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Divide and summarize: improve
SLM text summarization

Alexandre Bailly*, Antoine Saubin, Gabriel Kocevar and

Jonathan Bodin

Seenovate, Paris, France

Introduction: Text summarization is a longstanding challenge in natural

language processing, with recent advancements driven by the adoption of Large

Language Models (LLMs) and Small Language Models (SLMs). Despite these

developments, issues such as the “Lost in theMiddle” problem—where LLMs tend

to overlook information in the middle of lengthy prompts—persist. Traditional

summarization, often termed the “Stu�” method, processes an entire text in

a single pass. In contrast, the “Map” method divides the text into segments,

summarizes each independently, and then synthesizes these partial summaries

into a final output, potentially mitigating the “Lost in the Middle” issue. This study

investigates whether the Map method outperforms the Stu� method for texts

that fit within the context window of SLMs and assesses its e�ectiveness in

addressing the “Lost in the Middle” problem.

Methods: We conducted a two-part investigation: first, a simulation study using

generated texts, paired with an automated fact-retrieval evaluation to eliminate

the need for human assessment; second, a practical study summarizing scientific

papers.

Results: Results from both studies demonstrate that the Map method produces

summaries that are at least as accurate as those from the Stu� method.

Notably, the Map method excels at retaining key facts from the beginning and

middle of texts, unlike the Stu� method, suggesting its superiority for SLM-

based summarization of smaller texts. Additionally, SLMs using the Map method

achieved performance comparable to LLMs using the Stu� method, highlighting

its practical utility.

Discussion: Both theoretical and practical studies suggest that using Map

method for summarization with SLM allowed to address the “Lost in the Middle”

problem and outperform Stu� method.

KEYWORDS

small language models, text summarization, Lost in the Middle, text generation,

automatic evaluation

1 Introduction

The creation of summaries has long been a challenge, but the use of Large Language

Models (LLMs) to generate summaries has undergone a significant shift in recent years

(Zhang et al., 2024). This change stems from the remarkable ability of LLMs to capture

nuanced semantic relationships and contextual information across vast datasets (Brown,

2020). An experiment by Pu et al. (2023) compared summaries generated by humans

and by LLMs through human evaluation, finding that LLM-generated summaries were

preferred by participants.

However, LLMs have limited context size, meaning that the longest texts cannot be

processed all at once, such as in Long Document Summarization tasks (Koh et al., 2022).

Usually, documents are considered as long if they exceed the context length of classical

Transformers models such as BERT (Vaswani et al., 2017; Devlin et al., 2018). To efficiently

process documents without truncation, a novel approach, termed the “block method,” has

emerged. It divides texts into smaller, manageable segments for individual summarization
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before synthesizing these partial summaries into a cohesive whole

(Chang et al., 2023; Wu et al., 2021). This method provides a

promising alternative to the traditional approach of processing the

entire text in a single prompt, effectively mitigating context size

limitations. This method, including the way in which the text must

be segmented, has been thoroughly studied in works such as Moro

et al. (2023) and Zhang et al. (2022).

Nowadays, the context size of LLMs has increased

exponentially, enabling them to process long documents in

one iteration. Despite the growing popularity of LLMs for text

summarization, several challenges remain (Ghinassi et al., 2024).

Among the most prominent are the “Lost in the Middle” problem

(Liu et al., 2024) and the difficulty of evaluating generated

summaries (Sai et al., 2022). The “Lost in the Middle” problem

describes LLMs’ tendency to overlook or underemphasize content

in the middle of the prompt, resulting in incomplete or biased

summaries. This issue is particularly critical for long texts that

approach the LLM’s context window limit. To the best of our

knowledge, no studies have compared the benefits of the block

method against the traditional method for shorter texts that

fit within the context window of LLMs. We hypothesize that

this segmented approach may mitigate the “Lost in the Middle”

problem that fit within the prompt size. By processing smaller

sections of text sequentially, the block method ensures that middle

sections receive sufficient attention, resulting in more balanced

and accurate summaries. In this article, the traditional global

method and the block method will be referred to as “Stuff” and

“Map,” respectively.

Despite their relatively limited number of parameters, Small

Language Models (SLMs) have proven to be as effective as LLMs in

certain contexts, such as content moderation (Ghinassi et al., 2024;

Zhan et al., 2024). Their lightweight nature enables faster inference

and lower computational overhead, making them well-suited for

resource-constrained environments.

