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Contestable AI for criminal
intelligence analysis: improving
decision-making through
semantic modeling and human
oversight

Falk Maoro* and Michaela Geierhos

Research Institute CODE, University of the Bundeswehr Munich, Neubiberg, Germany

Criminal investigation analysis involves processing large amounts of data,

making manual analysis impractical. Artificial intelligence (AI)-driven information

extraction systems can assist investigators in handling this data, leading to

significant improvements in e�ectiveness and e�ciency. However, the use of AI

in criminal investigations also poses significant risks to individuals, requiring the

integration of contestability into systems and processes. To meet this challenge,

contestability requirementsmust be tailored to specific contexts. In this work, we

analyzed and adapted existing requirements for criminal investigation analysis,

focusing on the retrospective analysis of police reports. For this purpose, we

introduced a novel information extraction pipeline based on three language

modeling tasks, which we refer to as semantic modeling. Building on this

concept, we evaluated contestability requirements and integrated them into

our system. As a proof of concept, we developed an AI-driven information

extraction system that incorporates contestability features and provides multiple

functionalities for data analysis. Our findings highlight three key perspectives

essential for contestability in AI-driven investigations: information provision,

interactive controls, and quality assurance. This work contributes to the

development of more transparent, accountable, and adaptable AI systems for

law enforcement applications.

KEYWORDS

contestability requirements, AI-driven information extraction, named entity

recognition, semantic triples, sequence classification, relationship extraction

1 Introduction

Modern policing faces many challenges, including the increasing complexity and

volume of data related to potential criminal activity. Investigators must process vast

amounts of information under time constraints, often with limited resources. In the

process of collecting, evaluating and interpreting information about such activities

for criminal intelligence analysis, the volume of data generated cannot be processed

manually (Dubravova et al., 2024). Manual approaches to analyzing such data are often

time-consuming and error-prone, limiting the ability to respond effectively to ongoing

or emerging threats. In addition, bias, incomplete information, and the potential for

human error can hinder the effectiveness of traditional investigative methods. The

increasing volume and complexity of data in criminal investigations underscores the

need for automated systems to help investigators process and analyze information
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more efficiently (Du et al., 2020). Such systems can enhance the

capabilities of investigative teams by extracting critical information,

identifying patterns, and uncovering actionable insights, ultimately

improving the accuracy and efficiency of investigations. To ensure

reliable and flexible use in sensitive areas, these systems must

not only provide robust technical solutions, but also enable users

to interact with, track, and correct the decisions they generate.

Moreover, such systems and the decisions they make can have a

significant impact on the lives of individuals. They should therefore

be able to challenge such decisions in order to protect their

rights, freedoms and legitimate interests. However, Almada (2019)

emphasizes that challenging decisions after they have been made

does not always provide strong protection for individuals.

A better approach would be to design systems with

contestability in mind at all stages of the system lifecycle,

allowing for human oversight both before and after key decisions

are made. Contestability in this context refers to the ability

of stakeholders (e.g., investigators, forensic analysts, legal

professionals, policymakers, and potentially affected individuals)

to understand, question, and challenge the decisions and outcomes

of AI systems. This ensures that the system remains transparent,

accountable, and compliant with ethical and legal standards. Henin

and Le Métayer (2021) state that embedding contestable systems

in decision-making processes leads to more effective outcomes

because, among other things, contestability allows users to detect

and correct incorrect decisions made by a system. It also makes

the use of the system more responsible because a decision can

be accompanied by a justification. Moreover, because users are

provided with information about a decision and the ability to

challenge it, decision makers remain autonomous within this

process, as opposed to a system without this ability. Designing

for contestability ensures that the outputs of the system are

trustworthy and can be critically evaluated. This is particularly

important in the context of criminal investigations, where the

consequences of erroneous or biased outputs can have serious

implications for justice and public confidence. Implementing

contestability involves a variety of practices, such as risk mitigation

through ex-ante safeguards and third-party (human) oversight,

including quality assurance throughout all phases of system

development, such as business and use case development, system

design, construction, testing, deployment, and monitoring (Alfrink

et al., 2023). The complexity of the intertwined requirements

for such systems motivates this research. It proposes a process

for implementing a prototypical contestable AI system for

text analysis.

This paper provides examples of technologies designed to

enable contestability by addressing multiple perspectives on how

to design systems. We will apply the technical and ethical

requirements to the implementation to identify, demonstrate, and

resolve the issues as we present a real-world use case in criminal

intelligence analysis of police reports. In contrast to digital

crimes such as online fraud, this work focuses on analog crimes,

including violent, drug, and gun crimes, which often involve

physical events and facilities that require thorough investigation.

The goal of analyzing this data is to extract knowledge about the

events involved. For example, an event might include details about

violence, locations, people involved, and associated objects such

as weapons or vehicles. Extracting this information from text

results in the creation of knowledge that is useful for investigative

purposes. A benefit of this analysis is decision support by

presenting extracted and analyzed information to investigators.

The structured data can provide clarity and focus, enabling law

enforcement to more effectively allocate resources and prioritize

investigative leads. Proactive investigation involves analyzing

data before an event occurs. By identifying criminal activity in its

planning stages, authorities can take preemptive action to prevent

crime or mitigate its impact. In addition, retrospective analysis

of events allows investigators to reconstruct sequences of events,

identify persons and entities of interest, and uncover relationships

between them. This structured knowledge can be integrated with

other investigative tools to help identify evidence and solve crimes.

Our main contributions include a novel approach to extract

structured information from police reports by integrating several

language modeling tasks, such as multi-label classification, token

classification, and relationship extraction, with rule-based methods

and external knowledge sources. To facilitate this, we introduce

a dedicated annotation scheme tailored to the complexity of

police narratives. Furthermore, we develop a prototypical web

application that focuses on the principles of contestability, ensuring

that users can scrutinize and challenge the system’s results.

Beyond the technical aspects, we analyze the requirements,

stakeholders, and challenges associated with contestability in police

software and propose concrete solutions to enhance transparency

and accountability.

To do so, we first review the existing literature in Section 2.1,

which covers existing contestability requirements, AI tools in police

work, and information extraction with large language models.

The problem and research gaps are then described in Section 2.2,

before the system design approach is presented in Section 2.3. This

section describes the data collection, processing, and annotation

techniques used to train and evaluate the AI system. It also presents

the conceptual design of the system, which integrates semantic

modeling with human supervision to support effective decision-

making. In Section 3.1, we adapt the contestability requirements by

applying them to our use case of criminal intelligence analysis and

the stakeholders involved in our prototypical system. The adapted

contestability requirements are the basis for Section 3.2, which

evaluates the models, and Section 3.3, which presents the prototype

integration and the contestable system features. Finally, Section 4

discusses the results in the context of the limitations of the approach

and presents further research.

2 Materials and methods

Designing an information extraction system that works with

potentially sensitive data in the context of criminal intelligence

analysis can raise ethical concerns about proper behavior.

One approach to mitigating such concerns is to design with

contestability in mind. We do this by first reviewing the literature

in Section 2.1, then specifying the problem statement in Section 2.2,

and finally proposing a concept for an information extraction

system for police-relevant data in Section 2.3.
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2.1 Related work

The development of a contestable AI system that supports

police investigators in extracting structured knowledge about

events from textual datasets requires the consideration of

several aspects. Since contestability is the main criterion for

the quality of this system, Section 2.1.1 focuses on available

resources regarding contestability requirements, the development

of contestable systems, and frameworks. In addition, AI tools in

policing, including their successes and limitations, are covered

in Section 2.1.2. Finally, Section 2.1.3 highlights the use of

large language models to extract structured information from

unstructured data.

2.1.1 Contestability requirements
Contestability in AI systems, as introduced earlier, can be

approached from different perspectives, implying requirements

for all stages of the development life cycle, algorithms, user

interface components, and the structure of decision processes.

In the following, we examine the most prominent perspectives,

comparing and, where possible, merging the requirements

proposed in the perspectives.

Alfrink et al. (2023) presents a framework for developing

contestable AI systems that combines different perspectives on

contestability. It presents practices that enable contestability in the

AI lifecycle and maps system characteristics to stakeholders in

the AI lifecycle. Stakeholders include system developers, human

controllers, decision subjects, third parties, and the AI system

itself. The characteristics and practices provide a taxonomy of

contestability requirements. In the following, we use this taxonomy

to examine existing requirements and approaches to meeting these

requirements in more detail.

