
TYPE Original Research
PUBLISHED 20 August 2025
DOI 10.3389/frai.2025.1605539

OPEN ACCESS

EDITED BY

Ming-Feng Ge,
China University of Geosciences Wuhan,
China

REVIEWED BY

Keith Ulmer,
University of Colorado Boulder, United States
Dengke Han,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Dmitrii Khizbullin
dmitrii.khizbullin@kaust.edu.sa

RECEIVED 03 April 2025
ACCEPTED 17 July 2025
PUBLISHED 20 August 2025

CITATION

Khizbullin D, de Andrade ER, Nguyen TH,
Ferreira MP and Pugh DR (2025) Graph neural
networks with configuration cross-attention
for tensor compilers.
Front. Artif. Intell. 8:1605539.
doi: 10.3389/frai.2025.1605539

COPYRIGHT

© 2025 Khizbullin, de Andrade, Nguyen,
Ferreira and Pugh. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Graph neural networks with
configuration cross-attention for
tensor compilers

Dmitrii Khizbullin1*, Eduardo Rocha de Andrade2,
Thanh Hau Nguyen2, Matheus Pedroza Ferreira2 and
David R. Pugh1

1King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 2Sprout.ai,
London, United Kingdom

With the recent popularity of neural networks comes the need for efficient
serving of inference workloads. A neural network inference workload can be
represented as a computational graph with nodes as operators transforming
multidimensional tensors. The tensors can be transposed and/or tiled in
a combinatorially large number of ways, some configurations leading to
accelerated inference. We propose TGraph, a neural graph architecture that
allows screening for fast configurations of the target computational graph, thus
representing an artificial intelligence (AI) tensor compiler in contrast to traditional
heuristic-based compilers. The proposed solution improves mean Kendall’s τ

across layout collections of TpuGraphs from 29.8% of the reliable baseline to
67.4% of TGraph. We estimate the potential CO2 emission reduction associated
with our work to be equivalent to over 50% of the total household emissions in
the areas hosting AI-oriented data centers.

KEYWORDS

graph neural network (GNN), tensor compilation, attention mechanism, ranking loss
function, machine learning for systems

1 Introduction

Machine learning (ML) continues to gain popularity in solving engineering tasks,
including Large Language Models for natural language processing, convolutional and
transformer models for computer vision, recommendation models in online services, etc.
(Minaee et al., 2024; Pugliese et al., 2021). Most of the computing associated with ML is
done by serving ML models for inference rather than training them (Desislavov et al.,
2023). The need to reduce monetary costs as well as the CO2 footprint of inference
workloads leads to significant efforts in the optimization of computations (Bolón-Canedo
et al., 2024; Tschand et al., 2025). Typically, ML workloads are launched on specialized
accelerators: GPUs, TPUs (Jouppi et al., 2023), and others, which do not provide the
same level of on-chip real-time optimization as CPUs do. Consequently, the complexity
of optimization of computations for ML accelerators is shifted toward the compiler.
Implementation of an enormous quantity of specialized kernels supporting the full matrix
formed by a variety of accelerators times a variety of ML models seems intangible (Huyen,
2024). One solution to this problem is to employ ML-based tensor compilers.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1605539
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1605539&domain=pdf&date_stamp=2025-08-20
mailto:dmitrii.khizbullin@kaust.edu.sa
https://doi.org/10.3389/frai.2025.1605539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1605539/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

1.1 Related work

Several attempts have been made to build a highly efficient
tensor compiler in recent years. Tensorflow (Abadi et al., 2016)
has a rule-based XLA tensor program optimization engine Sabne
(2020) that was studied by Snider and Liang (2023). TVM (Chen
et al., 2018a) introduces a Python-based meta-language to describe
the computation and its execution schedule separately, allowing a
range of automated optimizations mostly limited to one operator
and avoiding operator (kernel) fusion. AutoTVM (Chen et al.,
2018b) introduces the optimization of tensor programs based on
gradient-boosted trees and TreeGRU and uses the ranking loss for
model training rather than element-wise losses like MSE. PyTorch
(Paszke et al., 2019), being a framework built with the imperative
paradigm in mind, in its recent version, supports TorchScript, a
just-in-time (JIT) compiled for the annotated functions and classes.
JAX (Bradbury et al., 2018) as a functional meta-language natively
supports JIT.

TASO (Jia et al., 2019) performs equivalent graph substitution
as a way to fuse kernels. PET (Wang et al., 2021) then builds
on top of TASO (Jia et al., 2019) to expand the search space to
non-equivalent transformations and apply automatically generated
correction kernels. DeepCuts (Jung et al., 2021), Ansor (Zheng
et al., 2020), and TensorComp (Vasilache et al., 2018) rely
on heuristics to solve the problem of efficient execution of a
computational graph. NN-Meter (Zhang et al., 2021) presents a
latency prediction model based on a combination of heuristics to
account for the effects of kernel fusion and a random forest for
single-operator latency prediction.

