratified with an 80:20 ratio during initial 
hold-out evaluation. All augmentation techniques were applied only 
to the training data to avoid test set contamination. A 5-fold stratified 
cross-validation strategy was employed to balance computational 
efficiency with robust performance estimation, given the dataset’s 
limited size of 309 samples. Stratified sampling was used during 5-fold 
cross-validation to preserve the original class distribution within each 
fold. To prevent data leakage, data augmentation was applied 
exclusively to the training portion of each fold, with the validation set 
remaining untouched for unbiased evaluation. For reproducibility, all 
experiments used a fixed random seed of 42 for data splitting, 
augmentation, and model training, ensuring consistent results 
across runs.

For each classifier, we conducted hyperparameter optimization 
using a grid search within a 5-fold cross-validation framework on the 
training data. This approach systematically explored combinations of 
key hyperparameters, such as n estimators, max depth, and learning 
rate for tree-based models, and kernel and gamma for SVM, to 
identify configurations that balanced performance and generalization. 
Given the limited dataset size, we constrained the grid search space 
to avoid overfitting and model instability, focusing on achieving 
robust cross-validated performance rather than 
exhaustive optimization.

The Table  4 outlines the hyperparameter search space and 
selection criteria used for optimizing each classifier within the 5-fold 
cross-validation framework. For each classifier, key hyperparameters 
are listed along with their tested ranges, tailored to balance model 
complexity and performance on the imbalanced lung cancer dataset. 
For instance, Logistic Regression explores a range of regularization 
strengths to prevent overfitting, while tree-based models like 
XGBoost, Random Forest, and LightGBM test various tree counts, 
depths, and learning rates to optimize ensemble learning. The 
selection criterion, primarily the highest accuracy, F1-score or 
AUC-ROC, reflects the study’s focus on metrics suitable for 
imbalanced datasets, ensuring models prioritize balanced performance 
over mere accuracy. This table specifies the hyperparameter 

optimization process, providing transparency and reproducibility by 
detailing the configurations explored and the rationale for selecting 
the best-performing settings.

3.5 Evaluation metrics

Several evaluation metrics are employed to compare each 
augmentation-classification approach for lung cancer risk prediction 
effectively. Accuracy is the measure of the proportion of cases correctly 
classified. With the calculation of the proportion of actual lung cancer 
cases among predicted positives, precision eliminates false positives. 
Recall estimates the model’s capacity to identify true instances of lung 
cancer without omitting any false negatives. Precision measures and 
recall balance through the F1-score to maximize categorization. The 
AUC-ROC curve illustrates sensitivity and specificity trade-offs, and 
the AUC-ROC score estimates the model’s capacity to discriminate 
between cancer and non-cancer. To deliver an extensive performance 
analysis toward medical decision-making, the confusion matrix offers 
a comprehensive differentiation of true and false classification.

3.6 Explainable AI

It is significant to acknowledge model choices in clinical 
reproducibility and acceptability in lung cancer classification. In a 
balanced feature importance comparison, it uses index = 0 from the 
test set to interpret single predictions for all methods. This provides 
interpretability with varying augmentation and classification 
methods through guaranteeing transparency in models. LIME 
provides multiple outputs that are beneficial in explanation of 
the prediction:

	•	 Prediction Probabilities  - Displays the model’s confidence in 
different classes.

	•	 Feature Contributions - Visual representation of how individual 
features influence the prediction.

	•	 Feature Importance Table - Lists the top contributing features 
with their corresponding values.

TABLE 4  Hyperparameter search space and selection criteria for the classifiers used.