This study addresses two primary questions: (1) whether

the Map method with a naive segmentation outperforms the

Stuff method for texts that fit within the context window of

SLMs, and (2) whether the Map method can effectively resolve

the Lost in the Middle issue. To ensure broad accessibility

and practical relevance, we focus on SLMs with fewer than 10

billion parameters, which are open-source and widely available.

The SLMs are compared to a LLM to determine if the Map

method enables them to bridge the performance gap between

the two. To eliminate the need for human evaluation and

to promote systemization, a simulation-based framework has

been developed. This framework generates texts with a known

number of facts and, for evaluation, quantifies the proportion of

retained and omitted facts in summaries, offering an alternative

to traditional metrics. This framework is applied to answer the

two questions.

To validate the findings with real-world data, a comparative

study was conducted using a corpus of scientific articles. The

Stuff and Map methods were assessed based on their semantic

similarity to the authors’ abstracts. By addressing these questions

and challenges, this work seeks to illuminate the trade-offs and

benefits of different summarization approaches in the context

of SLMs.

2 Materials and methods

2.1 Summarization methods

To evaluate the benefits of splitting text prior to summarization,

two summarization methods using small language models (SLMs)

were investigated, as illustrated in Figure 1. The first method,

Stuff (Figure 1a), the text was summarized all at once, whereas

in the second, Map (Figure 1b), portions of the whole text were

summarized before summarizing the intermediate summaries.

2.1.1 Stu� method
The Stuff method involves processing all the input text in a

single pass. The complete text is provided to the SLM within the

FIGURE 1

Schemas of summarization methods. (a) Stu� method: all parts of

the text are provided to the SLM to obtain the final summary. (b)

Map method: the text is first split into paragraphs which are

independently summarized. The partial summaries are together

summarized to obtain the final summary.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1604034
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bailly et al. 10.3389/frai.2025.1604034

prompt,1 accompanied by a request to summarize it, as shown in

Figure 1a. This approach is constrained by the initial input size;

given the SLM’s limited context length (around 8,000 tokens), the

input cannot exceed this threshold.

2.1.2 Map method
The Map method, initially introduced by Wu et al. (2021)

and further explored by Chang et al. (2023), originally involves

multiple summarization steps. In this study, the method has been

simplified into two steps, as depicted in Figure 1b. First, the text

is divided into multiple sub-texts, each consisting of a unique

paragraph. These paragraphs are then individually submitted to the

SLM2 with a request to summarize them, following the approach

of the Stuff method. In the second step, all the sub-summaries are

combined and provided to the SLM, along with an explanation that

they represent parts of a larger text, and a request to produce a

comprehensive summary of the original text. This segmentation

overcomes context length limitations, enabling the processing of

very long texts while potentially benefiting smaller texts as well.

2.1.3 Studied SLMs
The two summarization methods outlined above were applied

using several widely recognized SLMs from various companies,

differing in size (measured by the number of parameters). The list

of SLMs, along with their sizes and release dates, is provided in

Table 1. The smallest SLM, Gemma2:2b, has 2.6 billion parameters,

while the largest, Gemma2:9b, has 9.2 billion parameters. The

earliest model, Openhermes:v2.5, was released in February 2023,

and the most recent, Llama3.2, was released in September 2024.

2.2 Simulation analysis

In the initial phase, a study using simulated data was conducted

to compare both methods on controlled texts with a fixed number

of paragraphs and consistent paragraph sizes, as shown in Figure 2.

The primary goal was to eliminate variability in text length within

the study. To generate the simulated data, an original protocol was

developed. First, a list of facts was created to define the topic of

each paragraph. Next, a text was produced based on this list of facts

and summarized using each method. Finally, each summary was

assessed to compare the performance of the methods.

Aminimumof 5 sentences per paragraphwas required, as fewer

sentences would be irrelevant and likely contain only the targeted

fact. The maximum was set at 15 sentences, as 12 paragraphs with

15 sentences each approach the context limit of approximately

6,000 tokens for some SLMs. Furthermore, generating paragraphs

longer than 15 sentences increases the risk of including facts

that may be more significant than the targeted fact, potentially

introducing bias into the analyses.

Additionally, using multiples of 3 for the number of

paragraphs enabled us to easily divide the original texts and their

1 Prompt for Stu� method is available in Supplementary material.

2 Prompts for Map methods are available in Supplementary material.

TABLE 1 List of SLMs used in the studies with their respective sizes and

release date.