A significant fraction of the aforementioned works rely solely
on heuristics and rules to compile a tensor program. Although the
compilation time of a heuristic-based algorithm may be very small,
it fails to achieve the absolute minimum of program runtime. In
this work, we propose an algorithm based on machine learning to
optimize a tensor program that is represented as a computational
graph. The closest works to ours are Phothilimthana et al. (2020)
and Xu et al. (2023) that use the same dataset and a benchmark
TpuGraphs (Phothilimthana et al., 2023). Graph Segment Training
(GST) (Cao et al., 2023) uses TpuGraphs as well but reports
another metric, OPA, and does not provide a breakdown across
the collections.

Apart from TpuGraphs, few datasets represent runtime
measurements of computational graphs: Tenset (Zheng et al., 2021)
and the dataset published by the authors of nn-meter Zhang et al.
(2021), while none of these explicitly organizes the node and edge
attributes in a systematic way suitable for machine learning.

Traditional tensor compilers employ heuristic-based
approaches to optimize computational graphs for hardware
accelerators. The typical workflow involves several stages: graph
analysis to identify optimization opportunities, operator fusion
to combine adjacent operations into single kernels, memory
layout optimization to improve data locality, and code generation
targeting specific hardware. Heuristic compilers like XLA rely on
predefined rules and patterns to make optimization decisions,
such as choosing tensor layouts or tiling strategies based on
operator types and tensor shapes. While these approaches
offer fast compilation times and predictable behavior, they are

inherently limited by the quality of hand-crafted rules and
struggle to adapt to the diverse and rapidly evolving landscape
of neural network architectures and hardware accelerators.
Recent AI-based approaches aim to overcome these limitations
by learning optimization strategies from data, using techniques
such as reinforcement learning to explore the optimization
space or supervised learning to predict the performance of
different configurations. However, existing ML-based methods
such as AutoTVM and Ansor focus primarily on single-operator
optimization and fail to capture the complex inter-operator
dependencies that arise in full computational graphs. Most
critically, these approaches treat configuration optimization as
an individual prediction problem, where each configuration is
evaluated in isolation without explicit comparison to alternatives,
ignoring the inherently relative nature of the optimization task.
Our TGraph architecture addresses these limitations through two
key innovations: (1) cross-configuration attention that enables
explicit comparison between different configurations within the
same batch, transforming the problem from individual prediction
to learned ranking, and (2) a graph neural network architecture
specifically designed for computational graphs with configurable
nodes, allowing the model to capture both local operator behavior
and global graph-level optimization opportunities while operating
on pruned subgraphs for improved computational efficiency.

1.2 TpuGraphs dataset and benchmark
details

The only publicly available dataset for the large-scale compiler
configuration search is TpuGraphs (Phothilimthana et al., 2023).
TpuGraphs contains execution times of an XLA’s HLO graph with a
specific compiler configuration on a Tensor Processing Unit (TPU
v3). TpuGraphs focuses on optimizing tensor layouts and tensor
tiling as compiler configurations. A tensor layout describes the
order in which dimensions of a tensor are arranged or permuted in
memory. Specifically, a layout is a 0-based sequence of dimension
indices. A tensor tiling configuration defines how to partition a
tensor into smaller sub-tensors or tiles by specifying the ranges
of indices for each dimension, enabling efficient computation
and memory locality. The tensor layout optimization dataset
comprises 4 collections organized in a matrix shown in Table 1.
The two groups of network architectures (xla and nlp) represent
two distinct categories of workloads: xla - predominantly
computer vision loads, while nlp—exclusively transformer-based

TABLE 1 The matrix of the 4 Layout collections.

Group of
graphs

Configuration sampling strategy

Random (uniform) Default (GA-based)

XLA (CV, NLP
and other)

layout-xla-random layout-xla-default

NLP
(Transformers)

layout-nlp-random layout-nlp-default

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

natural language processing loads. Each architecture has up to
100,000 different tensor layout configurations and the associated
runtimes recorded. The total number of unique architectures
in layout:xla collections is 78 with the average number of
configurations of over 11,000 (for layout:xla::random),
and in layout:nlp collections—244 with the average number
of configurations of over 66,000 (for layout:nlp::random).
Another dimension across which the layout dataset is organized
is the utilized configuration search strategy: random or genetic-
algorithm-based (GA-based, denoted as Default). Even though
the final goal is to be able to predict configurations’ runtimes,
during the dataset creation, some sort of bootstrapping search must
be used. Random search gives very wide coverage across all the
possible runtimes, whereas the GA-based search focuses more on
sampling runtimes in the vicinity of the fastest runtime, making
the task of runtime prediction harder and very challenging for the
predictive model.