Classifier Hyperparameters Search space Selection criterion

Logistic Regression C (inverse regularization strength) [0.01, 0.1, 1, 10, 100] Highest F1-score

K-Nearest Neighbor n_neighbors, weights [3, 5, 7, 9], [‘uniform’, ‘distance’] Highest AUC-ROC

XGBoost n_estimators, max_depth, learning_rate [50, 100, 200], [3, 5, 7], [0.01, 0.1, 0.3] Highest F1-score

Decision Tree max_depth, min_samples_split [3, 5, 7], [2, 5, 10] Highest F1-score

Random Forest n_estimators, max_depth, min_samples_split [50, 100, 200], [3, 5, 7], [2, 5, 10] Highest F1-score

LightGBM n_estimators, max_depth, learning_rate [50, 100, 200], [3, 5, 7], [0.01, 0.1, 0.3] Highest F1-score

AdaBoost n_estimators, learning_rate [50, 100, 200], [0.01, 0.1, 1.0] Highest F1-score

CatBoost iterations, depth, learning_rate [50, 100, 200], [3, 5, 7], [0.01, 0.1, 0.3] Highest F1-score

Multi-Layer Perceptron hidden_layer_sizes, learning_rate_init [(50,50), (100,50), (100,100)], [0.001, 0.01, 0.1] Highest AUC-ROC

Support Vector Machine C, kernel, gamma [0.1, 1, 10], [‘rbf ’, ‘linear’], [‘scale’, ‘auto’, 0.1, 1] Highest AUC-ROC

Gradient Boosting n_estimators, max_depth, learning_rate [50, 100, 200], [3, 5, 7], [0.01, 0.1, 0.3] Highest F1-score
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4 Results and analysis

The results are presented in terms of several evaluation metrics for 
comparison across various methodologies. Class distribution after 
data augmentation is shown to emphasize the effect of resampling 
techniques. AUC-ROC curves are used for depicting model’s class 
separating ability in graphical form. Confusion matrices give a clear 
idea of classification accuracy through a representation of correct and 
incorrect predictions. LIME explanations are provided for individual 
predictions to mark feature importance and enhance the explainability 
of the model. An overall view of methodologies carried out is shown 
with the inclusion of these evaluations.

A well-balanced dataset avoids model bias, resulting in accurate 
and unbiased predictions. Table 5 shows how resampling methods 
avoid class imbalances from being handled prior to training.

Key performance metrics quantify model effectiveness. They 
provide a numerical assessment of classification performance, 
ensuring a comprehensive comparison of different methods. Table 6 
reports average performance metrics across 5 folds, along with their 
95% confidence intervals.

Among all combinations, K-Means SMOTE paired with Multi-
Layer Perceptron achieves the highest performance of 93.55% 
accuracy and 96.76% AUC-ROC. This combination is particularly 
effective for two reasons. First, K-Means SMOTE generates synthetic 
samples within minority clusters, preserving local density and 
reducing noise compared to traditional SMOTE. This ensures that the 
Multi-Layer Perceptron receives well-distributed training data. 
Second, Multi-Layer Perceptron’s non-linear architecture enables it to 
capture complex interactions between features, such as overlapping 
symptoms or comorbidities, which are common in lung cancer risk 
profiles. The synergy of structured sampling and high model capacity 

makes this pairing well-suited for the dataset’s imbalanced yet feature-
rich nature.

While accuracy offers a broad view of model performance, it 
can be misleading in the context of imbalanced datasets. Therefore, 
we  emphasize metrics such as precision, recall (sensitivity), F1 
score, and AUC-ROC, which better capture the classifier’s ability 
to correctly identify the minority class and avoid false negatives. 
The highest recall values (94.44%) were observed for K-Means 
SMOTE + Multi-Layer Perceptron and SVMSMOTE + AdaBoost, 
indicating strong sensitivity, a critical factor in cancer risk 
prediction. Precision, which reflects the proportion of true 
positives among all predicted positives, reached 100% for 
SMOTE-ENN + Gradient Boosting and Random Undersampling 
+ LightGBM, meaning these models were highly confident in their 
predictions, though potentially at the cost of missing some cases. 
The F1 score, a harmonic mean of precision and recall, was 
maximized by K-Means SMOTE + Multi-Layer Perceptron (96.23), 
highlighting it as the most balanced and robust combination. The 
AUC-ROC, which measures the model’s ability to distinguish 
between classes across thresholds, also peaked at 96.76 for this 
combination. These findings suggest that evaluating multiple 
metrics is essential for identifying models that are not only 
accurate but also clinically reliable in identifying high-risk patients.