Model name Size Release date

Gemma2:2b (Riviere et al., 2024) 2.6b July 2024

Llama3.2 (Dubey et al., 2024) 3.2b September 2024

Openhermes:v2.5 (Jiang et al., 2023) 7.0b February 2023

Llama3.1 (Dubey et al., 2024) 8.0b July 2024

Gemma2:9b (Riviere et al., 2024) 9.2b June 2024

corresponding facts into three parts (beginning, middle, and end)

for positional analysis.

2.2.1 Simulation plan
Since the length of input text may influence each

summarization method, texts with varying numbers of paragraphs

and paragraph sizes were examined. This was achieved by

generating texts with 6, 9, or 12 paragraphs, each containing 5,

10, or 15 sentences. Only texts with uniform paragraph lengths

were included, ensuring that each paragraph consisted of the same

number of sentences. For each parameter combination (number of

paragraphs× number of sentences), 30 texts were produced.

2.2.2 Data generation
Several steps composed the text generation pipeline. Initially,

lists of facts were produced using a LLM. These facts served as the

main topic for each generated paragraph, with the number of facts

matching the number of desired paragraphs. Subsequently, texts

were created paragraph by paragraph, with the LLM instructed to

adhere to a specified number of sentences per paragraph.

2.2.2.1 List of facts generation

The initial step in data generation involved creating lists of

facts, each serving as the main topic for a paragraph. Since texts

were required to consist of 6, 9, or 12 paragraphs, the lists contained

6, 9, or 12 facts accordingly. For each paragraph count, 30 lists were

produced, with the same lists applied to generate texts across all

paragraph sizes.

Generation was performed using GPT-3.5-turbo-0125,3 as

depicted in Figure 2a. Due to the model’s generation length

constraints, producing all lists simultaneously was not feasible,

necessitating multiple calls to the model. However, repeated use

of the same prompt yielded similar lists. To address this issue, the

LLMwas instructed to generate 15 lists per call, with only the last 10

retained. This process was repeated three times for each paragraph

count, resulting in 30 lists per number of paragraphs.

During prompt engineering, a few-shot prompting technique

was employed, incorporating two example generations for the LLM.

We manually reviewed all lists of facts to eliminate duplicates

and ensure that facts within each list were distinct.When necessary,

3 The prompt used to generate facts (excluding the few-shot examples) is

provided in Supplementary material.
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FIGURE 2

Simulation study pipeline,
⊕

represents the concatenate operator. (a) Creation of the list of facts from only a number facts targeted (Np). (b)

Generation of text, paragraph by paragraph, each iteration taking as input the fact representing the main topic, the number of sentences targeted

(Ns) and the previously generated paragraphs to ensure continuity. (c) Summarization and evaluation process, each text was summarized using both

the Stu� and the Map methods and were provided to GPT-4o with the list of facts to retrieve within the summaries.
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additional lists were generated until a suitable list was obtained

and validated.

2.2.2.2 Text generation

Once obtained, the lists of facts were utilized to produce

texts. From each list of facts, a text was generated paragraph

by paragraph, each paragraph (except the first) created using

knowledge of all preceding paragraphs, the target length, and

the key fact it was required to include, as depicted in Figure 2b.

Generation was performed using GPT-4o,4 selected for its ability

to produce the exact number of requested sentences when that

number was below 10. However, due to instability in generating

longer paragraphs, the LLM was directed to create multiple smaller

paragraphs (each with 5 sentences), which were subsequently

combined. This approach, such as generating a 10-sentence

paragraph by combining two 5-sentence paragraphs, yielded results

comparable to directly producing a 10-sentence paragraph. A

tolerance of one sentence between the target and actual length was

permitted during length verification.

2.2.3 Evaluation
2.2.3.1 Text scoring

Summaries were assessed by examining the presence of facts

from the original text generation, using GPT-4o.5 To verify whether

these facts appeared in the summaries, the original list of facts was

supplied to GPT-4o alongside each summary, with instructions to

determine the presence or absence of each fact.

For each text, including the original generated text, the number

of retrieved facts was calculated. Although text generation was

nearly perfect, some facts occasionally failed to appear in the

generated text. To account for this, only facts confirmed as present

in the original text were considered when scoring the summaries.