General features that enable contestability include built-

in safeguards against harmful behvaior, interactive control over

automated decisions, explanations of system behavior, human review

and intervention requests, and tools for scrutiny by subjects or third

parties.

The first feature, built-in safeguards, is created by system

developers and constrains an AI system by limiting the effects that

an AI system’s decisions can have on decision-making processes.

This could be a check mechanism using another system or human

reviewers (Alfrink et al., 2023). In addition, all decisions and

changes can be recorded, allowing for monitoring (Almada, 2019).

Interactive controls are used by decision subjects and human

controllers (Alfrink et al., 2023). They allow a system’s decisions

to be corrected or overridden (Hirsch et al., 2017; Bayamlhoğlu,

2022).

Hirsch et al. (2017) requires that a system be designed to have

comprehensible AI models and results that users can understand.

This can be done by highlighting and explaining measures such

as confidence scores that allow users to track predictions and

challenge the reasoning if necessary. Moreover, key indicators

of a decision, alternatives to a decision, and information about

counterfactuals are needed to allow users to make informed

decisions about the validity of a decision (Ploug and Holm, 2020).

Explanations of system behavior provide decision subjects and

human controllers with information to verify a system’s reasoning

and to understand automated decisions (Lyons et al., 2021; Alfrink

et al., 2023).

The next feature contains requirements regarding human

review and intervention requests, which primarily focus on decision

subjects and third parties to challenge decisions and record

interventions (Alfrink et al., 2023). Ploug and Holm (2020)

emphasizes the right to contest the use of personal data. Since

user data may be processed, a user must be informed of

what data is being processed and the sources of that data in

order to decide whether to consent to that processing. Another

approach to human review is proposed by Almada (2019), who

suggests that the system should present multiple choices and

require the human to actively select an option for decisions.

This approach ensures that human decision makers apply their

prior knowledge and values, thus promoting a more meaningful

and responsible decision-making process. Henin and Le Métayer

(2021) introduce a challenge-justification framework and apply

their approach to a credit decision system, demonstrating how

users can challenge decisions based on norms and justifications.

Statements, which are preliminary decisions, can be challenged

by referring to norms, rules, or principles. Rationales are then

used to defend or revise a decision based on evidence. This

allows for an iterative process of challenge and justification

until consensus is reached. Finally, to intervene in biased

decisions or abuse, systems should allow users to provide

feedback, register disagreements, and flag potential problems,

which should be used for continuous improvement leading to fairer

outcomes (Hirsch et al., 2017).

Tools for scrutiny by subjects or third parties of AI systems

provide information resources to external actors such as decision

subjects, indirect stakeholders, and third parties (Alfrink et al.,

2023). These may be non-functional requirements, such as

detailed, accessible documentation for users to obtain all relevant

information of a system (Almada, 2019). Ploug and Holm (2020)

presents four dimensions of information provision. The first

dimension concerns the type and source of data. The second

dimension concerns information about bias against sensitive

attributes such as gender, age, or ethnicity. Information must

be provided about the nature of training and evaluation data,

human annotations, and the nature of model testing with respect

to bias. Although system errors are inevitable, information about

the performance of a system, the third dimension, such as

measurements, lends credibility to the system and makes the

individual decision contestable. Finally, the fourth dimension is

information about the embedding of AI systems in decision-

making processes. Although AI-based systems can improve the

quality of decision making, when embedded to support humans,

this can lead to over-reliance on such systems. Therefore,

stakeholders should be informed about how AI is embedded

in a decision-making process and how objective and legal

responsibilities for such decisions are defined.

The categories of practices that lead to contestability include

ex-ante safeguards, agonistic approaches to machine learning

development, quality assurance during development and after

deployment, risk mitigation, and third-party oversight (Alfrink et al.,

2023).
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Ex-ante safeguards involve stakeholders in early life cycle phases

to anticipate the impacts of a system in advance (Alfrink et al.,

2023; Henin and Le Métayer, 2021). By adding contestability as

a requirement, contestability must be evaluated for the context of

a system by defining what is contested, who can contest, who is

responsible, and how contestability is implemented (Lyons et al.,

2021; Alfrink et al., 2023). This also requires involving stakeholders

in the process to identify potential threats to rights and interests

(Almada, 2019).

Another early-stage practice considers agonistic approaches to

machine learning development, leading to decision systems that do

not rely solely on AI algorithms (Alfrink et al., 2023). Kariotis and

Mir (2020) emphasize participatory design that invites stakeholders

to influence key design decisions that can be integrated through

ongoing dialogue. Decision processes and the role of humans

in automated decision making should be carefully designed. If

humans are only tasked with overseeing automated decisions by

confirming or correcting them, there is a risk of poor decision

making and reduced autonomy, as this limits their engagement in

critical evaluation and independent judgment (Almada, 2019).

Quality assurance during development involves measuring

performance against multiple objectives. This can be bias

measurements or accuracy measurements (Hirsch et al., 2017;

Ploug and Holm, 2020; Alfrink et al., 2023). Hirsch et al. (2017)

argue that poor system performance discourages user adoption,

increases the workload of contestation by requiring constant

corrections, and undermines trust in the system, which ultimately

reduces credibility and usefulness.

After deployment, the quality assurance must continue.

Biased data or human inputs through intervention can lead to

algorithmic discrimination against sensitive attributes within a

system. Detection of bias should therefore be done by monitoring

automated and human-corrected decisions in combination with

sensitive attributes (Almada, 2019). Thus, monitoring decisions in

combination with such attributes can lead to the detection of bias.

Risk mitigation strategies concern risks about a system context

and the users (Alfrink et al., 2023). Hirsch et al. (2017) suggests

that the design of training programs for users should explain the

capabilities, strengths, and weaknesses of the system and equip

them to critically evaluate and challenge its decisions.

The final practice presented by Alfrink et al. (2023) is third-

party oversight, which should be omnipresent throughout the

lifecycle of the system. It ensures that that systems comply with

rules and regulations (Bayamlhoğlu, 2022).

2.1.2 AI in policing
Policing is multifaceted, encompassing investigation,

intelligence, prevention and mitigation, public protection, and

security assessment. Within these areas, information systems help

authorities gain insight into data from multiple sources, resulting

in efficient and effective processes. Information systems store data,

provide analytical tools, can recommend actions, assess risks, and

allow users to access accurate information. Due to the significant

amount of data, more and more systems are using AI algorithms.

Examples of the use of AI include predictive policing, where crime

patterns are analyzed to make spatial or personal predictions about

the occurrence of future crimes (Povalej and Volkmann, 2021).

Such systems work with data that contains information about

people, their behaviors and characteristics. There is a risk that a

system will make unwarranted decisions based on inappropriate

characteristics, such as sensitive attributes like race or gender. In

this context, assessing the fairness of such systems is imperative.

For example, there is a variety of work examining the fairness of

algorithms for predictive policing algorithms (Alikhademi et al.,

2022; Ziosi and Pruss, 2024). Angwin et al. (2016) found evidence

of a system disadvantaging people of color in a prediction system

for assessing a defendant’s risk to commit a future crime. Other

AI-enabled policing processes include facial recognition (Guo

and Kennedy, 2023; Simmler and Canova, 2025), deepfake and

misinformation detection (Wang et al., 2024; Liu et al., 2024), or

crime analysis of social media, online content, or police reports

(Hajela et al., 2020; Ates et al., 2021).

For retrospective criminal intelligence analysis, there is research

that examines police reports. Carnaz et al. (2020) developed a

pipeline for sentence-wise named entity recognition on Portuguese

police reports. They used four types of entities: persons, places,

organizations, and dates. In addition, Carnaz et al. (2019) present

a framework for extracting relationships from Portuguese police

reports. The proposed framework works with part-of-speech tags,

lemmatized words, and named entities to populate an ontology

that represents the relevant knowledge extracted from the criminal

police reports.

Since existing work on information extraction systems in

the context of criminal intelligence analysis does not focus on

contestability, this work attempts to fill this gap. Although work

exists that considers retrospective analysis of police-relevant data,

we build on this work by expanding the variety of extracted

information, improving the effectiveness by using state-of-the-

art methods, and using the concept as a basis for designing and

implementing a contestable AI system.