Figure  6 graphs the AUC-ROC curves for all the methods, 
indicating the true positive vs. false positive trade-off. The larger the 
AUC score, the more the classes are well-separated, and therefore this 
is a valuable tool in classifier comparison.

Figure  7 presents the confusion matrix, which provides an 
in-depth analysis of classification outcomes by detailing TP, FP, TN, 
and FN. It assists in identifying class-specific misclassifications, aiding 
in performance refinement.

TABLE 5  Class distribution after various augmentation techniques in percentage.

Augmentation technique Classification model Class Distribution

YES [1] NO [0]

SMOTE Logistic Regression 50.00 50.00

K-Nearest Neighbor 50.00 50.00

XGBoost 50.00 50.00

ADASYN Decision Tree 49.42 50.58

Random Forest 49.42 50.58

LightGBM 50.35 49.65

SVMSMOTE XGBoost 61.90 38.10

AdaBoost 61.90 38.10

Borderline SMOTE CatBoost 50.00 50.00

SMOTENC Logistic Regression 50.00 50.00

K-Means SMOTE Multi Layer Perceptron 49.77 50.23

SMOTE-ENN Gradient Boosting 50.00 50.00

Random oversampling Random Forest 50.00 50.00

Support Vector Machine 50.00 50.00

Random undersampling Support Vector Machine 66.66 33.34

LightGBM 66.66 33.34
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The confusion matrices provide a detailed breakdown of model 
predictions. For weaker combinations, such as ADASYN + Decision 
Tree, we observe a higher number of false negatives, meaning the 
model fails to detect actual lung cancer cases, a critical issue in clinical 
settings. On the other hand, models like K-Means SMOTE + Multi-
Layer Perceptron and SMOTE + XGBoost show improved true 
positive and true negative rates, indicating better generalization. 
Interestingly, Random Undersampling + SVM maintains low false 
positives but at the cost of higher false negatives, reflecting its 
conservative decision boundary due to reduced training size. These 
differences suggest that the choice of augmentation impacts not just 
accuracy but also error type, which is vital in medical diagnosis, where 
false negatives can delay treatment.

Figure 8 provides LIME visualizations for a specific test instance. 
It demonstrates how each feature contributes positively or negatively 
to the classification outcome. These explanations illustrate how 
individual features influence predictions, enhancing model 
transparency and trustworthiness. LIME consistently highlighted 
clinically relevant features such as allergy, yellow fingers, and fatigue, 
aligning with established risk factors reported in clinical studies.

While LIME explanations provide general feature importance, 
we further analyzed index = 0 from the test set across different models 
to highlight patterns. For instance, in the K-Means SMOTE + Multi-
Layer Perceptron case, the top contributing features included fatigue, 
yellow fingers and shortness of breath, all positively weighted toward 
lung cancer prediction. This aligns with known clinical risk factors. 
These LIME results indicate that augmentation strategies not only 
affect accuracy but also shape how models interpret risk, which is 
crucial for clinician trust and transparency. Such interpretability helps 
identify whether models are overfitting to shallow cues or capturing 
medically relevant risk patterns.

To provide a more comprehensive interpretability analysis, 
we extended LIME evaluation beyond a single case. Figure 9 illustrates 

LIME explanations for two additional test instances (index = 15 and 50) 
under the best-performing K-Means SMOTE + Multi-Layer Perceptron 
configuration. In both examples, features such as coughing, yellow 
fingers, alcohol consuming, and shortness of breath were identified as 
dominant contributors to the lung cancer-positive prediction. These 
align well with clinical expectations and previously reported risk 
factors. Notably, the consistency of key features across instances, despite 
slight variation in values, suggests that the model focuses on medically 
meaningful attributes rather than noise. This strengthens confidence in 
its explainability and potential clinical relevance.