For a given summary, the score was calculated using the following

formula, where Ns represents the number of facts retrieved in the

summary and No denotes the number of facts retrieved in the

original text:

score = Ns

No
(1)

2.2.3.2 Score analysis

Once scores were obtained, an analysis was conducted for each

parameter set. The objective was to examine the score as a function

of the summarization method applied and the SLM utilized, while

accounting for the intrinsic variability of each text. For this purpose,

a linear mixed-effects model (Pinheiro and Bates, 2000) with a

random effect for text was fitted. A Sidak correction was employed

to adjust the degrees of freedom. With Id representing the text

identifier, the model formula is expressed as follows:

Score ∼ SLM +Method + SLM :Method + (1|Id)+ ǫ (2)

4 Prompts for text generation are available in Supplementary material.

5 The prompt employed for this evaluation is available in

Supplementary material, such as a repeatability analysis of the

evaluation method.

where SLM denotes the summarization model, with five possible

options (Gemma2:2b, Llama3.2, Openhermes:v2.5, Llama3.1 and

Gemma2:9b) and Method represents the summarization approach

(Stuff or Map).

After fitting the model, statistical analysis was performed

to assess the significance of both the interaction between

SLM and Method and the main effects. Post-hoc tests were

conducted for mean comparisons, and the magnitude of differences

was quantified using Cohen’s D. Lettering has been attributed

to each mean value, representing the differences between

them. Specifically, two values with the same lettering are not

significantly different.

2.2.3.3 Error analysis

After scores were analyzed at the text level, additional

investigations were conducted to identify which facts were absent

from the summaries. One hypothesis posited that the Map method

mitigates the “Lost in the Middle” effect, enabling better inclusion

of facts located in the middle of the original text. By design, the

position of each fact within the original text is theoretically known,

since each fact corresponds to a paragraph. However, the study

design precluded analysis of exact positions (each position per

document was assessed only once), so facts were grouped into three

categories. With the number of paragraphs being a multiple of 3,

texts were organized into sets of two, three, or four contiguous

paragraphs for texts with 6, 9, or 12 paragraphs, respectively.

For texts with 6 paragraphs, the first two were designated as the

beginning, the next two as the middle, and the final two as the end;

for 9-paragraph texts, the first three, middle three, and last three

were used, and for 12-paragraph texts, the first four, middle four,

and last four were applied accordingly.

Consistent with the previous section, the probability of

retrieving facts for a given small language model (SLM) across

these cases was compared using a logistic mixed-effects model,

with a Sidak correction applied to adjust the degrees of freedom.

The model formula, where Pos represents the position (Beginning,

Middle, or End) and Retrieved denotes the probability of fact

retrieval, is given as follows:

Retrieved ∼ Method + Pos+Method : Pos+ (1|Id)+ ǫ (3)

Once the model fitted, statistical analysis was applied to explore

the significance of the interaction between Pos andMethod and the

principal effects. Post-hoc tests for means comparison were applied.

2.2.3.4 Comparison with LLM

To compare the performance of SLMs using the Map method

with that of a LLM, the Stuff method was applied using the

LLM GPT-4o, with an estimated parameter count exceeding one

trillion (Shahriar et al., 2024), known for achieving state-of-the-

art performance on many benchmarks. For each combination of

paragraph number and paragraph size, texts were summarized

using GPT-4o with the Stuff method exclusively. The objective was

to determine whether SLMs employing the Map method could

approach the performance levels of a LLM utilizing the Stuff

method conventionally.
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Scores were assigned to each summary generated by GPT-4o,

consistent with the methodology of prior sections. A linear mixed-

effects model, incorporating a random effect for text, was fitted to

analyze the results. A Sidak correction was employed to adjust the

degrees of freedom. With Id representing the text identifier and

LLM denoting the model (SLMs with the MAP method, except for

GPT-4o with the Stuff method), the model formula is presented

as follows:

scores ∼ LLM + (1|Id)+ ǫ (4)

After fitting the model, statistical analysis was conducted

to assess the significance of the model effects, accounting

for the respective methods. Post-hoc tests were performed for

mean comparisons.

2.3 Practical study

To validate the results observed in the simulation study, a

practical study was conducted. The purpose of this study was to

summarize scientific papers and compare the resulting summaries

with the authors’ abstracts. A new dataset, tailored for this task, was

compiled using freely accessible articles segmented into sections.