2.1.3 Large language models for information
extraction

Information extraction enables the automatic transformation

of unstructured textual information into structured information

by using natural language processing (NLP) techniques (Pazienza,

1997). Textual data can contain a variety of useful information

in different contexts. NLP techniques implement algorithms that

process textual data to solve tasks involving the identification

and classification of relevant information. For example, sequence

classification assigns labels to an input sequence in a binary, multi-

class, or multi-label setting using feature- and rule-based classifiers

or statistical models (Xing et al., 2010). Other techniques include

the analysis of linguistic features through part-of-speech tagging

(Ratnaparkhi, 1996), topic modeling with vector representations of

text sequences (Mikolov et al., 2013), or named entity recognition

(NER) (Nadeau and Sekine, 2007). NER is a form of token

classification that assigns classes corresponding to real-world

meanings to spans, which are sequences of text consisting of one

or more tokens. For example, the entity class LOCATION indicates

that a text span contains information about a location. This task can

be adapted to arbitrary labeling schemes, allowing the extraction
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of text strings and their corresponding labels, e.g., for persons,

organizations, time information or bank details. Building on the

classified tokens and entities, the relationship extraction task can

identify relationships between pairs of identified entities within a

text sequence (Han et al., 2020). Relationships can be used to model

real-world concepts and can therefore indicate relationships such as

who was where, who is a parent and who is a child. By combining

the NER and relationship extraction tasks, complex contexts and

domains can be modeled to provide structured information about

textual content.

Traditionally, NLP applications have relied on rule-based

systems and statistical machine learning models. Significant

performance improvements have been achieved through the

introduction of deep learning algorithms and the Transformer

architecture, which is the basis for several state-of-the-art large

languagemodels (LLMs) (Vaswani et al., 2017). LLMs such as BERT,

RoBERTa, or T5 leverage pre-training on large datasets and can

be reused for fine-tuning on multiple information extraction tasks,

while requiring comparatively small amounts of labeled data and

demonstrating superior generalization capabilities (Devlin et al.,

2019; Liu et al., 2019; Raffel et al., 2020). These models operate

on text that has been tokenized and converted into numerical

representations. Tokenization splits text into subword units or

tokens, each mapped to a unique identifier. The resulting sequence

of token IDs captures information about word content, order,

punctuation, and other linguistic features, enabling the model to

learn complex patterns and nuances of language. One limitation

of these models is their fixed context length, which restricts the

number of tokens that can be processed at once. As a result, very

long text sequences may be truncated or require special handling to

avoid loss of information.

Selecting a model for a task should be done by evaluating

several model characteristics, such as performance on benchmark

datasets, model size and hardware requirements, pre-training data,

and language capabilities, relative to task complexity, available

resources, and performance goals.

2.2 Problem

Research on contestable AI systems for criminal intelligence

analysis is still in its early stages. While previous work

has independently explored information extraction techniques,

contestability requirements and frameworks, and the use of

advanced language models for NLP tasks, several challenges

remain, especially when combining these approaches. One

limitation of existing work is the narrow scope of the information

extraction implemented. Existing approaches focus on a limited

range of data types, thereby restricting the depth and utility

of automated analysis. In addition, many police systems offer

only basic analytical capabilities and lack the flexibility needed

for complex investigations and case studies. Another critical

issue is the lack of contestability mechanisms. While general

frameworks exist, their application to criminal intelligence analysis

remains unexplored, making it difficult for users to question

or correct AI-driven decisions. Furthermore, existing systems

rely on outdated information extraction techniques, resulting

in suboptimal performance compared to recent advances in

LLMs. Overcoming these challenges is essential to developing

more effective, transparent, and adaptable systems for analyzing

police reports.

Since there is no well-defined implementation for contestability

in criminal intelligence analysis, our research aims to fill this

gap by exploring how contestability requirements should be

designed, adapted, and implemented, taking into account both

system capabilities and user needs. Therefore, we pose the first

research question:

RQ1: For an AI-based criminal intelligence analysis system,

how must contestability requirements be adapted?

To answer this question, we plan to design and implement a

criminal intelligence analysis system. The specific system builds

on existing research on police report analysis. Therefore, we want

to expand the scope of information extraction in this analysis

by extending the range of data types that can be identified and

analyzed. This goal leads to a second research question:

RQ2: How can police reports be modeled to support

investigative work?

The system should provide both an insightful analysis tool and

contestability solutions to the adapted requirements. Therefore, in

the following we present our concept of semantically modeling

police reports, before adapting contestability requirements and

implementing a contestable AI system.

2.3 Concept

Since we want to adapt contestability to AI-based criminal

intelligence analysis, we present a concept for an information

extraction pipeline and a system that uses this pipeline to provide

an interactive user interface. This concept serves as a basis for

the subsequent adaptation of contestability requirements to the

concept, the implementation of a proof of concept, and the

evaluation of the quality of the information extraction.

To develop this automated criminal intelligence analysis

system, several interacting components are required. Since the

system is based on data to be analyzed, this data must be processed

and stored before it can be made available for exploration in a user

interface. One approach to develop such a system is to design a

distributed system that includes encapsulated services (Verissimo

and Rodrigues, 2012). Our proposed system includes two main

services: a data processing pipeline and a user interface.

The data processing pipeline receives available data, extracts

relevant information, and builds a semantic model. To extract

structured information from the data, the pipeline combines the

results of three language modeling tasks and a post-processing step

to form this semanticmodel. An overview of the semanticmodeling

process is shown in Figure 1. The police report contains the content

and metadata that are the basis for all further operations. The

pipeline consists of four steps. The first step (1), crime type

classification, predicts the crime types present in the text and stores

them in the semantic model. The next step (2), token classification,

tokenizes the text, classifies each token, and creates entity spans.

The third step (3), relationship extraction, uses these spans to

classify the relationships between them. After the three language
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FIGURE 1

Overview of the semantic modeling process.

modeling tasks, a post-processing step (4) is performed. Here, the

extracted spans are enriched with structured information from

time extraction and location query libraries. In addition, a graph

is computed using a specialized parsing algorithm.

The user interface allows users to interact with the data and

the pipeline and implements the contestability requirements. Most

important for this user interface is the ability for users to interact

with intermediate pipeline steps to challenge decisions and thus

modify pipeline outputs.

This section presents the pipeline concepts and a prototypical

application. The basis for the pipeline that creates the semantic

model is a dataset, which is introduced in Section 2.3.1. Using

this data, three language modeling tasks are presented. The first

task, sequence classification, is presented in Section 2.3.2. Here,

the types of crimes contained in the described events of a data

instance are classified. In Section 2.3.3, another language modeling

task, token classification is introduced. This allows the extraction of

entities such as persons, locations, or objects. Some of the extracted

entities have relationships to each other. The classification of these

relationships is done in Section 2.3.4. The final component of

the pipeline, presented in Section 2.3.5, combines the previous

three steps. By aggregating the input data, metadata, and extracted

information from the three tasks into a semantic model, a unified

data model is created for further use in the police investigation

process. Finally, our approach for implementing a prototype system

is presented in Section 2.3.6.

2.3.1 Data
Police authorities often publish reports on recent operations

and events. These reports provide transparency for police work

and allow news agencies to disseminate information to a wider

audience. One platform where German police authorities publish

is https://www.presseportal.de/. The platform offers a category

for police reports, which contains police reports from several

German police authorities spread across the country. Each entry

contains a number of data points, including a headline, time

and date of publication, publisher, tagged locations and topics,

textual contact information for the publisher, and the written

police report. A custom web crawler was used to generate a raw

dataset of 405,560 examples. There are 14,632 different topics

and 38,523 different locations tagged. Since Germany has 16

federal states (BB, BE, BW, BY, HB, HE, HH, MV, NI, NW,

RP, SH, SL, SN, ST, TH), we have extracted the states from

the tagged locations. The distribution, as shown in Figure 2A,

is characterized by unevenness, with certain states, such as NW

or BW, showing a significant overrepresentation compared to

others, including BB or BE. While this could be interpreted as if

there was a large imbalance in terms of criminal activity between

different states, it merely shows the amount of reports published

in those states on the given platform. Moreover, the distribution

of examples per year in Figure 2B shows a similar unevenness.

This distribution indicates a significant increase in published police

reports after the year 2016. It should be noted that there are no

examples for the second half of the year 2022, which explains

that the number of examples decreased by half compared to the

year 2021.

As mentioned earlier, the data serves as the basis for the

semantic modeling pipeline, which is shown in Figure 1. In the

following, three language modeling tasks are presented. In order

to train language models on these tasks, the presented data will be

further analyzed, preprocessed and annotated.
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FIGURE 2

Visualization of dataset statistics. (A) Number of examples per state. (B) Number of examples per year.