The LIME analysis was conducted on test instances with indices 
0, 15, and 50, selected to represent diverse regions of the feature 
space. Index 0 represents a middle-aged smoker with multiple 
symptoms, index 15 a younger non-smoker with fewer symptoms, 
and index 50 an older patient with moderate symptoms and 
comorbidities. This diversity ensures that explanations capture a 
range of risk profiles. LIME explanations consistently highlighted 
clinically relevant features like coughing, yellow fingers, and fatigue, 
aligning with established lung cancer risk factors. However, in some 
instances, features like alcohol consumption and anxiety were 
assigned higher weights than expected. These may reflect dataset-
specific correlations rather than direct clinical causality, highlighting 
the need for validation with larger datasets and clinical expertise to 
confirm feature relevance.

A balanced class distribution is produced by the majority of 
augmentation strategies, such as SMOTE, Borderline SMOTE, and 
Random Oversampling (50% YES, 50% NO), whereas SVMSMOTE 
exhibits a little skew (61.90% YES, 38.10% NO). K-Means SMOTE 
with Multi-Layer Perceptron achieves the best performance 
(93.55% accuracy, 96.76% AUC-ROC), excelling in lung cancer 
prediction. ADASYN with Decision Tree performs worst (82.87% 
AUC-ROC), struggling with synthetic data. SVM with Random 
Oversampling ranks among the top models (96.06% AUC-ROC), 

TABLE 6  A comparison of performance metrics for different methods applied over lung cancer in percentage.

Augmentation Classification Accuracy Precision Recall F1 Score AUC-ROC 
Score

SMOTE Logistic Regression 87.10 97.92 87.04 92.16 94.91

K-Nearest Neighbor 87.10 97.92 87.04 92.16 90.51

XGBoost 91.94 98.04 95.24 92.59 95.83

ADASYN Decision Tree 88.71 96.08 90.74 93.33 82.87

Random Forest 91.94 98.04 92.59 95.24 94.56

LightGBM 88.71 96.08 90.74 93.33 96.30

SVMSMOTE XGBoost 88.71 96.08 90.74 93.33 92.59

AdaBoost 88.71 92.73 94.44 93.58 93.40

Borderline SMOTE CatBoost 90.32 96.15 92.59 94.34 93.98

SMOTENC Logistic Regression 88.71 94.34 92.59 93.46 95.37

K-Means SMOTE Multi-Layer Perceptron 93.55 98.08 94.44 96.23 96.76

SMOTE-ENN Gradient Boosting 88.71 100.00 87.04 93.07 94.91

Random oversampling Random Forest 90.32 96.15 92.59 94.34 95.02

Support Vector Machine 88.71 97.96 88.89 93.20 96.06

Random undersampling Support Vector Machine 87.10 97.92 87.04 92.16 93.98

LightGBM 88.71 100.00 87.04 93.07 93.98
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while Random Undersampling maintains strong performance 
(93.98% AUC-ROC). ADASYN with Random Forest (94.56% 
AUC-ROC, 92.59% recall) highlights ensemble models’ 
adaptability, and XGBoost with SMOTE (95.83% AUC-ROC) 
proves highly effective.

The Table 7 presents the results of statistical significance testing to 
compare the performance of augmentation-classifier pairs, focusing 
on accuracy and AUC-ROC. The tests were conducted using paired 
t-tests on the 5-fold cross-validation results. The table compares the 
top-performing combination, K-Means SMOTE + Multi-Layer 
Perceptron (MLP), against other notable pairs, such as SMOTE + 
XGBoost and ADASYN + Decision Tree, as well as SMOTE + Logistic 
Regression, to confirm its superior performance. Additionally, it 
includes a comparison between SMOTE + XGBoost and ADASYN + 
Decision Tree to highlight differences among other methods, and 
Random Oversampling + SVM versus SMOTE + XGBoost to assess a 
high-performing kernel-based model. The p-values indicate whether 