2.3.1 Data
To validate our simulation results, we compiled a corpus for

a practical study using scientific articles from six open-source

Frontiers journals (Frontiers Media, 2024a,b,c,d,e,f), all classified as

original research. Due to SLMs’ limited context management, only

papers with fewer than 6,000 tokens were retained to ensure the

Stuff method could process inputs without truncation. This token

limit was determined based on the smallest SLM context length

(Gemma2 with only 8,000 tokens, input and output included) with

a 2,000-token margin allocated for response generation. Retracted

articles were excluded from the dataset.

Only the main body of each article, from introduction to

conclusion, was included, omitting sections like Acknowledgments

or Conflicts of Interest. The abstract was treated as the

gold standard for summarization and thus excluded from the

summarization process. For the Map method, texts were simply

divided into sections. The number of collected and retained articles

is presented in Table 2.

The statistical description of the corpus, including the number

of sections, tokens, mean number of sentences per section, and

standard deviation of sentences per section, is presented in Table 3.

2.3.2 Evaluation
As in the simulated study, both the Stuff and the Map methods

were applied to each article to produce a summary. The objective

was to identify which method yielded a summary closest to the

abstract, considered as the reference.

2.3.2.1 Summaries evaluation

The use of SLM produces summaries with synonyms and

paraphrases of the original text. To prioritize semantic content

TABLE 2 Articles by scope and number of articles kept; from a total of

5,331 articles, only 587 met the criteria and were kept in the final dataset.

Scope of
journal

Number of
articles scrapped

Number of
articles kept

Artificial intelligence 670 83

Astronomy 208 43

Biotechnology 1,024 128

Earth Science 272 42

Education 2,453 160

Neuroscience 704 131

TABLE 3 Statistics of articles kept in corpus.

Statistic Number
of

sections

Number
of

tokens

Mean
number of
sentences
by sections

Std
number of
sentences
by section

Mean 5.51 4,414.54 27.8 16.92

Std 1.62 626.49 7.49 6.21

Min 3 2,141 8.50 2.60

Max 13 5,468 59.75 51.28

over vocabulary [as would the ROUGE metric (Lin, 2004), whose

limitations are presented in Sai et al. (2022) and Zhang et al.

(2024)], evaluation was performed by computing the cosine

similarity between the abstracts and the summaries (Wang and

Dong, 2020).

Both summaries (generated by the Stuff and Map methods)

and the corresponding abstracts were first vectorized using a

Longformer (Beltagy et al., 2020) to convert each text into a 1,024-

dimensions vector. A Longformer was used due to the text lengths

exceeding the context limits of standard Transformers. The specific

Longformer employed was a fine-tuned version of the original

longformer-large-4,096, further pretrained on the S2ORC corpus

(Lo et al., 2019), which comprises academic papers across various

domains, rendering it well-suited for this task. After vectorization,

the cosine similarity between each summary and its corresponding

abstract was calculated. The cosine similarity between two vectors

u and v is given by:

similarity(u, v) = u · v
|u|2 |v|2

(5)

However, cosine similarity has some limitations. The

embedding was obtained by computing the mean of token

embeddings, resulting in a mean representation of the text.

Consequently, some of the granularity of the text is lost.

Additionaly, cosine similarity is unaffected by text length, meaning

a long, detailed summary and a short, dense summary could

could yield comparable scores. Furthermore, cosine similarity is

dimensional sensitive, tending to concentrate around mean values,

which can make it challenging to distinguish between low- and

high-quality summaries.

To address these limitations, the BERTScore (Zhang et al.,

2019) was used to compare the generated summaries and
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their corresponding abstracts. The BERTScore embeds each

token in the summaries and abstracts individually. Each token

is then matched to the most similar token between the

summary and abstract to compute a similarity score. For

a summary x̂ and its corresponding abstract x, BERTScore’s

recall, precision and F1-score are defined as in Zhang et al.