2.3.2 Sequence classification
The first task in the semantic modeling pipeline, shown in

Figure 1, takes the text of the police report, tokenizes it without

further preprocessing, classifies it with a languagemodel, and stores

the predicted labels in the semantic model. Each report and each

reported event contains one or more crimes. Identifying the crime

types in a report at a glance, without having to read the entire

report, saves time and allows filtering large datasets to relevant

subsets. Manual inspection of police reports led to the decision to

classify four broad crime types. The first crime type, drugs, refers

to all crimes related to drug trafficking, possession, or production.

The second type of crimes, weapons, is related to events, which

deal with any form of unauthorized possession, threatening or use

of weapons. The third type of crime is called danger to life and

limb. This includes all reports that involve some form of violence

against others. The final type of crime, other, covers all crimes

that do not fall into any of the previous three categories, such as

theft, fraud, or property damage. Although the level of detail and

validity of the selection of these four categories can be debated, they

were chosen for their unambiguousness and separability, which

allows for precise and quick annotation in the labeling process.

In addition, the reports mostly deal with clear police actions

and closed incidents, rather than ongoing investigations into, for

example, intangible incidents, online fraud, or insults. Therefore,

the number of crime types available in this dataset is limited

compared to all possible real-world crime types.

For this sequence classification task, we only use police

report texts as sequences without any modifications. Fine-tuning

a language model on this supervised task with the given labels

requires annotated data. Therefore, we annotated the crime types

with three annotators and split the data into a training and a

validation split using a 70/30 ratio. The number of labels per split

is shown in Table 1. The dataset contains 758 examples with an

unbalanced distribution of labels. The proportion of true labels in

TABLE 1 Label distribution of crime types across training and validation

splits, as well as the entire dataset.

Train Validation Sum

Category True False True False True False

Drugs 299 232 115 112 414 344

Weapons 106 425 36 191 142 616

Other 188 343 101 126 289 469

Danger to

life and limb

164 367 74 153 238 520

the whole dataset ranges from 18 % for weapons to 54 % for drugs,

which could lead to uneven performance of a classification model

for different classes.

2.3.3 Token classification
Classified crime types mentioned in a police report convey

limited information about the events mentioned. To extract more

details, the second step, as shown in Figure 1, classifies text

segments, called tokens, assigns them labels that correspond to the

type of information, and combines them to spans. To do so, the text

sequences are, again, tokenized without any modifications, before

being passed to the language model.

Police reports contain unstructured information about people,

groups of people, objects, locations, times and dates, and

relationships created by associations or actions within the events

described. Understanding this unstructured information as an

investigator is done by reading and possibly taking notes, which

is time-consuming because it requires an investigator to focus

on one text at a time. In addition, the information within the

reports, or only a subset of the information, is needed for
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further investigation or comprehensive analysis processes within

authorities. One approach to extracting this information is to

classify tokens into predefined information categories. By using

predefined categories, relevant data can be extracted and stored

in databases, enabling filtering for specific values or automated

analysis processes.

There are few labeled German data and thus few German

models with a large number of different token classes. Therefore,

our approach is to define an extended classification scheme,

manually label our data, and train a token classification model.

The most common classification scheme for this task contains four

different span classes: LOC,MISC, ORG, and PER (Tjong Kim Sang

and De Meulder, 2003). As a starting point, we used a German

NER model, flair/ner-german-large (Schweter and Akbik, 2021),

trained to predict these four span classes, to predict our data. The

analysis showed that hardly any PER spans were present in the

reports. Since there are other relevant information types within

the reports, we defined a labeling scheme consisting of 7 different

classes, modifying this existing scheme. The first class, LOCATION,

is taken from previous research and refers to any form of location,

such as countries, cities, streets, or specific named places. The next

label, ORGANIZATION, is also adopted and refers to companies,

institutions, government bodies, and other formal organizations.

Since there are no people names in the police reports, people and

groups of people are referred to by terms such as “the perpetrator”,

“the fugitive”, “he”, “she”, “they”, or “the employee”. For these

referring terms, we define the label PERSON-REFERENCE. When a

group of people is mentioned in text, the group is usually preceded

by a counting term or number, such as “the three bikers”. We define

the label COUNT, which refers to these counting terms. Counting

terms are also used to specify amounts and units of objects. In this

context, objects can be any item relevant to the event. Examples are

terms for weapons, drugs, vehicles, or clothes. We define the label

OBJECT for these terms. Police reports are descriptive and as such

use descriptive terms to characterize people and objects. The label

PROPERTY refers to such descriptive terms as colors, descriptions

of shape, size, or age. The last label, TIME, refers to all time or date

specifications.

Since the aforementioned German NER model is capable of

predicting two of our defined labels, namely ORGANIZATION

and LOCATION, we used the model to predict these labels before

manually correcting the predicted labels and adding the labels from

our custom scheme. We also used the duckling library (available at

github.com/facebook/duckling) to predict TIME labels. The library

implements regular expressions for a number of dimensions,

such as time, email, quantity, or volume, in different languages.

For TIME annotations, this also provides standardized time and

date values, which helps in automated processing of the data.

The manual annotation and correction process resulted in 751

examples. The distribution of labels is shown in Table 2.

2.3.4 Relationship extraction
In Section 2.3.3, we developed a model to extract a custom

scheme of spans from the police reports available in our data.

Although the extracted information is structured, its value is

limited to a standardized format for TIME spans, the exact position,

TABLE 2 Label distribution in the training and validation datasets.

Label Train Validation Sum

COUNT 4,795 607 5,402

LOCATION 3,281 386 3,667

OBJECT 4,748 500 5,248

ORGANIZATION 1,400 156 1,556

PERSON-REFERENCE 8,383 1,060 9,443

PROPERTY 4,126 366 4,492

PERSON 55 8 63

TIME 2,129 203 2,332

The TIME and PERSON labels were excluded from the training of the token classification

models.

and the type of information it refers to. To increase the value of

the information extracted from the span labels shown in Table 2,

relationships between the identified spans can be extracted. This

third step of the semantic modeling pipeline, shown in Figure 1,

takes the unmodified text sequence and the corresponding token

classification outputs, namely tokens and spans, and extracts

relationships by classifying all potential relationship combinations

within the police report. This gives context to the spans and

allows further analysis. For example, if there are multiple PERSON-

REFERENCE spans and multiple LOCATION spans, it would be

important to know which person was in which place.

In the real world, there are an infinite number of possible

relationships. However, it is impractical to model the entirety

of the nearly infinite number of relationships within the scope

of this study. Therefore, we analyzed the existing annotations

for spans and the possible relationships between them to define

a scheme that fits the use case of extracting information from

police reports. The resulting annotation scheme contains 5 possible

relationships between different spans of Section 2.3.3. There are

both bidirectional and unidirectional relationships between spans.

An overview of all possible relationships is provided in Table 3.

The first relationship, denoted by STAY, is unidirectional and

originates from either PERSON-REFERENCE or ORGANIZATION

and targets LOCATION or TIME. The STAY relationship indicates

where people or groups have been or at what time and date they

have been somewhere.

The second relationship identified is the COUNTS relationship,

which is characterized by its tail being a COUNT span. It

targets OBJECT, PERSON-REFERENCE, ORGANIZATION, and

LOCATION spans. This can be relevant to several automated

analysis tools. For example, counting the amount of a drug

someone is carrying would allow an automated decision to be

made about whether a drug possession limit has been violated. In

a comprehensive analysis tool, this data could be used to evaluate

the volume of items such as specific weapons, drugs, or money

that occur within a city, within reports of a specific crime type, or

within a specific time period. In addition, PERSON-REFERENCE

spans sometimes refer to groups of people. It can be critical to

know the exact number of individuals within a given group. If a

group of suspects is evading law enforcement, the exact number of

people is necessary to track the progress of a potential manhunt.
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TABLE 3 Possible relationships between spans as source spans (left) and target spans (top).

Source span Target span

COUNT OBJECT PERSON-REFERENCE ORGANIZATION TIME LOCATION PROPERTY

COUNT COUNTS COUNTS COUNTS COUNTS

OBJECT COREF

CONTAINS

BELONGSTO

PERSON-

REFERENCE

COREF

CONTAINS

STAY STAY

ORGANIZATION CONTAINS COREF

CONTAINS

STAY STAY

TIME COREF

LOCATION COREF

CONTAINS

PROPERTY BELONGSTO BELONGSTO BELONGSTO

The relationship is less common for places and organizations to be

counted, as they are usually unique.