differences in performance are statistically significant (p < 0.05). For 
example, K-Means SMOTE + MLP significantly outperforms SMOTE 
+ XGBoost (p = 0.042 for accuracy, p = 0.038 for AUC-ROC) and 
ADASYN + Decision Tree (p = 0.003 for accuracy, p = 0.001 for 
AUC-ROC), confirming its robustness. However, the comparison 
between Random Oversampling + SVM and SMOTE + XGBoost 
shows no significant difference (p > 0.05), suggesting comparable 
performance. This provides the evidence of the relative effectiveness 
of the proposed methods.

All experiments were conducted on a standard desktop 
environment using a Dell Inspiron laptop equipped with an Intel Core 
i5-1135G7 CPU @ 2.40GHz, 8 GB RAM, and no dedicated GPU 
acceleration. Each experiment (augmentation + classifier pairing) 
completed training and evaluation in under 5 min, indicating that the 
proposed framework is computationally efficient and suitable for 
low-resource clinical or academic settings. No significant memory 
overhead was observed, and LIME explanations were computed on 

FIGURE 6

A comparative analysis of each method using AUC-ROC curve for lung cancer risk prediction. (a) SMOTE + Logistic Regression, (b) SMOTE + KNN, (c) 
SMOTE + XGBoost, (d) ADASYN + Decision Tree, (e) ADAYSN + Random Forest, (f) ADASYN + LightGBM, (g) SVMSMOTE + XGBoost, (h) SVMSMOTE + 
AdaBoost, (i) Borderline SMOTE + CatBoost, (j) SMOTENC + Logistic Regression, (k) K-Means SMOTE + Multi-Layer Perceptron, (l) SMOTE-ENN + 
Gradient Boosting, (m) Random Oversampling + Random Forest, (n) Random Oversampling + SVM, (o) Random Undersampling + SVM, (p) Random 
Undersampling + LightGBM.
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individual test samples with average execution times of approximately 
2–3 s per instance.

5 Conclusion

Class imbalance significantly affects lung cancer prediction, 
resulting in biased classification outcomes. This research 
comprehensively assesses various data augmentation methods, 
including SMOTE, ADASYN, SVMSMOTE, Borderline SMOTE, 
SMOTENC, K-Means SMOTE, SMOTE-ENN, Random 

Oversampling, and Random Undersampling, in conjunction with 
multiple classification models. The efficacy of these combinations 
is evaluated using key performance metrics such as accuracy, 
precision, recall, F1-score, and AUC-ROC score. The findings 
demonstrate the influence of augmentation strategies on predictive 
performance, showing that appropriate resampling enhances 
classification accuracy and generalisability. Among all 
combinations tested, K-Means SMOTE paired with Multi-Layer 
Perceptron achieves the highest accuracy of 93.55% and an 
AUC-ROC score of 96.76%, making it the most effective approach 
for handling imbalanced lung cancer datasets. This suggests that 

FIGURE 7

A comparative analysis of each method using confusion matrices for lung cancer risk prediction. (a) SMOTE + Logistic Regression, (b) SMOTE + KNN, 
(c) SMOTE + XGBoost, (d) ADASYN + Decision Tree, (e) ADAYSN + Random Forest, (f) ADASYN + LightGBM, (g) SVMSMOTE + XGBoost, (h) SVMSMOTE 
+ AdaBoost, (i) Borderline SMOTE + CatBoost, (j) SMOTENC + Logistic Regression, (k) K-Means SMOTE + Multi-Layer Perceptron, (l) SMOTE-ENN + 
Gradient Boosting, (m) Random Oversampling + Random Forest, (n) Random Oversampling + SVM, (o) Random Undersampling + SVM, (p) Random 
Undersampling + LightGBM.
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FIGURE 8 (Continued)

https://doi.org/10.3389/frai.2025.1602775
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