To illustrate the problem of configuration selection we provide
an example on Figure 1. Here, four elementary operations compose
a computational graph, while only two of them, reshape and conv,
are configurable. A tensor layout can be chosen by the compiler, and
the choice results in potentially significantly different runtimes as a
result of random or sequential memory access and deep specifics
of a particular computational unit. More details can be found in
Phothilimthana et al. (2023) Figure 3.

1.3 Contribution summary

Our contributions can be summarized as follows:

• We propose TGraph, a graph neural network
(GNN) architecture with cross-channel and cross-
configuration attention that achieves state-of-the-art on
the TpuGraphs benchmark.

FIGURE 1

An example of how different tensor layout configurations affect the
runtime of the computational (sub-)graph. Configuration 1 is faster
than and, consequently, superior to configuration 2.

• We show very efficient training and inference by applying
non-configurable node pruning, configuration de-duplication,
and compression.

1.4 Societal impact

We perform a case study to highlight the importance of data
center AI workload optimization. According to our estimates the
potential impact of this work can be reduction of CO2 emissions
equivalent to 50% (or higher) of household emissions in areas
similar to North Virginia, VA. The details can be found in
Section 2.6.

2 TGraph runtime ranking
architecture

2.1 Problem specification

We are looking to find the configuration c̃ that minimizes the
tensor program runtime R(c) across the configuration space C for a
specific computational graph.

c̃ = argmin
c∈C

(
R(c)

)
(1)

As we have only partial knowledge of R(c) in the form
of benchmarked data, we are looking for a solution as an
approximation Rneural(c) of the underlying true R(c).

The configuration space C can be described as Z
N where N

is the number of discrete configurable variables (node and edge
attributes) in a specific graph.

2.2 Data pre-processing

2.2.1 Graph pruning
For layout collections, only Convolution, Dot, and Reshape

nodes are configurable. Also, in most cases, the majority of nodes
are identical across the configuration set. Thus, we adopt the
following pruning strategy: for each graph, we only keep the nodes
that are either configurable nodes themselves or are connected to
a configurable node, i.e., input or output to a configurable node.
By doing this, we transform a single graph into multiple (possibly
disconnected) sub-graphs. The possibly disconnected graph does
not pose a problem since TGraph has a global graph pooling layer
as one of the final layers that fuses the sub-graph information. This
way of graph pruning reduces the vRAM usage 4 times and speeds
up training by a factor of 5 in some cases. An example of graph
pruning is shown on Figure 2.

2.2.2 Configuration deduplication
Most of the configuration sets for layout collections contain a

lot of duplication. The runtime for the duplicated configuration
sets can vary up to 0.4% of the mean value. Training on the
same configuration sets but different runtime targets makes loss

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

FIGURE 2

An example of node pruning. Nodes that are not connected to configurable nodes are removed (red nodes on the diagram). Two disconnected
subgraphs are left after pruning.

noisy and the training process less stable. Thus, we remove all the
duplicated configuration sets for layout collections and leave the
smallest runtime value for determinism.

2.2.3 Lossless configuration compression
Even with pruning and de-duplication, the RAM usage

to load all configurations to the system memory for NLP
collections is beyond the RAM capacity. We circumvent that
issue by compressing node_config_feat beforehand and only
decompressing it on the fly in the data loader after configuration
sampling. This allows us to load all data to memory at the beginning
of training, which reduces IO/CPU bottlenecks considerably and
allows us to train faster. The compression is implemented based
on the fact that each node_config_feat 6-dim vector (input,
output, and kernel) can only have 7 possible values (-1, 0, 1, 2, 3, 4,
5) and, thus, can be represented by a single integer in base-7 (from
0 to 76 − 1).

2.2.4 Changing the pad value in node_feat
The features in node_feat are 0-padded. Whilst

this is not a problem for most features, for others like
layout_minor_to_major_*, this can be ambiguous
since 0 is a valid axis index. Also, the node_config_feat
are −1 padded, which makes it incompatible with
layout_minor_to_major_* from node_feat. With
that in mind, we re-generate node_feat with −1 padded,
and this allows us to use a single embedding matrix for both
node_feat[134:] and node_config_feat.

2.2.5 Data normalization, embedding and
batching

For layout, the node features are formed as a 140-
dimensional vector node_feat that represents various fields
in an XLA’s HLO instruction (a node in an HLO graph) either
as they are, or as categorical values using one-hot encoding.
We split node_feat into node_feat[:134] containing
numerical and one-hot-encoded values and node_feat[134:]
that contains the tensor index permutation of the output
tensor layout (layout_minor_to_major_*). The former is
normalized to element-wise 0-mean and unit standard deviation

(StandardScaler on Figure 3), while the latter, along with
node_config_feat, is fed into a learned embedding matrix
(4 channels). We find that the normalization is essential since
node_feat has features like *_sum and *_product that can
be very high in values compared to the rest of the features and,
consequently, disrupt the optimization. Further, we find that the
natural way to encode the permutation vectors is to embed them
into a low-dimensional vector. For node_opcode, we also use
a separate embedding layer with 16 channels. The input to the
network is the concatenation of all aforementioned features. For
each graph, we sample on the fly a batch of 64 (for default
collections) or 128 (forrandom collections) configurations to form
the input batch. For tile, on the other hand, we opt to use late fusion
to integrate config_feat into the network.