PERSON-REFERENCE spans are somewhat ambiguous

because such references can be both group mentions and single

person mentions. Often, individuals are referenced multiple times

within a report by both individual mentions and group mentions.

Moreover, their incoming and outgoing relationships with other

spans are distributed throughout the report, meaning that the first

relationships may be linked to the first mention, while the next

relationship may be linked to the second or a later mention. Since

these references belong to a single entity, the relationships from

multiple references must be merged into this single entity. We do

this by using COREF relationships, which indicate a coreference of

a single entity between multiple references. These relationships are

undirected and allow for the clustering of references. In addition

to PERSON-REFERENCE spans, OBJECT, ORGANIZATION, and

TIME spans can have coreferences to spans of the same class.

Another relationship, CONTAINS, indicates that one span

includes another span. This could be a broad description of a

location that contains a more specific span for that location, an

organization that contains another organization, a person or group

of people, an object (such as a bag) that contains another object, or

a group of people that contains a single person.

The last relationship, BELONGSTO, is used when an OBJECT

span belongs to a PERSON-REFERENCE, or when a PROPERTY

describes an OBJECT, a PERSON-REFERENCE, or a LOCATION.

The annotation scheme contains five possible relationships,

each with different source and target spans, resulting in a complex

task. The concept provides the most relevant information and

ignores rare relationships or edge cases, which limits the scope of

manual annotation for the proof of concept. Although there are few

types of relationships, the large number of possible relationships in

police reports can lead to errors, requiring humans to challenge and

correct imperfect predictions.

An example showing the available token classes as spans and

the corresponding relationships of a police report is illustrated in

Figure 3.

Using this labeling scheme, we manually annotated 751

examples, out of which we used 85 % for training and 15 % for

validation. Table 4 shows the number of annotated relationships per

dataset. Notice that the BELONGSTO and COREF relationships are

about twice as common as the other relationships, resulting in an

uneven distribution of labels.

2.3.5 Semantic modeling
The tasks of crime type classification, token classification,

and relationship extraction are useful on their own, but they

can be combined with external data and metadata to add value

to criminal intelligence analysis. This combination of tasks with

post-processing is represented by the fourth and final step in

the semantic modeling pipeline shown in Figure 1. To store

the information resulting from the various pipeline steps, we

conceptualize the semantic model, a relational database model

that serves as the basis for user exploration and challenge of all

intermediate steps. We propose a concept for the semantic model

by analyzing all pipeline outputs, the requirements for modification

and versioning, and the intention to export information to other

formats such as graphs.

Our proposed semantic model is based on police reports,

metadata, annotations made by humans or predicted by models,

and external data. A semantic model instance contains the

textual police report, a dataset ID, and metadata that includes

the URL, publication date, tagged locations, and topics, among

others. Moreover, a semantic model has three lists of annotation

layers. Each list corresponds to the annotations of a task

of sequence classification, token classification, and relationship

extraction. This abstraction allows to keep multiple versions

of annotations per police report. Each version is editable to

support contesting AI decisions. There is a special restriction

for relationship extraction annotations. Because a relationship

requires two spans, deleting or manipulating one span would

invalidate the corresponding relationship. To mitigate this effect,

relationship extraction annotations are tied to specific versions

of token classification annotations. In addition, manipulation of

token classification annotations, which includes adding, editing,

or removing classified tokens, always creates a new version of

that annotation if there is a corresponding relationship extraction

annotation. This also implies that removing a token classification

annotation will remove the relationship extraction annotation.

Furthermore, token classification annotations are enhanced

by aggregating them with metadata and using external data.
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FIGURE 3

Police report with annotated spans and relationships.

TABLE 4 Number of labeled relationships for the train and validation

datasets.

Relationship Train Validation Sum

BELONGSTO 7,142 987 8,129

CONTAINS 2,943 541 3,484

COREF 7,146 1,481 8,627

COUNTS 3,781 723 4,504

STAY 3,350 660 4,010

LOCATION spans often contain information about the exact

locations where events took place. This can be streets, cities,

landmarks, or vague descriptions. Most of the terms used to

describe such places can be found in proprietary location data.

Geolocation services allow users to enter search queries and

find detailed location information for a given location. We use

such services to query all LOCATION spans. In some cases,

for example if a street name exists in multiple cities, multiple

hits will be returned for the query. In this case, adding more

location information to the query may improve the search result.

Because the metadata for police reports sometimes includes tagged

locations, such as city or state names, these tagged locations

are used to refine the query. The results are then saved with

the appropriate span and can be used for further visualization

or analysis.

Another way to improve the semantic model is to use the

publication timestamp in the metadata. The time expression

extraction library can accept a reference time. When parsing

a relative time expression, such as “yesterday”, the timestamp

is calculated relative to that reference time. This increases the

precision of the extracted date and time information, allowing

precise analysis of events over time.

The data in the semantic model can be parsed to create a

graphical representation of all spans and relationships. This can

involve the merging of COREFERENCE relationships between

multiple PERSON-REFERENCE or between multiple TIME,

LOCATION, or ORGANIZATION spans. This process creates

clusters of spans that refer to the same entity. Therefore, when

accessing the cluster, all relationships from different spans within

a cluster can be accessed.

2.3.6 Prototype system
The semantic modeling pipeline shown in Figure 1 includes

several processing steps that result in a unified data format, the

semantic model. Developing this pipeline requires fine-tuning the

language models to the three language modeling tasks, evaluating

the quality of the information extraction, and implementing the

semantic model, which then allows answering RQ2 how police

reports can be modeled to support investigative work.

Based on this implemented pipeline, we design a proof of

concept for a contestable AI system that works with the semantic

modeling pipeline. Here, we describe the use case and the
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stakeholders of this proof of concept, before the contestability

requirements are adapted to this system in Section 3.1 and the

implementation, integrating the adapted requirements, is done in

Section 3.3.

The reports on which the system is based on do not

contain personal information of named individuals. The subjects

mentioned are not referenced by name or by pseudonyms that

would be directly traceable to identified individuals. In addition, the

police reports are event-oriented, describing events that occurred,

rather than subject-oriented, which would indicate that the reports

focus on describing people and subjects of investigation. The

information extracted is intended to support the investigative

process. In terms of the decision-making process, this means

that there is no decision that directly affects a person, as

would be the case with a conviction, such as whether or not a

person should receive a sentence. The decisions that this system

automates concern whether certain parts of the police report

should be classified as relevant information and, if so, what type

of information that is. Although the extracted information can be

used for further investigation and analysis, which could potentially

lead to a subject-related decision concerning the rights and freedom

of the subject, we argue that this system does not provide such

critical decisions. This is also underlined by the fact that there

is no automation of the use of the extracted information in the

police investigation, as the extracted information must be manually

assessed and transferred to the investigation by a responsible user.

Defining contestability requirements for this system requires

a characterization of stakeholders. We do this characterization by

using the four stakeholder groups presented in Alfrink et al. (2023).

Human controllers are police investigators who are the primary user

groupworking with the system. They use the system to find relevant

information for criminal investigations. They investigate one report

at a time and need quick access to the data and functions to

correct results, which is best provided by an intuitive user interface.

They also need to understand the system’s processing structure

and the reasoning behind its decisions, because they will be held

accountable if they have to provide evidence to support charges

based at least in part on the system’s results. Decision subjects, as

argued earlier, are not directly affected by the decisions generated

by the system. Therefore, the requirements for decision subjects are

rather low. In a legal process, the investigators take responsibility

for the allegations and evidence. Decision subjects in this context

would not challenge the decisions of the system, but rather the

decisions of an investigator. System developers are required to

provide a system with the highest possible performance and

usability. To train language models with sufficient performance,

they need high-quality data. This data must be annotated according

to precise guidelines and standards, preferably contain uniformly

distributed class labels, and ideally be free of bias toward sensitive

attributes. Finally, third parties include government agencies, law

enforcement, or civil society groups. Although system operators,

in this case police authorities, may wish to keep data, models,

and system internals secret, Bayamlhoğlu (2022) argues that third

parties could act as trusted intermediaries for ex ante inspection of

the system and post hoc challenge of decisions. Thus, information

about the system and information about individual decisions

should be made available.