(2019):

RBERT = 1

|x|
∑

xi∈x
max
x̂j∈x̂

x⊤i x̂j (6)

PBERT = 1

|x̂|
∑

x̂j∈x̂
max
xi∈x

x⊤i x̂j (7)

FBERT = 2
PBERT · RBERT
PBERT + RBERT

(8)

2.3.2.2 Scores analysis

For each SLM and summarization method, the mean cosine

similarity, BERTScore precision, recall and F1-score across the

corpus were calculated, accompanied by their corresponding

95% confidence interval, as outlined in Equation 9, where

X represents the vector of values; X̄ denotes the mean, N

FIGURE 3

Comparison of SLM performances on each case, mean scores with the same letter are not statistically di�erent, within the number of paragraphs and

sentences per paragraph considered.
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indicates the number of values, and std(X) signifies the standard

deviation. Additionally, to assess the potential advantage of

the Map method over the Stuff method, paired t-test were

conducted, supplemented by an estimation of effect size using

Cohen’s d.

IC =
[

X̄ − 1.96× std(X)√
N

; X̄ + 1.96× std(X)√
N

]

(9)

3 Results

3.1 Simulation results

3.1.1 Comparison between map and stu�
according to several SLMs

The Map and Stuff methods were evaluated across six distinct

SLMs using nine parameter sets. Figure 3 presents the mean scores

achieved by each SLM with each method across these different

parameter sets. When comparing methods within each SLM, no

significant difference was observed between the two methods

for shorter texts (under 90 sentences), except in specific cases:

Llama3.2 showed significantly higher performance with the Stuff

method for texts with 6 paragraphs of 5 sentences, 6 paragraphs

of 10 sentences, and 9 paragraphs of 5 sentences. Conversely,

Openhermes exhibited significantly better performance with

the Map method for texts with 9 paragraphs of 5 sentences

and 12 paragraphs of 5 sentences. However, as text length

increased, a clear divergence emerged between the methods, with

the Map method demonstrating superior performance across

all SLMs.

When comparing the SLMs, for texts exceeding 9 paragraphs

with more than 10 sentences, a smaller model such as Gemma2:2b

using the Map method outperformed a larger model like

Gemma2:9b using the Stuff method. For instance, in the extreme

case of 12 paragraphs with 15 sentences, mean scores were 0.736

for Gemma2:2b with the Map method and 0.339 for Gemma2:9b

with the Stuff method.

Figure 4 illustrates the significance levels and effect sizes from

paired t-tests comparing the Map and Stuff methods. Across all

SMLs and parameter sets, the Map method outperformed the Stuff

method when differences were statistically significant, with the sole

exception of the Llama3.2 model. For Llama3.2, three parameter

sets (6 paragraphs of 5 sentences, 6 paragraphs of 10 sentences,

and 9 paragraphs of 5 sentences) yielded negative Cohen’s d

values, indicating superior performance of the Stuff method in

these cases. For nearly all models, increases in the number of

paragraphs or paragraph length enhanced the advantage of the

Map method over the Stuff method. However, with Llama3.2, the

benefit of the Map method appeared diminished for paragraphs of

15 sentences compared to those of 10 sentences. When considering

the total sentence count within texts, the Map method exhibited

significant superiority over the Stuff method for counts exceeding

90 sentences, often with very large effect sizes (greater than 1 for all

SLMs). The largest effect size recorded was 3.249 for Gemma2:9b

on the longest texts.

FIGURE 4

Cohen’s d value and paired t-test’s significance between the Map and Stu� methods for each SLM on each set of parameters; p corresponding to the

p-value of the paired t-test.
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3.1.2 E�ect of position
Given the observed performance differences between the

methods, additional analyses were conducted to investigate their

origins. Two parameter sets were examined: the first, consisting of

9 paragraphs with 10 sentences (90 sentences total), represents the

threshold where significant differences between the Stuff and Map

FIGURE 5

Analysis of proportion of fact retrieved by position in the original text. (a) Proportion of facts retrieved with each SLM by position in original text (for 9

facts and 10 sentences). (b) Proportion of facts retrieved with each SLM by position in original text (for 9 facts and 10 sentences). Letters represent

significant di�erences: two groups presenting the same letter are not significant di�erent.
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methods emerge, as shown in Figure 5a; the second, comprising 12

paragraphs with 15 sentences (180 sentences total), corresponds to

the cases exhibiting the largest effect sizes, as depicted in Figure 5b.

Both parameter sets revealed that, for nearly all SLMs, facts

located at the beginning and middle of the text were less frequently

retrieved with the Stuff method compared to those at the end. In

contrast, the Map method consistently captured facts regardless of

their position in the original text. Consequently, the Map method’s

advantage over the Stuff method was more pronounced for facts at

the beginning and middle of the text than at the end. For instance,

in the 90-sentence case (Figure 5a) with Gemma2:9b, the Stuff

method retrieved 38.9% of facts from the beginning, 47.8% from

the middle, and 86.7% from the end, whereas the Map method

retrieved 92.2%, 91.1%, and 87.8%, respectively. Thus, the Map

method recovered over twice as many facts from the beginning and

middle compared to the Stuff method, while retrieval rates at the

end remained comparable.