2.3 Architecture details

Following the reasoning laid out by Phothilimthana et al.
(2020), we employ GraphSAGE (Hamilton et al., 2017) as a basis
of a graph convolutional block. GraphSage operation can be
expressed as

Sk
i (ε) = NL2

⎛
⎝f k

2

⎛
⎝concat

⎛
⎝εi,

∑
j∈neighbors(i)

f k
1

(
εj

)⎞⎠
⎞
⎠

⎞
⎠ (2)

where i is the index of a node, k is the index of the layer, f k
1...2 -

feedforward layers at the specific depth k, NL2 - L2 normalization,
neighbors(i) - a set of immediate neighbors of node i.

We construct the graph convolutional block that can be
expressed in the following way.

Bk
i (ε) = ε + a

(
concat

(
ηi, Across(ηi)

))
(3)

where a is GELU activation, Across - configuration cross-attention
operation, and ηi(ε) is expressed as:

ηi(ε) = Aself

(
Sk

i (Ninstance (ε))
)

(4)

Here Aself is the self-attention operation described below,
Ninstance is instance normalization.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

2.3.1 Channel-wise self-attention
Inspired by the idea of Squeeze-and-Excitation (Hu et al., 2018),

we add a channel-wise self-attention layer as a part of the graph
convolutional block. We first apply a Linear layer to bottleneck the
channel dimensions (8x reduction), followed by ReLU. Then, we
apply a second linear layer to increase the channels again to the
original value, followed by sigmoid. We finish by applying element-
wise multiplication to the obtained feature map and the original
input. The idea behind channel-wise self-attention is to capture the
correlations between channels and use them to suppress less useful
ones while enhancing the important ones.

Aself (ε) = ε ◦ σ
(
fsqueeze

(
ReLU

(
fexcitation(ε)

)))
(5)

Here ◦ denotes element-wise multiplication.

2.3.2 Cross-configuration attention
Another dimension in which we apply the attention mechanism

is the batch dimension: across the sampled configurations. We
design the cross-configuration attention block that allows the
model to explicitly compare each configuration against the
others throughout the network. We find this method to be
much superior to letting the model infer for each configuration
individually and only compare them implicitly via the loss function
(PairwiseHingeLoss in this paper). The cross-configuration
attention expression comes as follows:

Across(ε) = εb
i ◦ Softmax

b

(
εb

i /T
)

(6)

Here i is the node index, b is the configuration index across the
batch dimension, T is a learnable temperature parameter.

By applying the cross-configuration attention layer after the
channel-wise self-attention at every block of the network, we
observe a significant improvement of the target metric (Kendall’s
τ ), especially for default collections.

2.3.3 Entire architecture
The full architecture of TGraph is shown in Figure 3. After

feature concatenation, we apply a fully-connected layer, then we
apply a stack of 2 graph convolutional blocks Bk

i , k ∈ 1..2, then we
perform global average pooling over the node dimension indexed
by i, and finally, we apply another linear layer to eliminate the
feature dimension and get the vector of scores sc where c is the index
across the configuration dimension.

The entire network prediction can be expressed as:

Rneural(X) = fout
(
Poolglobal

(
B2

(
B1

(
fin (X)

))))
(7)

where X is the input feature vector, fin - a 2-layer MLP with
{256, 256} features and GELU activation, fout - linear layer with a
single feature and no activation, Poolglobal - global average pooling
across nodes.

2.4 Training and inference procedures

2.4.1 Loss function
We use the Pairwise Hinge Loss (PairwiseHingeLoss,

Joachims, 2002; Agarwal et al., 2019) loss function for training
the model.

L({r}, {s}) =
∑

i

∑
j

I[ri > rj] max(0, 1 − (si − sj)) (8)

where ri - are the ground truth runtimes, si - are the scores predicted
by the model.

It is important that the predicted scores si = Rneural(ci) do
not correspond to the absolute values of runtimes ri = R(ci).
The applied loss function is a ranking loss function. It trains the
model to order (rank) the predicted values in the same way as
they are ordered by R(c). The correct ordering is enough to satisfy
Equation 1.

2.4.2 Training details
We train separate model instances for all collections. We’ve

identified that separate models perform better than a joint
model trained on all collections or models that were trained
on all-xla or all-nlp combinations as well as all-random
or all-default.