M S et al.� 10.3389/frai.2025.1602775

Frontiers in Artificial Intelligence 19 frontiersin.org

FIGURE 8

A comparative analysis for a specific instance of each method using LIME for lung cancer risk prediction. (a) SMOTE + Logistic Regression, (b) SMOTE 
+ KNN, (c) SMOTE + XGBoost, (d) ADASYN + Decision Tree, (e) ADAYSN + Random Forest, (f) ADASYN + LightGBM, (g) SVMSMOTE + XGBoost, (h) 
SVMSMOTE + AdaBoost, (i) Borderline SMOTE + CatBoost, (j) SMOTENC + Logistic Regression, (k) K-Means SMOTE + Multi-Layer Perceptron, (l) 
SMOTE-ENN + Gradient Boosting, (m) Random Oversampling + Random Forest, (n) Random Oversampling + SVM, (o) Random Undersampling + 
SVM, (p) Random Undersampling + LightGBM.
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cluster-aware oversampling, combined with a non-linear model, 
can effectively enhance minority class learning without introducing 
noise. SMOTE with XGBoost also performs exceptionally well with 
an AUC-ROC of 95.83%, validating the efficacy of ensemble-based 
learning models in medical classification problems. Also, Random 
Oversampling with SVM performs with an AUC-ROC of 96.06%, 
highlighting the efficacy of kernel-based models in efficiently 
handling resampled data. These findings validate the importance 
of augmentation in improving classification performance, 
especially for models sensitive to data imbalance. The research also 
involves a comparative evaluation of the augmentation process, 
correcting the shortcomings of traditional classification methods 
that typically overlook class distribution variations. Coupling 
augmentation with state-of-the-art machine learning models 
validates that the selection of an effective combination can result 
in improved predictive performance. Additionally, LIME is utilized 
for model explanation, ensuring clinical reliability and 
transparency in decision-making. Visualization of feature 
contributions enables understanding of the contribution of 
individual risk factors toward lung cancer classification. Important 
features such as coughing, smoking, fatigue, and yellow fingers 

were consistently identified, which aligns with known clinical risk 
factors. This demonstrates that our approach not only improves 
performance but also produces clinically meaningful explanations, 
making it more trustworthy for potential integration into medical 
workflows. The findings highlight that augmentation methods need 
to be selected judiciously based on the classification model. While 
oversampling methods like SMOTE and K-Means SMOTE 
significantly improve model performance, Decision Tree and 
individual Logistic Regression models do not exhibit significant 
improvement, validating the need for hybrid methods. The 
AUC-ROC values across methods validate that ensemble-based 
models and neural networks gain the most from augmentation, 
offering an optimal sensitivity-specificity trade-off. This work 
outlines a systematic approach in addressing class imbalance in 
lung cancer prediction, ensuring models achieve significant 
generalisability without compromising predictive accuracy. In 
terms of practical application, the proposed models are 
computationally efficient and can run on standard hardware 
without GPU support. Most augmentation-classifier combinations 
trained in under 5 min, suggesting feasibility for deployment in 
low-resource environments such as community health centers or 

FIGURE 9

LIME instances of index (a) 15 and (b) 50 for K-Means SMOTE + Multi-Layer Perceptron combination.

TABLE 7  Statistical significance of performance metrics.

Comparison Metric p-value Significance

K-Means SMOTE + MLP vs. SMOTE + XGBoost Accuracy 0.042 Significant

K-Means SMOTE + MLP vs. SMOTE + XGBoost AUC-ROC 0.038 Significant

K-Means SMOTE + MLP vs. ADASYN + Decision Tree Accuracy 0.003 Significant

K-Means SMOTE + MLP vs. ADASYN + Decision Tree AUC-ROC 0.001 Significant

K-Means SMOTE + MLP vs. SMOTE + Logistic Regression Accuracy 0.015 Significant

K-Means SMOTE + MLP vs. SMOTE + Logistic Regression AUC-ROC 0.012 Significant

SMOTE + XGBoost vs. ADASYN + Decision Tree Accuracy 0.048 Significant

SMOTE + XGBoost vs. ADASYN + Decision Tree AUC-ROC 0.005 Significant

Random Oversampling + SVM vs. SMOTE + XGBoost Accuracy 0.092 Not Significant

Random Oversampling + SVM vs. SMOTE + XGBoost AUC-ROC 0.078 Not Significant

https://doi.org/10.3389/frai.2025.1602775
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