3.1.3 Comparison with LLM
Figure 6 illustrates the performance of SLMs using the Map

method compared to GPT-4o using the Stuff method. Post-hoc

FIGURE 6

Comparison of SLMs with the Map method and LLMs with the Stu� method for each number of paragraph and each length of paragraph. Letters

represent significant di�erences: two groups presenting the same letter are not significant di�erent.
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FIGURE 7

Mean of the di�erent scores for the Stu� and Map methods for each SLM on the corpus of articles, with a 95% confidence interval.

tests revealed that nearly all SLMs achieved performance levels

with the Map method comparable to those of GPT-4o with the

Stuff method. Exceptions included Llama3.2 with 6 paragraphs—

regardless of sentence count - and Gemma2:2b with 6 paragraphs of

10 sentences, where performance was significantly lower than that

of GPT-4o. Conversely, for texts with 12 paragraphs, Llama 3.1 and

Gemma2:9b demonstrated significantly higher performance than

GPT-4o, specifically with 5 and 10 sentences for Llama3.1 and 5

and 15 sentences for Gemma2:9b.

3.2 Practical results

In this practical study, the summarization performance of

five SLMs using the Stuff and Map methods was assessed. The

study utilized a corpus of 587 scientific articles to determine

which method produced summaries most aligned with the

authors’ abstracts.

Figure 7 displays the results of this comparison. Overall, high

cosine similarity scores (above 0.995) were observed across all

models, indicating strong correspondence between summaries and

abstracts. However, the Map method significantly outperformed

the Stuff method in matching with the authors’ abstracts across

all SLMs. Concerning BERTScore, precision was higher for

Gemma2:2b and Gemma2:9b, with significant p-values below

0.001 (Figure 8), indicating that a larger proportion of summaries

aligned with the abstract for these models. Openhermes showed

no difference between the Stuff and Map methods, while Llama3.1

and Llama3.2 had better precision with the Stuff method. However,

regarding recall, all models performed better with theMapmethod,

indicating that a greater proportion of the abstract was captured

by these summaries, resulting in less information loss during the

summarization process. Finally, the F1-score was higher for all

SLMs using the Map method, suggesting that summaries generated

with this method were of higher quality.

Given the subtle differences in cosine similarity scores

(sometimes as small as 0.001), effect sizes were computed to

evaluate the significance and magnitude of these differences.

Figure 8 presents the effect sizes for all five SLMs. The

Gemma models exhibited strong positive effect sizes (above

0.8), highlighting the substantial benefit of the Map method

over the Stuff method for these models. In contrast, the Llama
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FIGURE 8

Cohen’s d value and paired t-test significance of the Stu� and Map methods for each SLM on the corpus of articles, for the di�erent metrics used.

models and Openhermes:v2.5 displayed weaker positive effects

(above 0.2 for Llama3.1 and Openhermes:v2.5, and above 0.5

for Llama3.2), suggesting a less pronounced but still favorable

advantage for the Map method. Nevertheless, despite the small

differences in cosine similarity, the Map and Stuff methods

produced summaries with very similar proximity to the abstract.

Regarding BERTScore F1-score, Gemma2:2b and Gemma2:9b

exhibited the highest effect sizes, consistent with cosine similarity

results. Other models also showed positive effect sizes, though

slightly weaker.

4 Discussions

In this paper, two questions regarding summarization with

SLMs were explored. The first examined whether a summarization

method based on text splitting (Map method) could outperform

a conventional approach of providing the entire text to the SLM

at once (Stuff method) for short texts. The second investigated

whether the Map method could mitigate the “Lost in the Middle”

effect. To address these questions, a simulation study and a practical

application were conducted.

Simulated texts were generated by creating facts with GPT-3.5-

turbo and producing text from these using GPT-4o. These two

models were selected for their efficiency in their respective tasks

at the time of the study and performed reliably with minimal

divergence. Different SLMs were used for summarization to avoid

overlap. Only the comparison with an LLM used a GPT model

for summarization, but the results showed lower scores, suggesting

no advantage. The evaluation also employed GPT-4o, which could

introduce bias, but it was the most effective model for this task with

few errors. Futhermore, performance was not assessed individually

but by comparing the two methods, which were subject to the

same bias.