We use Adam (Kingma and Ba, 2014) optimizer (specifically
AdamW version) with the learning rate of 1e-3, 0.05 of the
total number of epochs as linear warm-up, a single-cycle
(lifted cosine) learning rate schedule, and weight decay of 1e-
5 for non-bias parameters. We apply gradient norm clipping at
value 1.0.

We train the tile-xla collection for 17.5 epochs, whereas
layout-nlp collections for 1000 epochs and layout-xla
collections for 750 epochs.

Training wall-clock time is 2.5 hours per fold per collection
measured on RTX4090 with 24 GB RAM. Training one set of
models for all collections produces 13.45 kg CO2 as per Lacoste
et al. (2019).

2.4.3 Data splits
Whereas the official training/validation split is reasonably

designed, we, however, employ K-fold cross-validation with K =
20 on the merged train/validation data splits. We train the
first 5 folds to limit the training compute. We then pick the
top-4 folds by the validation score to combat the instability
of training. This choice comes from the slight instability of
training: in rare cases, the training process for a specific fold may
get stuck at a local minimum or experience partial parameter
corruption due to gradient explosion. In addition, we choose not
to split configurations of the same graph into train/validation
since it would introduce a train-to-validation leak due to the
very high correlation of configuration runtimes within the
same graph.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

FIGURE 3

Architecture diagram of TGraph. nconfigs is the number of configurations sampled into a batch. nnodes is the number of nodes in the sampled graph
after pruning.

2.5 Benchmark results

2.5.1 Evaluation splits
TpuGraphs (Phothilimthana et al., 2023) dataset

does not provide public test data annotations. Hence,
we report the cross-validation score according to
the Section 2.4.3.

2.5.2 Evaluation metrics
Kendall’s τ (Kendall’s rank correlation coefficient) is used as the

metric for layout collections:

τ = 2
n(n − 1)

∑
i<j

sgn(si − sj)sgn(ri − rj) (9)

where s are the predicted scores, r are the ground truth runtimes, n
is the batch size.

For the tile collection, the metric is set as:

Mtile = 1 −
(

Best runtime of top-k predictions
Best runtime of all configurations

− 1
)

= 2 − mini∈K ri

mini∈A ri
(10)

where K = 5.

2.5.3 Details of the inference mode
For inference, we use the batch size of 128. However, since

the prediction depends on the batch, we leverage the batch further
by applying test-time augmentation (TTA) to generate N (10)
permutations of the configurations and average the result after
sorting it back to the original order. We average the scores of
models trained on different folds.

The single-batch wall clock time is 60 ms on average for 1 fold
and 240 ms on average for all 4 folds per collection.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

2.5.4 Experimental results
Our experimental results are summarized in the Table 2.

The confidence ranges are reported as 1-sigma. We demonstrate
state-of-the-art performance in 4 out of 5 collections. On xla-
default Xu et al. (2023) show better results than our work;
however, their results may contain an error since xla-default
collection is harder than xla-random due to closer and harder-
to-distinguish runtime annotations (the pattern is also followed
by the results of TpuGraphs; Phothilimthana et al., 2023), but the
score of Xu et al. (2023) for xla-default is higher than for
xla-random which is very implausible.

2.5.5 Ablation study
Ablations for channel-wise self-attention, cross-configuration

attention, and edges in the graph are collected in Table 3. While the
effect of channel-wise self-attention is less obvious but nevertheless
noticeable, the effect of cross-configuration attention is substantial,
implying that the task of comparing the configurations between
each other is easier than predicting the absolute values of
runtimes. Additionally, we ablate the edges of the GraphSage
GNN to demonstrate how essential the connectivity between the
computational nodes is. In tensor compilers the adjacent operators
are often fused into a single optimized operator, the procedure
commonly know as kernel fusion. For a model solving the problem
of predicting computational graph runtimes it is paramount to
implicitly learn the “rules” of kernel fusion from data since the early
stages of tensor compilation including kernel fusion are treated as
a black box.

“Data centers will use 8% of US power by 2030, compared with 3% in 2022.”

– Sachs (2024)

2.6 Environmental impact case study

According to Loten (2023) the total data center AI workload
consumption in Northern Virginia (NV), VA, the US was 2132 MW
in 2023. Thus, the annual data center energy consumption can be
estimated as 18.6 million MWh. Considering the carbon footprint
of energy production in NV of 0.3 tonne CO2 per MWh as per
(Statista, 2022) the total annual CO2 emissions of NV data centers
can be assessed as 5.58 mln tonnes CO2. From the authors of XTAT
(Phothilimthana et al., 2021) we take 5% as a reference number
for the runtime speed-up across a diverse dataset of 150 neural
architectures. Speeding up AI workloads by 5% with the more
efficient execution would reduce CO2 emissions by 275’000 tonnes
CO2 yearly in NV alone. This is equivalent to the annual emissions
of 36’000 households (approximately 50% of all NV households).
Even though it is yet to be determined how to estimate the real
acceleration of computation based on the values of Kendall’s τ , we
expect the effect to be similar or superior to XTAT (Phothilimthana
et al., 2021).