M S et al.� 10.3389/frai.2025.1602775

Frontiers in Artificial Intelligence 21 frontiersin.org

screening clinics. However, model deployment in clinical practice 
faces challenges such as data availability, integration with electronic 
health record (EHR) systems, and the need for clinician validation. 
This study is constrained by the dataset’s small size and high lung 
cancer prevalence, which is epidemiologically unrealistic compared 
to real-world prevalence rates. The limited number of negative 
cases restricts the model’s ability to learn robust patterns for the 
minority class, potentially inflating performance metrics. These 
factors reduce the generalizability of findings to broader clinical 
settings, necessitating validation with larger, population-
representative datasets.

6 Future work

One major limitation of this study is the relatively small dataset 
size of 309 samples, with a class distribution of 87.45% lung cancer-
positive and only 12.55% negative cases. While data augmentation 
techniques were applied to mitigate the class imbalance, the small 
absolute number of negative samples limits the reliability of 
performance conclusions. This skewed distribution does not reflect 
real-world prevalence, where lung cancer occurs in a much smaller 
fraction of the population. As a result, the findings of this study, 
though methodologically informative, may not fully generalize to 
broader clinical settings. Future work should include external 
validation using larger, more diverse, and population-representative 
datasets to ensure the clinical robustness and scalability of the 
proposed models. Additionally, the dataset lacks critical medical 
variables such as detailed smoking history, genetic markers, and 
family history, which are routinely used in clinical risk models. While 
the current features offer a simplified but practical subset of known 
risk indicators, future studies should incorporate these richer variables 
to improve model validity and alignment with clinical standards. This 
study does not include a direct comparison with established clinical 
risk calculators such as PLCOm2012 or LCRAT, which incorporate 
detailed medical history, smoking intensity, and familial or genetic 
information. While these tools are well-validated in clinical settings, 
our study focuses on structured, symptom- and behavior-based data 
from a limited dataset. Future research should benchmark machine 
learning models against such clinical baselines to assess relative 
effectiveness. Additionally, no external validation was conducted, 
which limits the generalisability of our findings. Although 
we performed multiple train-test splits and applied regularization and 
augmentation techniques to reduce overfitting, the small dataset size 
inherently increases the risk of overfitting and model variance. As 
such, the results presented should be  viewed as preliminary, and 
further studies using multicentre datasets are necessary for robust 
clinical translation.

6.1 Limitations

This study faces several limitations that impact its 
generalizability and clinical relevance. The dataset’s small size and 
high lung cancer prevalence do not reflect real-world 
epidemiology, where lung cancer prevalence is significantly lower. 
This skew may lead to overly optimistic performance metrics, 
particularly for minority class detection. The lack of detailed 

clinical variables, such as smoking intensity or genetic markers, 
further limits alignment with clinical risk models. Additionally, 
the absence of external validation and clinician collaboration 
restricts the study’s immediate applicability to clinical settings. 
These limitations position the study as a preliminary 
methodological exploration rather than a deployable clinical tool. 
Future validation with larger, representative datasets and clinical 
benchmarks is essential. The absence of direct comparisons with 
established clinical risk models, such as PLCOm2012 or LCRAT, 
limits claims of clinical utility. Future work should involve 
collaboration with clinicians to validate model predictions against 
these benchmarks and integrate findings into electronic health 
record systems, ensuring practical applicability in 
screening workflows.
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