Both the simulation and practical studies demonstrated that

the Map method produced summaries at least as effective as those

generated by the Stuff method. Moreover, the simulation study

revealed that the advantage of the Map method over the Stuff

method increased with the length of the original text. Regarding

the “Lost in the Middle” effect (Liu et al., 2024), positional analysis

in the simulation study indicated a more pronounced “Lost in

the Beginning” effect, as the Stuff method retrieved fewer facts

from the first two-thirds of the original text. In contrast, the

Map method effectively addressed this issue, retrieving facts nearly

uniformly regardless of their position in the text. When comparing

SLM performance with the Map method to GPT-4o with the Stuff

method, the simulation showed that, for the task and evaluation

process considered, SLMs bridged the performance gap with the

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1604034
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bailly et al. 10.3389/frai.2025.1604034

well-established LLM. Notably, in the most complex cases, the two

largest SLMs using the Map method achieved significantly better

results than GPT-4o using the Stuff method.

The practical application involved use of scientific articles,

which were longer than the studied text within the theoretical

part, resulting in non-uniform sentence counts for the Map

method’s segments. However, the same conclusions were observed:

the Map method outperformed the Stuff method, consistent

with prior literature showing its effectiveness for long document

summarization tasks (Wang et al., 2024; Moro and Ragazzi, 2022).

The evaluation process for the theoretical component relied

on the initial list of facts, yet additional significant facts may

have emerged during text generation. Such facts could be deemed

more critical for summaries and prioritized over the original

facts, particularly when generating long paragraphs. To enforce

fixed-length paragraphs, the SLM was tasked with producing

multiple short paragraphs that were subsequently concatenated,

potentially increasing the likelihood of generating unaccounted

yet important facts not reflected in the score. Nonetheless, this

generation and evaluation approach eliminated the need for labor-

intensive and time-consuming human evaluation. For the practical

component, article abstracts were treated as the gold standard for

summarization, though this choice has limitations, as abstracts may

not encompass all key facts and are often highly structured.

The simulation established in this study offers a tool for

comparing the summarization capabilities of two prompts on short

texts. The comparison focuses exclusively on the facts within the

texts, overlooking other essential aspects of a quality summary, such

as the length, clarity, or linguistic quality, yet it avoids the need

for human evaluation. Additionally, a practical dataset of scientific

articles compatible with the context size of SLMs was developed.

This dataset enables prompt or model comparisons tailored to

specific requirements.

Although the Map method outperformed the Stuff method,

it incurs higher costs due to increased SLM calls. However,

it permits the use of smaller SLMs, which reduces per-call

computational costs and energy consumption compared to LLMs,

and lessens infrastructure demands, as larger SLMs typically require

more robust GPU units. A comprehensive cost analysis was not

conducted in this study but merits investigation in future research.

While the Map method’s performance is unaffected by

split size for long documents (Chang et al., 2023), the

impact of the number of splits on short documents remains

unexplored and could be a focus of future studies. Alternative

splitting methods for long texts, such as incrementally refining

a summary split-by-split, may also warrant examination.

Nonetheless, splitting input text into smaller segments

poses challenges, and the size of each split could influence

performance-an aspect not addressed here but suitable for

future exploration.

5 Conclusion

This study evaluated a summarization method (Map method),

typically applied to long texts with SLMs, to address the “Lost in

the Middle” effect. Additionally, a novel generation and evaluation

process was introduced, enabling comparison of summarization

methods without human evaluation. The hypothesis posited

that the Map method would capture more information from

the middle of texts compared to the Stuff method, which

involves providing the entire text to the SLM. The simulation

study revealed that the Stuff method struggled to include facts

from the beginning and middle of texts. In contrast, the Map

method, as anticipated, effectively incorporated facts regardless

of their position, performing at least as well as the Stuff

method and surpassing it in the most complex cases. This

finding was corroborated in a practical study involving the

summarization of scientific papers. Unexpectedly, the simulation

study demonstrated that larger SLMs using the Map method

outperformed a state-of-the-art LLM using the Stuff method in

these challenging scenarios. For practitioners, these results suggest

that the Map method generally offers greater effectiveness across

most SLMs.
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