Before evaluating the detailed requirements in Section 3.1,

minimal contestability requires that users be able to track decisions

predicted by language models and make corrections that reactively

trigger all relevant processing and visualization steps. To provide

these features, we design a modular web application, a distributed

system, that assigns the responsibilities for visualization, semantic

modeling pipeline processing, language model deployment, and

data persistence to different services. This distribution of services

allows the implementation of contestability in each service due to

the rather loose dependencies.

3 Results

Based on our semantic modeling concept and a prototype

system, we develop a proof of concept. To do so, we first

adapt general contestability requirements to the concept in

Section 3.1. Then, we fine-tune language models for the three

language modeling tasks, evaluate them, and present our results in

Section 3.2. Finally, we present our proof of concept in Section 3.3.

3.1 Adjusting contestability requirements

There is a wide range of general requirements for contestability

in AI systems, as presented in Section 2.1.1. We evaluate

these requirements in the context of the proposed system for

practicality and validity in this context and with respect to the

stakeholders involved.

The first requirement, built-in safeguards against harmful

behavior, is only partially applicable because our system has no

procedural decision-making capabilities, and all decisions are

provided to a human for oversight and analysis. Storing predictions

and user modifications for further monitoring is a requirement that

our system should implement.

Interactive control over automated decisions is a highly relevant

requirement for human controllers in our system. In the proposed

system, all model decisions must be correctable by users. This

is especially important because the extraction of relationships

depends on the annotation of the previous token classification

step. Correcting classified tokens should therefore lead to a

new predicted version of the relationship annotations, making it

necessary to review and correct these relationships afterwards.

The next required feature, explanations of system behavior,

can be provided from different perspectives. Ploug and Holm

(2020) note that explaining decisions is open to interpretation.

Thus, explanations of decisions range from simply stating that

the AI made a decision based on some data, to explaining why a

decision was the scientifically best decision based on the available

features and parameters. The more precise explanations are local

explanations, that approximate the influence of inputs on the

outputs of a single prediction. However, for the proposed system,

we decide not to use local explanations due to their complexity

and limited applicability to our tasks. First, selecting an appropriate

explainable AI algorithm requires careful consideration of the

model, problem, and hardware constraints (Cugny et al., 2022;

Krakowczyk et al., 2023). In addition, local explanations introduce
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significant computational overhead (Doumard et al., 2023; Bassan

et al., 2024), making them impractical given that our tasks require

thousands of predictions per example. Furthermore, we argue that

their usefulness varies across our classification tasks. While the

identification of important tokens can be useful for tracing reasons

for multi-label classification of crime types, attribution scores are

less informative for token classification and relationship extraction.

Given the trade-off between the value of such explanations and

the added complexity they introduce, we instead prioritize result

visualization and confidence scores, which we consider sufficient

for understanding our system and its behaviors. Another approach

that falls under the category of explaining system behavior is to

consider the traceability of decisions. In this case, tracing a decision

could be done by logging what was predicted and what changes a

user made to an example. Logging with version control to monitor

examples is an approach suggested by Aler Tubella et al. (2020).

For the police report analysis tool, users are encouraged to correct

model predictions, resulting in multiple versions that are logged.

Human review and intervention requests focus on the ability

of decision subjects and third parties to receive information

and challenge decisions made by a system. Our system focuses

on structuring unstructured information in text and does not

make direct decisions about decision subjects. Therefore, the

need for procedural intervention, such as that proposed in the

challenge and justification protocol (Henin and Le Métayer, 2021),

is questionable. Our proposed system generates thousands of

classifications or predictions for each individual example.We argue

that if the system allowed each decision to be challenged with

justification and evidence, efficiency would be reduced and usability

would be compromised. Therefore, we allow users to challenge

and correct decisions, but do not require evidence for all changes.

Correcting decisions can thus be done for all available forecasts.

The final contestability feature concerns tools for scrutiny

by subjects or third parties. This includes information about

system performance indicators related to training data and models,

information about the system itself and the development process,

and information about the decision process and the role of human

decision-makers. We agree with this requirement for our system

and require that information about training data, annotations, test

procedures, performance evaluation results, and the embedding

of the system in the decision process is provided. We do this

through documentation of data, annotations, processes throughout

this work, and the presentation of our performance evaluation

in Section 3.2. Because this work provides a proof of concept

without a real-world deployment scenario, it goes beyond the

scope of implementing complete solutions for all requirements.

Instead, we develop some proof of concept and suggest ideas for

further development. For example, since our application stores data

and usage logs, an application programming interface (API) can

be provided as a tool for investigating current system usage and

performance. Using the generated log data, it is possible to generate

statistics about predictions and corrections per task, per dataset or

subset of data, and limited by time frames.

In terms of design practices, some requirements are of limited

applicability to this proof of concept because it is not intended

to be used in a real-world criminal investigation scenario. For

example, there are no stakeholders involved beyond the authors

of this study. Therefore, ex-ante safeguards or third-party oversight

are not feasible in this work. However, this does not diminish

their importance in future work, where they should be evaluated

and implemented accordingly. Agonistic approaches to machine

learning development, on the other hand, are applicable. To involve

humans in the decision-making process, they must be in constant

interaction with the system. Therefore, we require our system

to tightly integrate users by providing them with interactive

exploration and modification features that naturally ensure user

autonomy. In addition, quality assurance during development is

critical, as our system relies on the performance of the underlying

language models. Therefore, we are transparent about our data,

models, and evaluation. Since there is no dedicated deployment

in this study, post-deployment quality assurance must at least be

prepared by providing features such as logging and versioning of

predictions and decisions. Moreover, risk mitigation is done in

the early stages of data annotation, where annotators are trained

to make accurate annotations. It should also be done through

intuitiveness and explanations in the user interface in addition to

training users to use the system.

3.2 Language modeling tasks

As discussed earlier, contestability requires, among other

things, accurate information about data, models, and performance.

Providing this information makes a system transparent to

stakeholders. In addition, accurate modeling is critical to the

functioning and quality of the system. Our proposed system relies

on language models to extract information in a standardized

format. We have specified three language modeling tasks: crime

type classification, token classification, and relationship extraction.

For these reasons, in the following we present solutions to these

tasks, which involve fine-tuning and evaluation of languagemodels.

Since all three tasks are classification tasks, we use established

metrics, namely precision, recall, and F1 score (Powers, 2020). They

are defined as

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2×
Precision× Recall

Precision+ Recall
(3)

In these equations, TP (true positives) refer to correctly

predicted positive samples, TN (true negatives) refer to correctly

predicted negative samples, FP (false positives) refer to incorrectly

predicted positive samples, and FN (false negatives) refer to

incorrectly predicted negative samples.

Based on the raw police report dataset, presented in

Section 2.3.1, we have created three sub-datasets by annotating

labels for sequence classification (see Section 2.3.2), token

classification (see Section 2.3.3), and relationship extraction (see

Section 2.3.4). In this Section, we use these three sub-datasets,
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TABLE 5 Evaluation results of the fine-tuned multilabel crime type

classification model (deepset/gbert-large) on the validation dataset.

Label F1-Score
(CI)

Precision
(CI)

Recall (CI)

Macro 0.83 0.89 0.78

(0.79–0.86) (0.85–0.93) (0.74–0.82)

Micro 0.84 0.91 0.78

(0.82–0.87) (0.88–0.94) (0.74–0.82)

Drugs 0.99 0.99 0.98

Weapons 0.86 0.86 0.86

Other 0.66 0.82 0.55

Danger to life and

limb

0.80 0.89 0.73

Macro and micro averages are reported with 95% CIs obtained via bootstrap resampling,

shown in the format: mean (lower–upper). Per-label results are shown without bootstrap CIs

for improved readability.

carry out fine-tuning experiments, evaluate the performance of the

language models on the validation splits of the three sub-datasets,

and present the results of the best-performing models. Because of

the proof of concept nature of this work, and the small dataset

size we do not extensively carry out hyperparameter and model

performance optimization and instead rely on standard parameters

proposed by Devlin et al. (2019) and Yamada et al. (2020).

As previously shown, the sub-datasets for all three tasks exhibit

label imbalance. To evaluate overall classifier performance, we

report the macro- and micro-averaged F1 score, precision, and

recall. To enhance interpretability, we provide 95% confidence

intervals (CI) for these aggregated metrics using bootstrap

resampling. In addition, we report label-wise F1 score, precision,

and recall to highlight performance on individual classes. CIs for

label-wise metrics are omitted to improve readability.