3 Conclusion

The proposed novel TGraph neural network architecture
establishes a state-of-the-art on the TpuGraphs dataset. A
significant contribution to the performance comes from channel-
wise self-attention and cross-configuration attention operations.
The latter acts as one of the batch normalization techniques,
allowing the exchange of information between individual samples,
which improves performance in ranking problems.

In general, more efficient ML-based tensor compilation
methods have a very positive societal impact. Firstly, they
decrease energy consumption and CO2 emissions of data centers,
consequently helping to fight climate change. Secondly, they help to
free software engineers from the tedious labor of re-implementing

TABLE 2 Experimental results.

Validation score

Collection Metric TpuGraphs (Phothilimthana et al., 2023) (Xu et al., 2023) TGraph (ours)

layout:xla:random Kendall’s τ 0.19 0.5285 0.6840 ± 0.0110

layout:xla:default Kendall’s τ 0.12 0.5887 0.4785 ± 0.0031

layout:nlp:random Kendall’s τ 0.58 0.8387 0.9713 ± 0.0008

layout:nlp:default Kendall’s τ 0.30 0.4841 0.5628 ± 0.0027

mean across layout Kendall’s τ 0.298 0.610 0.674

tile:xla Mtile – 0.8622 0.9694 ± 0.0021

Row-wise best is highlighted with bold.

TABLE 3 Ablation study.

Configuration Validation score, Kendall’s τ

layout:xla:random layout:xla:default layout:nlp:random layout:nlp:default

Final, all features 0.6840 0.4785 0.9713 0.5628

- Channel-wise self-attention 0.6737 (−0.0103) 0.4787 (+0.0002) 0.9680 (−0.0033) 0.5555 (−0.0073)

- Cross-configuration attention 0.6539 (−0.0301) 0.4518 (−0.0267) 0.9387 (−0.0326) 0.5436 (−0.0192)

- Graph edges 0.5022 (−0.1818) 0.3631 (−0.1154) 0.7751 (−0.1962) 0.3349 (−0.2279)

Column-wise best is highlighted with bold. Red indicates a decrease in a metric, green indicates an increase relative to our final result (“Final, all features”).

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

lots of highly specialized computational kernels for the constant
flow of hardware releases. Even though it may seem that it is a
case of “AI taking over people’s jobs”, in fact, the achieved extreme
efficiency of digital infrastructure like data centers may cover the
needs of people to the extent that they do not need to work or can
opt to dedicate themselves to more human-centered activities.

4 Limitations and future work

The proposed neural network architecture is limited to
predicting the runtimes of a static tensor program that can be
represented as a computational graph. Another limitation is that
the proposed method is not able to learn the behavior of the tensor
program if the behavior is dependent on the values of input or
intermediate data. As a machine learning algorithm, the proposed
method requires a substantial amount of training data. In the
absence of a diverse sample of benchmarked architectures, the
domain gap between the training graphs and the unknown test
graphs may be big enough, and the model is not able to generalize
to it. The proposed method does not provide any guidance on how
to choose the graphs for the creation of the training dataset. The
proposed method does not generalize to unknown operators. New
graphs with the new operator must be added to the training data in
order for the model to learn the information about its contribution
to the runtime. An ML model trained on one hardware (TPU)
does not necessarily generalize to other hardware (GPU, CPU, etc)
and must be re-trained for other hardware. Lastly, the proposed
solution addresses two compilation sub-problems: tensor layout
selection and tensor tiling selection, whereas there are more sub-
problems to be solved by tensor compilers.

A potential future direction of research could be to transition
from a predictive model to a generative model that is capable
of directly proposing efficient configurations. This could involve
training a variational autoencoder or diffusion model on the
configuration space to generate novel tensor layouts and tiling
strategies that may outperform configurations found through
traditional search methods.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.kaggle.com/competitions/predict-
ai-model-runtime/data.

Author contributions

DK: Supervision, Software, Investigation, Writing – review
& editing, Funding acquisition, Visualization, Writing – original

draft. EA: Conceptualization, Data curation, Methodology,
Visualization, Writing – review & editing, Software, Investigation.
TN: Writing – review & editing, Software, Investigation, Data
curation, Visualization, Validation, Conceptualization. MF:
Conceptualization, Validation, Writing – review & editing,
Investigation, Software, Visualization, Data curation. DP:
Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
supported by the SDAIA-KAUST Center of Excellence in Data
Science and Artificial Intelligence (SDAIA-KAUST AI). This work
was supported by the prizes of the 1st and the 2nd winning
places of “Google - Fast or Slow? Predict AI Model Runtime”
Kaggle competition. The funder was not involved in the study
design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication.