3.2.1 Crime type classification
Crime type classification, introduced in Section 2.3.2, is a multi-

label sequence classification task. We selected several pretrained

encoder models for fine-tuning to this classification task because

they are established in existing research with strong performance in

various classification tasks. The best performing model is a German

BERT model, deepset/gbert-large proposed by Chan et al. (2020),

which is pre-trained on German data and gives strong results on

several existing benchmarks.We used the raw police report without

any additional preprocessing. The results are presented in Table 5

and show a strong performance for all labels except the Other class.

While the different results may be due to the distribution of the

labels, the Other category includes reports with different and less

clearly defined topics, making it more difficult for the model to

learn a consistent representation of this class.

3.2.2 Token classification
The token classification task, introduced in Section 2.3.3,

requires a classification for each token in the input sequence. Since

the PERSON class is irrelevant for this particular dataset, and the

TIME class is predicted by the rule-based library, we trainedmodels

TABLE 6 Evaluation results of the fine-tuned token classification model

(studio-ousia/mluke-large) on the validation dataset.

Label Tag-
Type

F1 Score
(CI)

Precision
(CI)

Recall
(CI)

Macro - 0.86 0.87 0.85

(0.85–0.87) (0.86–

0.88)

(0.84–

0.86)

Micro - 0.96 0.96 0.96

(0.96–0.96) (0.96–

0.96)

(0.96–

0.96)

O-Tag O 0.98 0.98 0.98

LOCATION B 0.76 0.76 0.76

I 0.83 0.91 0.77

ORGANIZATION B 0.93 0.92 0.94

I 0.86 0.90 0.82

PERSON-

REFERENCE

B 0.92 0.93 0.91

I 0.92 0.95 0.89

OBJECT B 0.86 0.86 0.87

I 0.87 0.89 0.86

COUNT B 0.86 0.88 0.84

I 0.89 0.93 0.84

PROPERTY B 0.70 0.63 0.79

I 0.76 0.71 0.81

Macro and micro averages are reported with 95% CIs obtained via bootstrap resampling,

shown in the format: mean (lower–uper). Per-label results are shown without bootstrap CIs

for improved readability.

using the COUNT, LOCATION, OBJECT, ORGANIZATION,

PERSON-REFERENCE, and PROPERTY classes. To combine

multiple tokens into a span, we used the IOB scheme invented by

Ramshaw and Marcus (1995). This tagging scheme suggests three

general token types. The O-tag, for outside, marks all tokens that

do not belong to a span. The B-tag, for beginning, marks the first

token of a span. For spans containing multiple tokens, the I-tag, for

inside, marks all tokens within a span after the first token.

Using the labeled and preprocessed data, we took 90 % of the

data for training and 10 % for validation. After comparing several

language models, a pre-trained multilingual LUKE model, studio-

ousia/mluke-large proposed by Yamada et al. (2020), performed best

on this dataset. The results of the validation split are presented in

Table 6 and show a strong performance across all labels, with the

PROPERTY class performing the worst.

3.2.3 Relationship extraction
The final modeling task is relationship extraction, introduced

in Section 2.3.4. Again, we use a multilingual LUKE model for fine

tuning. A LUKE model is given the input text and the positions

of two spans for which a relationship is to be classified. The

model does not receive any information about the span classes,

which requires the model to rely solely on the learned semantic

representation of such words (Yamada et al., 2020). Furthermore,

due to the behavior of receiving two spans at a time, the model
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can only classify one relationship per input example. Let s be

the number of spans extracted from the previous step, token

classification, and R(s) be the number of possible relationships

between these spans. This leads to the requirement of predicting

each text R(s) times with different span combinations for each

of the possible relationships within a text. This fact increases the

computational complexity of classifying all relationships within a

report as the number of spans increases. Given a text containing

spans, each possible relationship is formed between two different

spans. As a result, the number of possible relationships is given by

the binomial coefficient:

R(s) =

(

s

2

)

=
s!

2!(s− 2)!
=

s(s− 1)

2
. (4)

For large values of s, the significant part of this expression is

proportional to s2, leading to quadratic complexity:

R(s) = O(s2). (5)

This means that the number of relationship classifications

grows quadratically with the number of spans in a given text. This

complexity can lead to high computational requirements, especially

for long texts with a higher number of extracted spans. To reduce

the computation time, we filter invalid span combinations before

classifying relationships. As mentioned above, there are certain

span combinations that allow a relationship to exist. The valid head

and tail span combinations are listed in Table 3.

Using this algorithm for preprocessing the examples, we trained

the studio-ousia/mluke-large model on the relationship extraction

task. The results on the validation set are presented in Table 7.

While the macro average F1 score is 0.77, the metric results

demonstrate significant variation across the possible relationship

labels. The performance for the COUNTS relationship exhibits

the best results. This may be due to the fact that this is the

only relationship that originates from the COUNT span. Although

PROPERTY spans are the only spans from which the BELONGSTO

relationship originates, and there are almost twice as many

BELONGSTO relationships as COUNTS, the F1 score is 0.2 points

lower. The model performs worst on the CONTAINS and STAY

relations. Here, both the complexity of the semantic relations and

the limited amount of available training data could be reasons for

this performance.

3.3 Proof of concept

Previously, we have designed a pipeline for semantic modeling

of police reports, conceptualized a prototype system for users

to interact with the data and pipeline results in Section 2.3,

adapted contestability requirements to the concept of this system

in Section 3.1, and evaluated the information extraction results

in Section 3.2. The final step is to implement a proof of concept

that combines the information extraction in a prototypical system

while satisfying the contestability requirements. To do so, we first

describe the technical architecture of our implementation, then

TABLE 7 Evaluation results of the fine-tuned relationship extraction

model (studio-ousia/mluke-large) on the validation dataset.

Label F1 Score (CI) Precision (CI) Recall (CI)

Macro 0.77 0.77 0.77

(0.76–0.78) (0.76–0.78) (0.76–0.78)

Micro 0.96 0.96 0.96

(0.96–0.96) (0.96–0.96) (0.96–0.96)

BELONGSTO 0.74 0.74 0.75

CONTAINS 0.52 0.55 0.49

COREF 0.85 0.81 0.89

COUNTS 0.97 0.97 0.97

NONE 0.98 0.98 0.98

STAY 0.55 0.56 0.54

Macro and micro averages are reported with 95% CIs obtained via bootstrap resampling,

shown in the format: mean (lower–upper). Per-label results are shown without bootstrap CIs

for improved readability.

explain the user interface, and finally outline the implemented

contestability solutions.

As mentioned before, we decided to implement a distributed

system consisting of several interacting services. The first service

is a relational database that serves as the foundation and stores

the semantic models, including the police report texts, metadata,

annotations, and specific entity information. The second service,

an application backend, handles the business logic, database

interaction, and API endpoints. This service handles most of the

processing involved in the semantic modeling pipeline shown in

Figure 1. For example, it handles queries to geolocation services

for identified LOCATION spans, or creates a graph representation

of all the relationships in an example and merges coreferences.

Since language model deployment is most performant with GPU

acceleration, the third service is amodel inference service with GPU

access, that provides API endpoints to our best models for the

three language modeling tasks. This API is used by the application

backend whenever one of the three tasks must be predicted. The

fourth and final service provides the user interface in a web browser

via a frontend web application.

The user interface, as shown in Figure 4, is a reactive web page

that allows users to interact with semantic models. Information

is presented in simple, bordered components that separate tasks

from one another and help the user to focus on one task at a

time. The first component of the user interface provides data

selection functionality. The user can select an example from

different datasets, select or remove an existing version of a task

annotation, or predict a new version. The second component

visualizes the classification of crime types. Manual annotations

are displayed as Boolean values, and predicted annotations also

display sigmoid scores, which can be interpreted as confidence

scores for each class. The component for token classification shows

the classified spans in the text. The accompanying legend explains

the colors and their corresponding classes. Selecting classes in the

legend also highlights the selected classes in the text, allowing the

user to easily navigate through the report. Classified spans can

be clicked to open a detailed information overlay. This overlay
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component displays all tokens within an entity, all inbound and

outbound relationships, and other detailed information. Detailed

information includes extracted time information for TIME spans

or geolocation information with a plotted map for LOCATION

spans. Relationships between spans are visualized in the graph

component, which displays all spans as nodes and uses class-

labeled arrows to indicate relationships between nodes. To visualize

coreference clusters, the aggregation mode merges all related

coreference nodes into a single cluster and connects relationships of

included nodes to the cluster. In addition, nodes or spans hovered

in either component highlight the node in both components. The

last two components display the metadata and a map. The map

shows all extracted geolocations.