Conflict of interest

EA, TN and MF were employed at Sprout.ai.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2025.
1605539/full#supplementary-material

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al.
(2016). “Tensorflow: A system for large-scale machine learning,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16).

Agarwal, A., Takatsu, K., Zaitsev, I., and Joachims, T. (2019). “A general framework
for counterfactual learning-to-rank,” in Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19
(New York, NY: Association for Computing Machinery).

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://www.kaggle.com/competitions/predict-ai-model-runtime/data
https://www.kaggle.com/competitions/predict-ai-model-runtime/data
https://www.frontiersin.org/articles/10.3389/frai.2025.1605539/full#supplementary-material
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Khizbullin et al. 10.3389/frai.2025.1605539

Bolón-Canedo, V., Morán-Fernández, L., Cancela, B., and Alonso-
Betanzos, A. (2024). A review of green artificial intelligence: towards a more
sustainable future. Neurocomputing 599:128096. doi: 10.1016/j.neucom.2024.1
28096

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., et al.
(2018). JAX: Composable Transformations of Python+NumPy Programs.

Cao, K., Phothilimthana, P. M., Abu-El-Haija, S., Zelle, D., Zhou, Y., Mendis, C.,
et al. (2023). Learning large graph property prediction via graph segment training.
arXiv [preprint] arXiv:2305.12322. doi: 10.48550/arXiv.2305.12322

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., et al. (2018a). “TVM:
An automated End-to-End optimizing compiler for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18) (Carlsbad, CA:
USENIX Association), 578–594.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L., et al. (2018b). “Learning
to optimize tensor programs,” in Advances in Neural Information Processing Systems,
eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(New York: Curran Associates, Inc.).

Desislavov, R., Martínez-Plumed, F., and Hernández-Orallo, J. (2023). Trends in
AI inference energy consumption: Beyond the performance-vs-parameter laws of deep
learning. Sustain. Comput.: Inform. Syst. 38:100857. doi: 10.1016/j.suscom.2023.100857

Hamilton, W., Ying, R., and Leskovec, J. (2017). “Inductive representation learning
on large graphs,” in 31st Conference on Neural Information Processing Systems (NIPS
2017).

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT:
IEEE), 7132–7141.

Huyen, C. (2024). AI Engineering. Sebastopol, CA: O’Reilly Media.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M., and Aiken, A. (2019).
“TASO: optimizing deep learning computation with automatic generation of graph
substitutions,” in SOSP ’19 (New York, NY: Association for Computing Machinery),
47–62.

Joachims, T. (2002). “Optimizing search engines using clickthrough data,” in
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02 (New York, NY: Association for Computing
Machinery), 133–142.

Jouppi, N., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., et al. (2023). “TPU
v4: An optically reconfigurable supercomputer for machine learning with hardware
support for embeddings,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, ISCA ’23 (New York, NY: Association for Computing
Machinery).

Jung, W., Dao, T. T., and Lee, J. (2021). “Deepcuts: a deep learning optimization
framework for versatile gpu workloads,” in Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI
2021 (New York, NY: Association for Computing Machinery), 190–205.

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv. doi: 10.48550/arXiv.1412.6980

Lacoste, A., Luccioni, A. S., Schmidt, V., and Dandres, T. (2019). Quantifying the
carbon emissions of machine learning. arXiv. doi: 10.48550/arXiv.1910.09700

Loten, A. (2023). Rising Data Center Costs Linked to AI Demands. Available online
at: https://www.wsj.com/articles/rising-data-center-costs-linked-to-ai-demands-
fc6adc0ewww.wsj.com (Accessed October 21, 2024).

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., et al.
(2024). Large Language Models: A Survey.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “Pytorch: an imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems, eds. H. Wallach, A. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (New York: Curran Associates,
Inc).

Phothilimthana, M., Burrows, M., Kaufman, S., and Zhou, Y. (2020). A learned
performance model for the tensor processing unit. arXiv. Available online at: https://
arxiv.org/abs/2008.01040

Phothilimthana, P. M., Abu-El-Haija, S., Cao, K., Fatemi, B., Burrows, M., Mendis,
C., et al. (2023). “TpuGraphs: a performance prediction dataset on large tensor
computational graphs,” in Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Bench-marks Track.

Phothilimthana, P. M., Sabne, A., Sarda, N., Murthy, K. S., Zhou, Y., Angermueller,
C., et al. (2021). “A flexible approach to autotuning multi-pass machine learning
compilers,” in 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 1–16.

Pugliese, R., Regondi, S., and Marini, R. (2021). Machine learning-based approach:
global trends, research directions, and regulatory standpoints. Data Sci. Managem. 4,
19–29. doi: 10.1016/j.dsm.2021.12.002

Sabne, A. (2020). XLA: Compiling Machine Learning for Peak Performance.
Available online at: https://research.google/pubs/xla-compiling-machine-learning-
for-peak-performance/

Sachs, G. (2024). AI Poised to Drive 160% Increase in Power Demand. Available
online at: https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-
increase-in-power-demandwww.goldmansachs.com (accessed 25 October, 2024).

Snider, D., and Liang, R. (2023). Operator fusion in XLA: analysis and evaluation.
arXiv [preprint] arXiv.2301.13062. doi: 10.48550/arXiv.2301.13062

Statista (2022). Power Sector Carbon Intensity in the United States in 2022, by
State. Available online at: https://www.statista.com/statistics/1133295/electric-sector-
carbon-dioxide-emission-rate-by-state-united-states/www.statista.com (Accessed
October 21, 2024).

Tschand, A., Rajan, A. T. R., Idgunji, S., Ghosh, A., Holleman, J., Király, C., et al.
(2025). “MLPerf power: Benchmarking the energy efficiency of machine learning
systems from μwatts to mwatts for sustainable AI,” in IEEE International Symposium
on High Performance Computer Architecture, HPCA 2025 (Las Vegas, NV: IEEE),
1201–1216.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W.,
et al. (2018). Tensor comprehensions: framework-agnostic high-performance machine
learning abstractions. arXiv. doi: 10.48550/arXiv.1802.04730

Wang, H., Zhai, J., Gao, M., Ma, Z., Tang, S., Zheng, L., et al. (2021).
“PET: Optimizing tensor programs with partially equivalent transformations and
automated corrections,” in 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21) (Berkeley, CA: USENIX Association), 37–54.

Xu, J., Pan, L., Zeng, Q., Sun, W., and Wan, W. (2023). Based on tpugraphs
predicting model runtimes using graph neural networks. Front. Comp. Intellig. Syst.
6, 66–69. doi: 10.54097/fcis.v6i1.13

Zhang, L. L., Han, S., Wei, J., Zheng, N., Cao, T., Yang, Y., et al. (2021). “nn-Meter:
towards accurate latency prediction of deep-learning model inference on diverse edge
devices,” in Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services (New York, NY: ACM), 81–93.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali, A., et al. (2020). “Ansor:
generating high-performance tensor programs for deep learning,” in Proceedings of the
14th USENIX Conference on Operating Systems Design and Implementation, OSDI’20,
USA (Berkeley, CA: USENIX Association).

Zheng, L., Liu, R., Shao, J., Chen, T., Gonzalez, J. E., Stoica, I., et al. (2021). “Tenset:
a large-scale program performance dataset for learned tensor compilers,” in Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 1).

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1605539
https://doi.org/10.1016/j.neucom.2024.128096
https://doi.org/10.48550/arXiv.2305.12322
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1910.09700
https://www.wsj.com/articles/rising-data-center-costs-linked-to-ai-demands-fc6adc0ewww.wsj.com
https://www.wsj.com/articles/rising-data-center-costs-linked-to-ai-demands-fc6adc0ewww.wsj.com
https://arxiv.org/abs/2008.01040
https://arxiv.org/abs/2008.01040
https://doi.org/10.1016/j.dsm.2021.12.002
https://research.google/pubs/xla-compiling-machine-learning-for-peak-performance/
https://research.google/pubs/xla-compiling-machine-learning-for-peak-performance/
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demandwww.goldmansachs.com
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demandwww.goldmansachs.com
https://doi.org/10.48550/arXiv.2301.13062
https://www.statista.com/statistics/1133295/electric-sector-carbon-dioxide-emission-rate-by-state-united-states/www.statista.com
https://www.statista.com/statistics/1133295/electric-sector-carbon-dioxide-emission-rate-by-state-united-states/www.statista.com
https://doi.org/10.48550/arXiv.1802.04730
https://doi.org/10.54097/fcis.v6i1.13
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Graph neural networks with configuration cross-attention for tensor compilers
	1 Introduction
	1.1 Related work
	1.2 TpuGraphs dataset and benchmark details
	1.3 Contribution summary
	1.4 Societal impact

	2 TGraph runtime ranking architecture
	2.1 Problem specification
	2.2 Data pre-processing
	2.2.1 Graph pruning
	2.2.2 Configuration deduplication
	2.2.3 Lossless configuration compression
	2.2.4 Changing the pad value in node_feat
	2.2.5 Data normalization, embedding and batching

	2.3 Architecture details
	2.3.1 Channel-wise self-attention
	2.3.2 Cross-configuration attention
	2.3.3 Entire architecture

	2.4 Training and inference procedures
	2.4.1 Loss function
	2.4.2 Training details
	2.4.3 Data splits

	2.5 Benchmark results
	2.5.1 Evaluation splits
	2.5.2 Evaluation metrics
	2.5.3 Details of the inference mode
	2.5.4 Experimental results
	2.5.5 Ablation study

	2.6 Environmental impact case study

	3 Conclusion
	4 Limitations and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


	Figure 1: 
	Figure 2: 
	Figure 3: 