Contestability features are built into several components of

the system. The first requirement of challenging AI decisions

is implemented for all language modeling tasks. For crime type

classification, users can override predictions to change the Boolean

value of a crime type label. For token classification, the component

can be used in an edit mode. This allows users to remove

predictions or add missing spans, which are then persisted.

Additionally, relationships can be edited in the graph component to

remove an existing relationship or add a new relationship between

two spans. Here, two nodes are selected as source and target

nodes before a relationship can be selected, which ensures that

only valid relationships are created, as shown in Table 3. Since the

predictions are suggestions to the user, they should be verified and

corrected through iterative editing. This process involves verifying

and correcting the token classifications before requesting, verifying,

and correcting new predictions for relationship annotations.

4 Discussion

This work has combined the development of an AI-

based criminal intelligence analysis system with contestability

requirements. For this purpose, an information extraction pipeline

for semantic modeling of police reports was conceptualized, and

the system was designed by adapting contestability requirements

and implementing appropriate solutions.

We have raised RQ2 about how police reports can be

modeled to support investigative work. To answer this question,

we have proposed a semantic modeling pipeline that includes

three language modeling tasks, namely crime type classification,

token classification, and relationship extraction. Combining these

steps with metadata, external knowledge, and sophisticated

postprocessing provides structured information in a unified data

format. This semantic model provides structured insight into the

storyline, actors, locations, and times. In addition, this data can be

used to explore individual examples with intuitive visualizations or

to automatically analyze large datasets. Automatic analysis uses the

structured data to filter for specific crime types, specific locations,

specific time periods, or can be used to generate management

reports. Furthermore, data analysis can provide useful information

for cross-referencing with other investigative results. Here, the

combination of multiple investigative results, databases, and our

semantic model could lead to finding missing pieces of a puzzle to

solve an investigative case. The proof-of-concept system we have

developed relies on the performance of the underlying language

models, which are trained in a supervised manner on manually

annotated data. Although our results show strong performance for

most classification labels, there are a few labels, such as PROPERTY

spans or CONTAINS and STAY relationships, that could not be

classified with reasonable accuracy. There are three possible reasons

for this: data availability, task complexity, andmodel capacity. Since

most of the classes were modeled reasonably well, we conclude

that the model capacity is sufficient. More important is the low

availability of accurately annotated data. In particular, annotating

labels for token classification and relationship extraction is very

time-consuming and error-prone. For humans, this task first

requires a learning process of available labels and how to annotate

them correctly, and also requires constant concentration to read

and classify each word, without accidentally skipping relevant

labels. Additionally, the complexity of the labeling schemes is

relevant for the accuracy of the annotations and the performance

of the trained languagemodels. For the classification of crime types,

we have defined amulticlass schemewith four labels. One of them is

anOther class, which is difficult for the model to predict accurately.

With a sharper distinction of the classes, e.g., by adding more

classes, a model could learn a better internal representation of the

available crime types, which would lead to a better performance.

The same conclusion applies to token classification and relationship

extraction. As mentioned earlier, there is an almost infinite number

of possible labels. For example, in future work, subcategories of

objects or properties and other relationships can be added to allow

for more precise descriptions of people or their behaviors.

The complexity of the labeling schemes influences the quality

of semantic modeling, while the computational complexity of

the approach influences the time and resources required, which

greatly affects practicability. Let n be the number of police report

examples, and for each example, let t be its token count. For

each example, our pipeline sequentially executes three language

modeling tasks. The first task, sequence classification, processes the

entire input of t tokens and produces a single prediction. While

treating the model’s encoding procedure as a black box, its per-

example complexity is constant, O(1). For the full dataset, this

complexity is O(n). The second task, token classification, assigns

labels to each token, yielding a complexity of O(t) per example and

O(nt) overall. The third task, relationship extraction, operates on

all pairs of extracted spans from the token classification step. In the

worst case, the number of spans s is proportional to the number

of tokens (s = t). Since the relation extraction model predicts each

possible combination of spans, this leads to a complexity ofO(s2) =

O(t2) per example and O(nt2) over the dataset. Consequently,

the overall worst-case complexity for the pipeline is O(nt2),

which leads to the requirement of costly hardware acceleration.

Although using powerful hardware can improve practicability and

processing speed, a more complex labeling scheme would lead to

a more complex annotation process, a more appropriate semantic

model for police reports, an arguably more complex language

modeling task, and further analysis capabilities. Therefore, the goal

is to find the optimal balance between an accurate but complex

semantic model and a simple task for reasonable performance.

Future research should not only explore approaches to handle

more complex labeling schemes, but also more efficient language
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FIGURE 4

User interface of the implemented proof of concept system.

models. Possible approaches include, but are not limited to, using

generative language models to generate labels before fine-tuning

smaller models, or fine-tuning more complex models. In addition,

future work could explore how this system can be connected to

other policing systems, open source intelligence data, or internal

databases, which could improve the accuracy of information

extraction and lead to deeper analysis capabilities.

The main research question we have introduced is RQ1:

How do contestability requirements have to be adapted to fit

an AI-based criminal intelligence analysis system? Based on
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the semantic modeling pipeline, we have designed a prototype

system for analyzing police reports. To make this system

contestable, we first presented an overview of existing general

contestability requirements for systems and system design, before

considering these requirements for the development of our

prototype system. Based on the intended use and stakeholders

of our system, and using the contestability terminology of

Alfrink et al. (2023), we discussed the applicability of the

requirements in this context. With these refined contestability

requirements, we implemented a proof-of-concept system that

provides contestability for criminal intelligence analysis of police

reports. This adaptation for our use case of criminal intelligence

analysis focused on information provision, interactive controls,

and quality assurance. The implemented system thus integrates

intuitive visualizations through the use of reactive components,

a consistent color scheme, and graph views. These provide users

with all relevant information to exercise their right to contest.

Furthermore, the system provides several features to correct and

modify annotations, which are partially predicted by language

models. Regarding the requirement for explanations of system

behavior, we decided not to focus on local explanations for

individual decisions because of the large number of individual

predictions made for each example. Furthermore, we argue that

local explanations for our tasks do not provide precise reasoning for

the implemented tasks, and that they overwhelm users. Instead, we

focus on intuitive visualizations that display confidence scores and

provide information for human controllers to make responsible

decisions. Although we did not choose to require explanations for

individual decisions, this requirement can be evaluated in future

research. In addition, we leave for future research a qualitative

evaluation of the contestability requirements and related solutions

implemented in our system. Studies could look at how users work

with the system, how such a system can be connected or adapted

to other criminal investigation data, or how decision subjects are

influenced by such a system and how they can be provided with

contestability.

Semantic modeling is generally adaptable to a wide range of

text genres. However, our labeling schemas are designed specifically

for German police reports, which exhibit characteristics such as

the exclusion of personal names. These schemas should not be

adopted uncritically for other corpora. New text types would

likely require revised schemas, as well as the collection and

annotation of new training data. Although our pipeline, database,

and model architectures can be retained and reconfigured to

accommodate these new schemas, it may be advantageous to start

from different pre-trained model checkpoints, particularly ones

better suited to the target language or domain. At the same time,

the contestability requirements we imposed inherently constrain

transferability. For instance, in the context of medical report

analysis, our semantic modeling pipeline might fail to extract

the fine-grained details needed, and our proposed user interface

might lack the specialized visualization and correction tools

required by clinicians. Nevertheless, by laying the groundwork for

contestability adaptation in this work, we have established solutions

that can largely be reused. However, depending on the context,

stakeholder groups, data, and analytical objectives, additional

modifications and complementary features will be necessary to

meet new requirements.

In conclusion, in this work we have proposed a contestable AI

system for criminal intelligence analysis of police reports that uses a

novel information extraction pipeline for semanticmodeling. Based

on three languagemodeling tasks with custom labeling schemes, we

created a dataset, trained language models with promising results,

and implemented a system for users to interact with the data and

challenge all decisions within a pipeline. This work thus expands

the scope of information extraction in police report analysis by

expanding the range of data types that can be automatically

identified and analyzed, ultimately leading to a more transparent

and reliable AI-driven investigation with greater depth.
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